Meeting the healthcare challenge in a world of complexity!

Java Gateway Programmer’s Guide

EsiObjects V4.0

ESI Technology Corporation
5 Commonwesalth Road
Natick, MA. 01760

www.esitechnology.com

Information in this document is subject to change without notice. Companies,
names and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written
permission of ESI Technology Corporation.

[0 2001 ESI Technology Corporation. All rights reserved.

EsiObjectsis aregistered trademark of ESI Technology Corporation.
DSM, Cache, MSM are registered trademarks of InterSystems Corporation.

Microsoft, Visual Basic, Windows and Windows NT are registered trademarks of
Microsoft Corporation.

Table of Contents

[DAVA GATEWAY PROGRAMMER'S GUIDE.........ccovoeiieerieereeeteeeeeeeeeeeeevnn 1

[l =SS =N =R ESRN 2 T 1

[TABLE OF CONTENTS ...ttt eeeeeeseeteesenseseessnensessesssssessessssnssssensssseses 3]

[NN le Ve dTe NI 1]
DOCUMENT CONVENTIONcoovieieiereiieeeeeieeeeeeetsereeseesseesesecsensesecssensesesssesseseeseasans 1]
Y = L= —— 3|
MVHAT IS THE JAVA GATEWAY 2...ueitiitieetecteeiteeteeteeeteeteeteestesseesestesaaessesteesessesseensesseesessesseessessen 3
ISCOPE OF THIS DOCUMENTc.ttieiteeeteeeetteeeteeeetteeeteeeeteeeeateeeeseeeenseeenteeeanseesseeenseeesseseanseesnseeens 3
[THE JAVA GATEWAY PACKAGE.......cuiiiiitiitiitiitiiueeiteitieeessesssessesssssesssssssssessssssessesssesssssesssessesses 4
[= = e S R T == o Y 4
[l N = 5|

[ICOMMUNICATIONS DIAGRAMcuvvetiteeieteeeeteieteeieteeteteeeeseesesessesseseseesessssensasensesensesensesensesensesenes 5
[[THE JAVA GATEWAY, AND GENERATED PROXIEScoeuieieceieiceieececi e cccescececescae 6)
NE JAVA GAIEWAY . oo 6

ENET OO0 PIOXIEScvieivieitee ettt et e et e cteeste et e e eteeeteesteeeteeeseeeabeebeesteesseesaeesasesnbenabeeaseessensseens [§

[JOVERVIEW OF THE COM.ESITECHNOLOGY .EO PACKAGEcvceteeveeeeeeeeeeeeeeeeeeeeeeeiceeeeeeeeeeenes 6)
[Major Classes Used by thE USEYc.cvoueeeeeeeeeeeeeeeeeeeeeeeeeee et 6
BTO IMPDIEMENTAIIONS ...t etieeete e et s eeaeeesatesesseessnseseasesesnsesessesesssssessesesnsessssesesses 7
EXCEDE ONS. ...ttt ettt et e et e et e e beeabeeeseeeseeeneeenseenseesseesseesseesneeenseenseeseesseesseesnsesnsen 8
nterfaces.......... BSOSO PO OO PO PO PO U PO PO PO PO PO PO PO PO PO PO PUPPP PR P PUPPPPPPPPPPR 9
MPIEMENTALTION ClASSESveveeeeeee ettt se e et aneereseesnens 9
TR 11

CLASS LIBRARY PROPERTIES PAGEccuiitiiiiiticieectictieeecteeiecteeteeteeteeteenteereeeesteeneessesseensensens 11
CLASS PROPERTIES PAGEcviitieiiitiiieit ettt eteetesteeseesreereessessesseessesssesesseensessesseesessens 12
(GENERATE JAVA PROXIES INTERFACEcvveveitieueeveetiereereeneesseeteessesseeseessesseensessessessessesssessens 13
BASIC OPERATIONS. ...ooooooooooooocoooocooeeeeseenseeseeneenseeneeneenseeneeneeeeeneenseeneeneeneeeneeneeenees 16]
IGETTING STARTED.......ccuiuititiieiecseteteseesessesesesesessescsesesssssssssesesesssssssesesessssssssesesesesssssssesesesans 16
nstalling and locating the ESIODJECISVA.JAR..........coovvieeeieeeeeeeeeeeee e 16
MPOI't COM.ESITECNNOIOGY.E0.¥ ...ttt 16
EXAMDIE. oo 17|
Declare the TCPGateWay OJECE..........c..veveeeeieetieetieeteeeeeeeteeeteeeteeeteesteeseeseeeeeteesseesseesseearesas 17
EXAIMIDI €] ...t e ettt e sttt e s st e e e ssseeessnbeeeseanne e e s enne e e s annt e e s enbr e e s eannreessannreeeasnnens 17|
Create an instance of a TCPGateWay ODJECE...........ccuveeueeeeeeeeeeeeeteeetieeeeeeeeeeeeteeereeereeereeas 17
ST T 12]

SO NN = e Lo v 17
Using 0penConnection() ... 18
Common EXCeptions and ThEIr CAUSES...........ccuvcveeueiueeeiecieeeeeteeieeteeteeeiesieeeeereeeesreeneeseeens 18
DISCONNECTION ..ttt eeeee et tee e s taesr s teeareneeeanerereetaesrereseansreresearseeseneas 18
A 19

FTECLS Of DISCONNECHION ..ottt eeee e eeteeteeteeneeneeeteeneesreeneesteeseensesneens 19

JUSING LOOKUPOBJIECT() ..vvuveveeeereeeeieeeriteerseenseeessseensseesssesesseasessssessssessssensssensssesssessesesesesseseas 19
L0CalNG S/SIEM VAl BDIES. ...-.oooooooeeeerrrosmmmeeeee oo 19
I e K TS O o 1= e = — 19
| OCAING QN OY0 NAIMIE.veeveetieitieiteecee e eeteeeteeeteeeteeeteeeteeenreeereeaseesseesseesseesnsesnseenseesseessenss 20
EXAMDI S, ..ottt e e e sr e s e e e eneeneaneensereeres 20

MVORKING WITH VARIANTS. ...coctctcectsereceresesssesesssesssssssssssssssssssssesssssesssssssssssssesssssssssssasssssssssses 21
T RN T 21
S N T T e — 21
Get Data from a Variant..........ooooieeicicccc e e e sneesnreereereas 22
SEt Data iNt0 @ VAINTANL........c.eeeeeeeeeeeeeeeteeeecee e e eeeeeeneeeeeeeeesreesseesneesneeenseenseesseesrenas 23
C1EAITNG & DEEING VA TANES............oocooooooeooroooosoomseoreosersomseseesoseeeeesseeseeeesseeseeeseseeseeeeorees 23
ODJECES 1N VAITANES ..ottt ettt testee e et eeesteeneeseesaeenseaneeneensesneeneases 23

[CREATING AND DESTROY ING OBJECTS (LIFESPAN SERVICES)cuveveerereerereererenrereererennerennnne. 23
5 MPIECTEALEODTECL() ...t eett e etee e ettt e eeesesseeesseessasesesneeesssesessesesnsesesnseesnsesans 24
CrEALEONJECT() .ttt e et e eeteeeteeeneeebeeabeesbeesneesnreenreebeeareesreeareeas 25|
HESET OYOD] ECL() ...t e e e e et eeeneeeneeeneeesreesneeaneeaneeenseenseenseesrenss 26

PROXY USAGE ...ttt teeeteeeeeeeteeeeenneeennanensesenesensesenes 28|

CON P TS . 28
L N O T 28
Parentage & INNENTANCE............ooueeieeieeiieeieeeeie ettt et e e esesteeseaeessrenesesesesneresn 28

ISTRUCTUREveevevveteeettet ettt teteeeteteteeseseseseasesesesessesssesensasssesensesssesenssssesenssesesessssssesensassseseneas 29
N e 29
PropertiesS & REIAHIONSNIDS.couiiieueiieeiiieetieietieeeieeeee e st e eeeeeseeesseserssesessssesssseeesssesessseesas 29
A PP 30

E)(()M [N T 31
AMPLE CLASS......cuveieuietieteeteeteetestesseiteeeseeseaseesessessesesseseesesseasessessessesessessesessessessessessesseseenes 31

L IVITATIONS. ...ttt ettt eteeseeteeteeteesessensesseseeseeseeseeseesensensenseneesseseesessessensensensenes 32

U TURE ...t itiitiete it et et eteeteese ettt et e s et et eeseseesseeeess b e s e s ehsehsehsehsebeeheebe s e s e s ensenseheshesbs b e s ensennensans 32

PROGRAMMING WITH GENERIC PROXIES......ccccoiiitiiiisesiseseseseseseseseeesesesesanens 33|
ACKGROUNDuetiteeteueeueeteeteeseeseeseeseesessesseseeseesessessessesesseseesesseesessensensesseseeseeseeseesessensensenens 33

ELATFORM S 33
PrOXY IMIOOES ...ttt ettt e et e saee et e enteeteesteesseeensesnseeseesseesseesnsesnseenseenseesseesresss 33
JAVA GAEEWAY ... ettt e ettt e e e et e eeseeeanteeeanteeanseeenseeeanseeenseeenneeesnseeesneeesnseesns 33
PErSONAIJAVA GAIEWRYvvvvrreeeerserersererseeeessereeseeeeseeeeseeeesseeerseeeeseeeeseeeenseeerseeerseeeeeeeeeeseeeees 33

O A S S e 33
GONET ICPT OXY ... ettt eee et et e e eteeneeteeneaeseeteensesseeneeseeneeseeseensesseeneensesneensessenneessessen 33
P OXYH Gl DB ...t eeeeeeeeneeeeeameeeeeenneeeeannneeeaannneeeeannneeesannneeesennneeesemnece 34

N N =S 34
AMDIES USING PTOXY..ovoovoooooeooooossoosooesoosoosooeoooesooesonooessoessessoessoeosesseesseesseesseseeseeseeoe 35|
ample Using a Generic I5roxy ... 36|

Example USiNg @ ProxXYHEIDEN ..ot et eee e snaeseesneeneeses 37
BULK DATA TRANSFER MECHANISMSiiiiiiititieirieseesieerisssesessrseseesesersesessaes 39
ICONCEPTSoeeeeeeeeeteeeeeeeeeseeeeseeeeseeeeseeeesneeesneeneeeeneneasseeaneneensessnenssnsessnenssnenssnenssnensenenssneeenenr 39
1Y L= PP PPPPP 39
L1211 PP PPRP 40
TTANSIEr DYNAIMICS. ..t ettt eseteeeeteeeeeessabeeesaeesseessasesessessssesssnesesnseseseresns 40
COMMON CONVEINTIONS........cviitieeeiteetieeteeteeteeteeeesteeteetesteeeeeseeneesseeseensesseeseensesseessesseeeessesses 40
AVALT0 ODJECT SUPPONE ..o oovoovoooeooocoooosoososseseesoeseeseseeeeeseeeeeeeseeeesseeeeeneseesseeeeeeseereeeeee 47

OMMON Error MENOUS.........c.eeeiiiieeceeec et e e eeenee e 41
BULK TRANSFER OBJECTS (B TO) wvvvvrovveesossreeesssorreeeesssossreeeeessseereeseessseeeeeesssereeeeeessssrreeeeee 47
TOLISE.....vecteteteeeeeteeteet ettt et et e et et eteeteeteeteebessesseneeseeseeseesessessessensensenseseeseesesseasessenseneesens 41
SR L= 41
BTONVLISE ..ottt ee e esseseeseeseeseseanessensesssresnessessensns 42
BTOTADIE. ..ottt ettt e eteeteeseebesreseseneeseeseeseereesessenseneans 44
BT OTEXE.......ccveeveeteee ettt et eteeteete et eeseseseneeseeseeseeseesessesensenseneeseesessessensenens 46
S Y 48
|V RO T =SS ST N I —— 49|
Q\%ERVI EWV e E e E e e e e EeE e E e eE e r e e eE s 49
FOCESS OESCITPIION. ...ttt ettt ettt et et en e et et e ereneenneneeneenes 49
Mhat Can DEWALCNE..........c.oeie e e e e et e e s e sre e eneeenreereens 51
[T EVENT QUEBUE.eeeeeeeeeeeeee ettt e e e e e e teaeteeeneeeneeesteesseesseeaneeenseenseesseesseesneesneens 51
POSSIDIE COMPIICALIONS.........coiuviiiiiiiieieitiieettieeetieeeteeeetesesseeeseeseesesesnsesessesesssessnsesesseesnsesans 51
HAT HOOKS ARE GENERATED ...ttt 52
N_\/Eroperties T LR T o TS AT 52
VEITES... oo oo ooosomo oo soessoesooeoooooesoeooeoeesoemooemsoeseeseeeersoemsoensesseesseeeeenseemseeseeseeesoerioerioe 52
POLLING FOR EVENTS ... 52
JUSING AISPALCNEVENTS()eveeeeeeeeeeeeieeeteeteeeeteeeseeneeteeeteeeseneeseseeseseeseseenessenesseneeseneesens 52
ICONTROLLING EVENT DISPATCH .outuiuiuiririsisisisesissssssssssessssssssssssssssssssessasasssassssssssssssssssssanes 53
ADVANCED USAGEooooooocoocoocoocoocoooeeeeseneeenenneeneeseesensenseeserseeseeseeneeseeseereesenseeseeseene 54
DIRECT GATEWAY FUNCTIONS.cviveuvitiieteeeteeeteeieteeteteeseseeseseeseseesesessessssesessessesessesenssseeesens 54
(GENET Al PUIMDOSE SEIVICES.oviieeeiieeeieeieeeteiesteeseteseseessssesssesssssesssssessssesesserssssesesssesssseesas 54
Obi S S LS = TR — S

| ife qLcIe Ve 5_8
EVENT PrOCESSING.. oo omooes oo om oo 58
S oL T 60
O] ECE DEDUGTINGveiiiieeiiiiiitiiiiisiieiiesseseeessssssesesssssesesesssssessssssesssssssessmssesessssssressssseresssssens 60
HANDLERSc.vcuteitteeeeteteteeetstetseetsesssesassesssssassssassssasssesssssasesssssssssssssssssssessssessssensssensssensssens 60|
JHENE SEIVICESveveeeieeteeteeteet ettt ete e et eeteeteeetesteeneeateeseeseaseensesseeseensesseensensesseessesseensessen 61
STV 61
Satus........... SO PP PP PO PO PP PP PO PO P VPP PO PP PP PP PP PP PPV PP POPPPRPPPPPPPPIPY 61
TO ODJECE FACLONY.......eeviiteeeeeeteeteeteeteeeeeteeteeeteeteeteetesteeeeeteeneessesseensessesseesesseeneessessenneesses 61

[UTe e L= 61

Introduction

Thisguide is designed to assist the EsiObjects programmer in using the Java
Gateway to build object oriented application systems. It contains the following:

An overview of the Java Gateway.
The concepts of the Java Gateway.

Description of the commands and features added to the Esi Objects Devel opment
Enviroment.

How to perform basic lifespan operations.

How to use the gateway with proxies.

Description and how to use Bulk Transfer Objects in conjuction with the gateway.
How to use event processing through the gateway.

How to use some advanced features of the gateway.

Document Convention

EsiObjects documentation uses the following typographical conventions:

For more information on
this subject please refer to
the BREAK Command
section of this Guide.

Underlined text is used to highlight areference to
another section of this manual or another guide.

Property In text, italicized words indicate defined terms that
are usually used for thefirst time. Words are also
italicized for emphasis.

CREATE Words in bold and capitalized are EsiObjects

commands or keywords.

Set T%lest =I %Pat . Nane

Thisfont is used for code examples.

Overview

What is the Java Gateway?

The Java Gateway is a set of Java classes that allows Java applications to access
one or more EsiObjects servers. TCP/IP handles communications between a Java
client and the EsiObjects server, which is the only method this implementation
provides.

The gateway, in conjunction with Java Proxies, allows for efficient and
specialized servicesto the server. These components are all described in this
document.

Using the gateway and proxies, a Java client can connect to the EsiObjects server
and have accessto the basic services in EsiObjects: object creation and
destruction, operations on methods, properties, and rel ationships, events and
more.

The client, when connected to the server via the gateway, occupies one M process
that handles the communications between Java and EsiObjects. Thus the objects
created within this process are valid only in the client that issued them, unless the
object is created as a shared object (more on this later.)

Scope of this Document

This document describes the basic usage of the Java Gateway and gives examples
using JDK 1.3 using Forte. Using this guide you will learn how to:

» Connect and disconnect a Java client to an EsiObjects server.

e Create Java Proxies from EsiObjects that are included in your Java application. These
proxies represent the actual objects on the server.

e Lookup, create and destroy objects.

» Use Proxy objects on the client to invoke methods, set and get property values, and
set relationships on server objects.

e Useevent processing.

* Usebulk datatransfer objectsthat are supplied with the gateway to alow the transfer

of bulk data across from the server for manipulation on the client, and then back to
the server.

Java documentation is included with the Gateway that describes the
com.esitechnology.eo package.

The Java Gateway Package

When you install the Java Gateway from the installation kit, several components
will be placed on your system.

* EsiObjectsV4.JAR — The JAR file of the Java Gateway classes — required for
runtime.

» EsiObjectsvV4Doc.Zip — The Java Docs for the Java Gateway.

What Else You Will Need

¢ JRE —Java Runtime environment, version 1.2 or better.
» EsiObjects Server — A running EsiObjectsvV4.0 or better.

Concepts

Communications Diagram

The diagram below shows how the Java Gateway relates to the EsiObjects server.
EsiObjects classes that define objects to be accessed from the client have Java
Proxies generated for them. This process produces ajavafile for each generated
class. Theclassfilesareincluded in the client application. Also included isthe
java gateway package. At runtime, the gateway is connected to a TCP Listener
process running on an EsiObjects server. Once connected, the Java programmer
can access the EsiObj ects server viathe gateway. The gateway is the object that
routes requests from the client to the server. A Java Proxy object maps to a server
object. Operationsinvoked on the proxy are sent, viathe gateway, to the servant
object. The operation is executed on that object any result is returned back to the

proxy.

Not shown in the diagram are the Bulk Transfer Objects (BTO) that the gateway
provides for retrieving and sending collections of datato and from the server.

These objects are described later in this guide.

Java Client
— II.-"ﬁx
P : Server |
_ [Client Tava ICF ikl |
! "\ Obsjeet | Ciate- Listener .'l-xﬂhrdf:
? s Wiy

EsiChjects Server

EaiOjects
Class

The gateway and generated java proxies are included in the Java client. The
gateway uses TCP/IP to connect to a TCP listener that is running on the
EsiObjects server. Proxies are used to invoke operations on objects within the

Server.

The Java Gateway, and Generated Proxies

The Java Gateway

The Java gateway is a set Java classes that provide a communications link to the
EsiObjects server. Once connected to a server, the gateway provides services for
creating and looking up objects. These objects are created as proxy objects on the
javaside and are connected to a corresponding object on the server side. These
proxies use the services of the gateway to connect to the server object. Methods,
properties, and relationships of these objects are handled via the gateway that
provides the connection from client to server.

Besides handling the connection to the server, and routing requests from the
proxy object to the server object, the gateway has a set of common support classes
such as Variant and bulk transfer objects (BTO) that provide services for moving
large amounts of data between client and server.

The classes provided in the gateway are all extensible by the user.
Generated Proxies

From within EsiObjects, a user generates a Java Proxy class from EsiObjects class
definitions. These proxies are java class files that contain the methods, properties,
and relationships defined in that class. Y ou can generate only the Javainterfaces
for each of the services defined in the class, or the implementation code as well.
The implementation file contains all the necessary functionality to communicate
from the client to the server object since the connection to the gateway is
automatically handled within the generated proxy code.

Overview of the com.esitechnology.eo Package

The following sections deal with the contents of the gateway package — namely
the com.esitechnology.eo package. The information presented hereisabasic
overview. Detailed reference information can be found in the Java Doc provided
with the gateway.

Major Classes Used by the User
TCPGateway

This classis the primary implementation of the Gateway interface. It providesthe
main communications component for talking to the EsiObjects Server.

Variant

When data is passed to and from EsiObjects, there needs to be a consistent and
known representation of the data. For this purpose, the Variant classis used. It
acts as ageneraized data holder. The Variant datatype isthe default parameter
and return data type.

EoEventListener

The gateway provides for events. This means a Java client can “watch” objectsin
the server and be notified of events that have occurred. This classisthe
generalized definition for an Event Listener that is responsible for responding to
events.

EOEvent

When an event occursin EsiObjects, the data corresponding to that event is
passed to the client in an EOEvent structure.

EOPropertyChangeEvent

In EsiObjects, properties can be watched for changes. Thus, when a property is
modified, EsiObjects throws an event that watchersreceive. Thiseventis
generated by the server as an EOPropertyChangeEvent.

SimpleClientServices

EsiObjects can provide some client services such as asserting a message box to
the client display, etc. These basic services are provided in this class.

Subclasses of Interface Base — Generated by EsiObjects.
All Proxy classes generated are subclasses of InterfaceBase class.
BTO Implementations

Bulk Transfer Objects enable the passing of data from clientsto servers and back.
Below isabrief description of each of the BTOs available to the programmer.

List

A List isasimple sequential collection of Variants. It provides the
implementation of BTOL st interface.

NvList

The NvList provides alist of named items. It provides the implementation of
BTONvList interface. Each item in the list may be given aname —aso caled a
“key”. Names need not be unique. An index based on name is maintained which
allows itemsto be retrieved by name. An NvList object can also be used like a
Map that maps namesto values. The NvList isimplemented as a sequential
collection of Variants; each one of them may be named.

Table

A Tableisacollection of data organized by rows & columns. It is optimized for
row based operations more than column based lookups, etc. Table providesthe
implementation of BTOTable interface.

In Java, the Table isimplemented as a collection of Variants arranged into atable.
The Table supports names columns.

To be useful the Table should aways be dimensioned especially the number of
columnsin the table. Although it islegal to specify zero for one of the two
dimensions, thisis not recommended. Rows and columns are zero-based.

Text

The Text object supports very long block text. Given the restrictions of most M
systems, large blocks of text must be store in a collection of blocks. The Text
object isthe client side representation of the ESI$Text object. It providesthe
implementation of BTOText interface.

The operations on Text facilitate the breaking of the large text object into smaller
chunks that can be stored in M.

NamedcCell

Thisobject mimicsacell in an NvList. It hastwo fields: Name and Vaue.
Methods on the NvList can make use of a NamedCell object to set and retrieve an
element from an NvList.

Exceptions
The following are the additional exceptions that are used by the gateway.
NoConversion

When converting data, especially from within a Variant type to a specific type,
this error is generated when data cannot be converted to the requested type. This
exception extends Error and thus this exception need not appear in a catch block.

RequestFailed

This exception indicates that a proxy service request failed.
Interfaces

CoreObject — defines the required services for a proxy object.
Gateway — Genera definition of the gateway service available in EsiObjects.

BTO — Generic interface implemented by all EsiObjects Bulk Transfer Objects.
Provides the core services needed for identification wire transport form.

BTOList — Defines the interface for asimplelist.
BTONamedCell — A named dataitem. NvLists are collections of these.
BTONvList — Interfaceto alist of items that are named.

BTOTable - Interface to a Table collection containing elements arranged by
rows and columns.

BTOText — Interface for astring of text.
ClientServices— Standard Client Side services requested by the Server.
EoEventListener — Interface for an Event Listener.

OutputHandler — Abstraction of an Output Service that the server may call.
Standard Pane | ds: 0=General Output, 1=Build, 2=Debug.

StatusHandler — Interface for a Status Handler (a Wait Window.)
StatusHandler Factory — Interface to create Status handlers.

DebugSink — Interface for debugging related service callbacks. This defines the
basic interface that the EsiObjects Service will invoke while debugging.

DebuggingSer vices — Interface to the debugging service provided by a gateway.
Implementation Classes

DataTransfer Tracker — The DataTransferTracker allocates and track 1d strings
for objects to give these objects areversible identifier.

EventM anager

InterfaceBase — Base class for all interface objects to EsiObjects. Note: All
method names start with “javaProxy " to avoid conflicts with the actual method
names in EsiObjects.

Parameter — Abstraction of a Parameter to be passed into EsiObjects.

10

WeakValueM ap — Used to track EsiObject Object Id and associate them to the
equivalent proxy object. The use of the class will insure that the mapping alone
does not keep the proxy alive.

TCPDebuggingSer vices — Implementation of the TCP Debugging services.

11

User Interface

Class Library Properties Page

Right clicking on alibrary name in the EsiObjects Session Browser window will
bring up a Property Sheet dialog for the library. This dialog contains two pages.
The 2" tab “Java’ contains a single prompt for the name of the Java package in

which proxies from this library will be created.

Library Properties |

General Java I

|' Java Package

k. I Caricel Lol

The Java pagefor the Class Library Properties dialog.

When you generate a proxy for any classin thislibrary, the package that the
proxy will be created in will be whatever is entered here. For example, when
generating a Java Proxy for aclassin the Tutoria library, the top of the .javafile
will contain the following entry:

package com esitechnol ogy. proxi es. Tutori al ;
Whatever name was entered in the Java Package field on this dialog will be used
as the package name in the generated .javafile.

Note: The default package name is displayed in the Java Package field until it is
changed. Setting thisfield to null will restore the default value.

12

Class Properties Page

Similar to a Class Library, a property dialog can be brought up for a class by
right-clicking on the class name in the Session Browser window and selecting
Properties.

The following dialog is displayed:
Clazz Properties |

Generall.ﬁ.lias Java |

Prosy Clazs: Iu:u:um_esitechnulng}l.prn:-cies.Tutu:urial.F'ersu:un

Generation Options:

¥ Generate &ll Interfaces

] I Cancel Sl

The Class Properties Dialog with the Java page selected.

Selecting the Java tab allows you to specify three fields:
Proxy Class

Thisisthelocation of the proxy that will be generated. The default value for the
Proxy Classfield is the value of the package name entered for the class library
(see above) with the name of the class appended. This default value remains here
until changed. Setting thisfield to null will reinstate the default value.

Generate All Interfaces

Selecting this option (the default) will generate code for all servicesin all
interfaces. Un-selecting this field will cause the java proxy to be generated with
Primary interface services only.

Variant Parameters

By default parameters on the Java generated code will be of type Variant. Un-
selecting this field will cause all parameters to be of type String.

Example:

Hereis an example of a generated code for the Person classin Tutorial Library

13

Variant Parameters:

public abstract Variant get Address() throws RequestFail ed;
public abstract void set Address(Variant Paranil) throws
Request Fai | ed,;

Without Variant Parameters:
public abstract Variant get Address() throws RequestFail ed;

public abstract void set Address(String Paraml) throws
Request Fai | ed;

Note the return types are always Variant. But the parameter type changes from
Variant to String depending on the setting in the Class Properties dia og.

Generate Java Proxies Interface

Y ou can use the default values in the Class Library and Class property pages or
modify them for your needs. The next step is to generate the java proxy itself. The
Generate Java Proxy option is available from severa areas:

Popup menu on a class—thiswill allow you to generate a proxy just for the
selected class.

Popup menu on a classlibrary —thiswill generate proxiesfor al classesin the
library.

From the Tools | Java menu. — generating proxies from this option will generate
aproxy for whatever is currently selected in the Session Browser pandl. If aclass
is selected, then aproxy for that classis made. If alibrary is selected, then all
classesin that library will have proxies generated from them.

14

Below isillustrated the Generate Java Proxy option from the Class popup menu.
This menu is displayed when you right-click on a class name.

File Edit “iew Browze Object Toolz “Window Help

el 2 S A=A k= Rl]

B 7

==

- AbsFactoryObject

B8 AbsLockableObject
B8 AbsSecurityObject
H-8 AbsSerializationObject
=-8 Collection

~of MNested Classes
=i Variables

-0 Factory

-2 Internal

-3 LockControl
=0 Primary

- SHP"

=& Ba
#-8 Co

Add
Delete Delete
Rename Aulb+M

F S

-8 Di
{ Eollapse [EtlLeft
E spand Clrl+Right

0
v
rl
& i

—

@ Lis Properties... Clrl+E nker

=8 Lo
=8 Mz
=8 M

Unilirk. Alt+L
Lirk, Alt+L

@ Se Compile

f Purge Af+P
St Bemove Debug Ailt+hd

ﬂ Baceds, rray Irnpaoit... Shift-+2st+

rethe c

Expart... Shift+t+E
Arrays are ol
determined t Search Chrl+5

[l the

operations a =
of the Resize ﬁ Generate Java Prosy

with the
hed Sav

Collection
Feady ki

Gener ate Java Proxy option from the Class popup menu

15

Similarly, right clicking on a Class Library name in the Session Browser will also
bring up a menu that includes this option.

In each case, when you select the Generate Java Proxy option, the following
dialog is displayed.

Generate Java Proxies |

— Baze Directary |

|D:xEsi|:| bjects\i4. 0

— Generate
V¥ Interface ¥ Implementation

k. | Cancel |

The Java Proxy Dialog

Base Directory — specify the base location under which the java package/proxy
code will be placed.

Generate I nterfaces — selecting this will generate interface signatures for
services implemented in the class.

Generate | mplementations — selecting this will generate implementation code
for the proxies.

Thefile(s) generated are:
» Classnamelmpl.java— for implementation code
e Classnamejava— for the interface

For example, if we generate both interface and implementation code for the class
Tutorial$Person, using a base directory of D:\EsiObjectsV4.0 and default package
names, two files would be created:

D: \ Esi Obj ect sV4. 0\ com esi t echnol ogy\ proxi es\ Tutorial\ P
erson. java

D: \ Esi Qbj ect sV4. O\ com esi t echnol ogy\ proxi es\ Tutorial \P
ersonl npl . java

Thefirst fileisthe interface file and the second is the proxy implementation code.

16

Basic Operations

Once you have generated the proxies for classes you wish to make use of in your
Java application, you need to incorporate these proxies and the gateway into your
client. The following sections describe how to include the gateway and proxiesin
your client and the types of operations available to you viathe gateway. This
includes connecting to an EsiObjects server, creating objects within the server
from your client and invoking services on them.

Getting Started

The following steps will get you started in hooking up your Java client to
EsiObjects using the Gateway.

Installing and locating the EsiObjectsV4.JAR

In order to use the Java Gateway the EsiObjectV4.JAR must appear in the users
Class path. Depending on how you are devel oping the mechanism for doing this
may vary.

* InJDK 1.2 the environment variable CLASSPATH could be used.

* Inadl JDK versionsthereisacommand line quaifier on the Java Compiler (JAVAC)
to specify the Class path.

Most devel opment environments have a mechanism for specifying the
CLASSPATH.

For example, in Forte you can mount the JAR as a File System
For Deployment:

When the user deploys an application written using the Java Gateway they will
need to package the EsiObjectV4.JAR file with their product, and they will need
to load this file with their application. The end users will need to make sure the
JAR fileisintheir class path for the installed application.

When running an application interactive the JAVA.EXE program is used. It
accepts acommand line qualifier to specify the class path.

If the application is deployed over the web, the EsiObjectV4.JAR will need to be
included.

Import com.esitechnology.eo.*

It is recommend that your Java code should include an import statement for the
“com.esitechnology.eo” package. Thiswill simplify the development process.
This step isoptional, but it omitted full class names number be used. It isalso
possible to import only selected classes from the package.

17

Example:

[/l nport the entire package

i mport com esitechnol ogy. eo. *;

/1l nports the selected itens fromthe package
i mport com esitechnol ogy. eo. TCPGat eway;

i mport com esitechnol ogy. eo. Vari ant;

Declare the TCPGateway Object

In order to use the TCPGateway an instance must first be declared with in your
application. Depending on wheather, you have imported the com.esitechnology.eo
package or not the form of the declariation will vary. In either case the class of
gateway is com.esitechnology.eo. TCPGateway.

Example:

/* Declaration of TCPGateway when inporting the
com esi t echnol ogy. eo package */

i mport com esitechnol ogy. eo. *;

private TCPGat eway theGat eway;

/! Decl aration of the TCPGateway when no inmpoer is done
private com esitechnol ol gy. eo. TCPGat eway t heGat eway;

Create an instance of a TCPGateway Object

In Java declarion of an object does not create the object, thus it must be created
before it can be used. Thisis done using the new operator.

Example:

i mport com esitechnol ogy. eo. *;

private TCPGat eway t heGat eway; /1 Declare the Gateway
t heGat eway = new TCPGat eway() ; /1 Create the Gateway
/1 Al'ternative nmethod Declare & Create the Gateway
private TCPGat eway anot her Gat eway = new TCPGat eway() ;

Connection

Users of the gateway connect to the server explicitly. Often, an application looks
up local information about what server and port to connect to from its
configuration information and then explicitly connect to that server. Some
applications will query the user for thisinformation. In any case, the
openConnection method isinvoked to initiate the connection.

18

Using openConnection()

OpenConnection() will establish a TCP/IP connection to an EsiObjects TCP
listener. This method requires avalid a Host Id and Socket Number. Upon
conclusion of the call, the Gateway will be associated with a session and can
make requests. Note that the connection may well be redirected to another host
and port.

Example:

try{
t heGat eway. openConnecti on(“appsrv4. esi t echnol ogy. coni, 9000, "")
}

catch (UnknownHost Excepti on exp){
// Handl e the exception

}
cat ch(Request Fai | ed exp{

/1 Handl e the Exception

}
cat ch(1 OException exp){

// Handl e the Exception
}

Common Exceptions and Their Causes

The following lists the common exceptions you may get when attempting to
connect to the server.

UnknownHostException

» Bad Host Name or Address specified

e Therecould be a DNS problem

* Reguested Addressis not reachable from your location
RequestFailed

e Bad Port specified in the parameters
» EsiObjects server listener is not running at requested port
* Server overloaded

IOException

e Thisindicates a communications error.

Disconnection

To disconnect the gateway from the sever, the closeConnection() method is
invoked on the gateway.

19

Example

t heGat eway. cl oseConnection();

Effects of Disconnection

Once the gateway disconnects from the EsiObjects server, any requests made on
the gateway will result in exceptions. Similarly, any invocation of serviceson a
Java proxy will aso generate an exception.

Bulk Transfer Objects (BTO) will still work since these objects exist completely
on the client.

Using lookupObject()

Once a connection is made to the server one of the first tasks is locating objects
on the server.

The lookupObj ect() is one mechanism for locating persistent and system objects
on the Server.

Locating System Variables

The table below lists the system objects that the lookupObject() service may
find. The namesin the Table are not case sensitive.

System Object Abbreviation | Description

SENVIRONMENT | $ENV The Environment object associated with
this connections

SLIBRARY $LIB The default Library

$LIBRAYRLIST The List of all Class Libraries

$SY SPOOL The System Name Pool

Locating Class Objects

The lookupObject() service may be used to find the Class Object associated with
aclass name. When looking up the class, the name used should be the full class
name prefixed with an underscore. For example to find the class object for the
class TimeStamp in the Base Class Library the name would be:

_Base$Ti neSt anp

The standard format for nested class namesis:
Li b$Cl ass>Nest 1>Nest 2

20

Locating an O% Name

L ookupObject() may also be used to find named objects in the current default
domain. When coding in EsiObjects such names are prefixed with an “0%”.
When using the lookupObject() service, the O% should not be used. Instead just
the name is specified.

If anameis not found then an empty string will be returned. It is thus possible to
check to see if name is defined by checking against the empty string.

Examples:

//Define the Variants to get the result
Vari ant environment;
Vari ant setd ass;
Vari ant dat abase;
Dat abase DB;
/1 Find $ENV
envi ronnent =t heGat eway. | ookupQbj ect (“$Env”);
//Find the Cl ass Base$Set
set O ass=t heGat eway. | ookupQObj ect (“_Base$Set ") ;
/] Check if an O¥bat abase is defined
dat abase=t heGat eway. | ookupQbj ect (“ Dat abase”) ;
If (data .getString().!length()==0){
/1 Code to deal with the undefined Dat abase

}
el se{

/1 The Database is defined lets get it

DB = (Dat abase) dat abase. get Obj ect () ; /] extracts the Proxy
obj ect

/] fromthe variant

}

21

Working with Variants

The last line in the example above shows how to get a handle to a Proxy object
from the Variant. The following sections deal with Variants.

What is a Variant

A Variant is adatatype that can be thought of as a generic container for primitive
data. A variant isastructure that contains 2 fields: one that contains an indicator
of what actual type of datais contained in the variant (a Boolean, integer, string,
etc) and the second field contains the data.

The types of datathat can be placed in avariant are listed below.

* Boolean
e Double
* Hoat

e Integer

e Long

e Object

* Short

e String

Variant are used extensively by the Gateway. Parameters used on callsinto the
gateway, by default, are variants. Return data from these calls are also variants.

Creating a Variant

Variant can be created with data seeded into them, or without data. When using
the new command, a parameter is passed that contains the data to place into the
Variant.

Create without Data

Variant x = new Variant ()

Create with Data

Variant x = new Vari ant (dob)

22

Declaring a Variant

Variants can also be simply declared and data set into it.

Example:

Variant ret; /1 declare a variant

try {

/1 delete

ret = db. Del ete(curPer.getValue()); /1 fill in with result
Variant v = o[0]; /1 declared and seeded with data

Used in a Argument

When passing a variant as an argument the new command is useful. For example:
if (rdbMale.isSelected()) nvl.setAt("Sex", new Variant("Male"));

Get Data from a Variant

Getting datafrom avariant is accomplished by requesting the specific datatype.
For example, if the variant contains an object, the programmer uses the
getObject() call. If the variant containstext, getString() isinvoked.

Examples:

The following example shows a variant being returned from a service call. The
method invocation returns a variant data type. The Object is obtained from the
variant viathe getObject() call.

Variant v = db. Get Or gNaneLi st (new

Variant (txtSel Org.get Text()+""));

NvLi st nvl = (NvList)v.get Cbject();

/* The next exanple shows how a text string is extracted froma
variant. */

protected String oidEnv = "";

Variant vaRet = nul|;

vaRet = gw. | ookupOnj ect (" $ENV");

oi dEnv = vaRet.getString();

23

Set Data into a Variant

Setting avalue into a variant requires invoking the proper method corresponding
to the type of databeing inserted. If you are inserting a string:

va.setString(“Hello”);

inserting a Boolean:
va. set Bool ean(0);

Refer to the Java Docs for information on what data can be set into a variant.
Clearing & Deleting Variants

To clear avariant for use, the clear () method is to be used.
va. cl ear();

Deleting a variant is accomplished by setting the variable to null.
va=nul | ;

Objects in Variants

Variants can also contain objects. The setObject() method is used to insert an
object. The following objects can be inserted into a variant.

» Objectsthat implement CoreObject interface.
* Objectsthat implement the BTO interface.

e Objectsthat implements Stream interface.

» Other objects such asjava objects.

Creating and Destroying Objects (Lifespan
services)

Lifespan services are used to create and destroy objects on the server. They allow
the client to directly create and destroy objects on the EsiObjects server.

Lifespan services are those services used to create and destroy objects on the
server. They alow the client to directly create and destroy objects. This section
of the guide deals with creation and destruction of objects using the gateway.
There are two methods supplied with the gateway for creating objects:
simpleCreateObject() and createObject(). The method destr oyObject() is used
for object destruction.

In EsiObjects, the format of the Create command is as follows:
Creat e Var=Cl assNanme(paranti, ..): (keywor d=val ue, ..): (property=val ue, ..)

Recall that the params are those parameters that are passed into the CREATE
method in the Factory interface.

24

SimpleCreateObject() allows for specifying positional parameters, only the
SHARE keyword, and no property assignments. CreateObject() allows you to
make full use of the EsiObjects construction syntax — both positional and named
parameters, most creation keywords, and property assignments.

simpleCreateObject()

Syntax: si npl eCr eat e(bj ect (cl assnane, flags, parans)

This method handles simple cases of object construction. The method returns an
Object within aVariant. Only classname and flags are required. Use this method
if you wish to create objects without using named parameters. It does allow for
creating shared objects. In summary, simpleCreateObject():

» Isusedto create objects with out special construction requirements.

» Supports creation of shared objects.

» Does not support specifying FIXED or BASE locations for the object.

e Supports positional parameter passing only by using an array of Variants.
» Does not support specifying properties for the construction of the object.

Use createObject() if other creation features are needed, such as named
parameters or property assignments.

The method accepts three parameters:

» Theclass name (string) for the object you want to create. Y ou should use the fully
qualified class name, which consists of the class library name along with the class
name, e.g. “Base$Array”.

» A flag (long) indicating whether the object isto be a child (0) or a shared object (1).

* Anarray of Variants (may be empty) for positional parametersfor the
Factory::CREATE method of the class.

Examples:

#i nport com esi t echnol ogy. proxi es. Super Base. Query;

#i nport com esi t echnol ogy. proxi es. Cor p. Per son;

Query query;

Variant [] parans;

/* Create a tenporary object of the hypothetical class
Super Base$Query. Creating an object of this type requires three
creation paraneters

*/

params = new Variant[3];

/1 The database to use for the Query

paranms[0] = new Vari ant (" Mai nDat abase”) ;

/1 The User Nane

parans[1] = new Variant(”Jones, Fred C);

/1 The Encrypted Password

paranms[2] = new Vari ant (" LKE0O28833HGX2") ;

25

query = (Query)theGat eway. si npl eCreat elbj ect (Super base$Query”, O,
par ans) ;

/* \When we are done with the object we should destroy it.
Create a Shared object and tell a security tracker object about
it.

*/

Per son person;

/W only have a single paranmeter on the call

params = new Variant[1];

paranms[0] = new Variant(”Jones, Fred C’);

per son=(Person) theGat eway. si npl eCr eat eCbj ect (“ Cor p$Person”, 1,
par ans)

securityTracker. Regi st er Per son(Person);

createObject()

Syntax: cr eat eObj ect (cl assname, flags, parans, nanedParans, options,
properties)

This method allows objects to be created using a broad range of functionality. It
supports amost every aspect of the EsiObjects Create command. The method
returns an Object. In addition to the functionality provided by
simpleCreateObject() this method supports:

e Supports most creation keywords.

» Supports Named Parameter passing.

e Supports creation-time property assignment.

» Many of the parameters are optional, they be omitted or an empty collection passed
in their place.

» Positional parameters are passed asaBTOList.

e Named Parameters are passed as a BTONvL.ist. The Value of each element inthelist
isthe value of the parameter, while the Name of the element is used as the parameter
name.

e Creation Options are passed as a BTONvList. The Name of each element isthe
creation keyword (case sensitive), while the value of the Element is the value of the
creation keyword.

e Creation Properties are passed as a BTONvL.ist. The Name of each element isthe
name of the property, while the Vaue of the element isthe value to be assigned to
the property.

Examples:

#i nport com esi technol ogy. proxi es. Local . Or der Server;

Or der Server order Server;

Li st parameters = new List();

NvLi st options = new NvList();

NvLi st namedParanms = new NvList();

NvLi st properties = new NvList();

/I'\We are going to create an object of a class “Local $O der Server”

26

/* We create this class in the default domain, with a nane of
OrderServer. To do this will need to define two Create options:
*/

/1Using the default domain

options. set At (“Domai n”, new Variant (“"))

/1 The Nanme “Order Server”

options.set At (“Nane”, " new Vari ant (“Order Server”));

/* In order to Create an hject in the server we specific an few
paranmeters. The first two paranmeters may be passed positionally,
so we set themin the Paranmeters bject */

/] Set the size of the paraneter object

par anet ers. set Di nensi on(2);

/1 The User Nane

par anet ers. set El ement (0, new Vari ant (”"Jones, Mark”));

/* The creation also requires an authentication token, which wll
be passed as a NanmedParaneter */

/1 Pass the Token we have already defined. (In a variant)
nanedPar ans. set Pai r (- 1, " AToken”, Token) ;

paraneters. set El ement (1, new Variant("All"));

/* W also want to define a few properties of the object when it
is created */

properties.set At (“MaxCients”, new Variant(10));

properties. set At (“Enabl eEvents”, new Variant(1));

/1 Ok we are now ready to Create the Object

order Server = (OrderServer) theGateway. createCbject(

“Local $Order Server”, 0, paraneters, nanedParans, options,
properties);

// Exanpl e of the Same creation w thout Properties

order Server = (OrderServer) theGateway. createObject(

“Local $Or der Server”, O,

par anet ers, namedParamns, options, null).

[/ Exanpl e wi t hout named paranmeters or properties

order Server = (OrderServer) theGateway. createObject(

“Local $Or der Server”, 0,

parameters, null, options, null).

destroyObject()

Syntax: destroyQbj ect (obj ect1d)

This method destroys the server object corresponding to the objectld. Itis
equivalent to the Destroy command in EsiObjects. Keep in mind that in
EsiObjects, when using Destroy the object may not always die. The object may
have their reference count decremented instead, or they may reject the attempt
altogether.

When destroying the object, you can use the following formsto specify the object
id:
* Proxy

e String
 Vaiant

Examples:
/1 Define three different object forns
I nterfaceBase obj; /1 Proxy
String objectd D /1String
Variant tenp /] Vari ant

/1 CGet the object in various ways

obj = theGateway. Lookup(“ObjectToKill1"). get Ohject();

obj ectd D = theGat eway. Lookup(“Obj ect ToKill2").getString();
tenp = theGat eway. Lookup(“CbjectToKill 3");

/1 Ok now delete it

t heGat way. dest r oyQbj ect (0obj) ;

t heGat way. dest r oyQbj ect (obj ect O D) ;

t heGat way. dest royQbj ect (t enmp) ;

27

28

Proxy Usage

The main function of the Gateway isto allow a Java client to invoke methods,
properties, relationships, etc. on objects within the server. Proxy objects on the
client alow thisto happen.

A Classin EsiObjectsis ablueprint for the state and behavior an object will have.
A Class defines the interface to the object — namely the method, properties,
relationships and events that an object of that class will provide. EsiObjects
supports the ability to generate Java code for any Class defined in EsiObjects.
Generating the Java code places the interface of the object in Java code that can
then be included in your Java application. This generated code becomes a Java
Class definition for an object called a Proxy. All the necessary supporting code to
enable the proxy to communicate to the server viathe Gateway is al so embedded
into the generated code.

On the client side, Java can create instances of these Proxieslike any normal Java
object. Behind the scenes, the Java uses the gateway to invoke the creation of the
server object that becomes attached to the client side proxy.

Since the generated code includes all the services provided by the server object,
the client can invoke these servicesin atransparent fashion. The proxy object uses
the gateway to invoke the service on the server object to which it is attached.

Concepts

Generation (Java)

As detailed above, the Java code is generated from within EsiObjects. When
selecting this option you may generate only the interface file or you may aso
generate the implementation file. The implementation file includes all the
necessary supporting code to attach the client side Proxy object with a server side
object.

Parentage & Inheritance

Proxies are really two parts, the interface that extends the same hierarchy as found
in EsiObjects, and the actual proxy implementation that generally extends
InterfaceBase and implements the proxy interface.

Because the generated proxy code includes the services in the EsiObjects class
and also those inherited by InterfaceBase, all methods from InterfaceBase begin
with javaProxy _to avoid possible name conflicts with the names from
EsiObjects.

29

Structure

When invoking operations on a proxy, you have available to you all the methods,
properties, and relationships on the objects you generated proxiesfor. Invoking
these servicesis similar to invoking any service on a Java object:
Object_id.Servicename for invoking servicesin the Primary interface. If you wish
to invoke services in other interfaces, prefix the service name with the interface
name and underscore ().

The format of the Servicename is explained below.
Methods

If the service is a method the name of the method is used.
Properties & Relationships

For property and relationship invocations, the format of the service nameis
getServicename if you want to get the current value of the property or
relationship. If you want to set the value, then the format is setServicename.

Examples

Assuming that PerProxy is a proxy object for a server object of type
Tutorial$Person, and a Person object has properties for Sex, and Address (among
others), we can invoke the value accessor for the property in the following way:

String s = PerProxy.getSex().getString();

Note that the getSex() call returns a Variant and thus the getString() call extracts
the datain the variant as a string value.

The parameters for setting the value depend on how you generated the proxy. If
you generated the proxy with the Variant Parameters setting to TRUE, then you
must use variants for the parameter. Otherwise a string value may be used.

/1l Variant paraneter

Per Proxy. set Sex(new Variant (“Mal e"));

/1 string paraneter
Per Pr oxy. set Sex(“M);

The following example shows an invocation of a method on a proxy for an object
of type Tutorial $Organization.

NvLi st pers = (NvList) O gProxy. Enpl oyeelLi st (). get Object();
OrgProxy.EmployeeL ist invokes the method “ EmployeeList” in the Primary
interface of the object. Since avariant is returned, the getObject() method is

called to extract the object handle from the variant. This handleisthen cast to an
NvList datatype.

30

The following example shows that a method ResetTestDB is being caled in the
Initialize interface for this proxy object. The proxy “db” is of type
Tutorial $Database.

db.Initialize ResetTestDB();

Future plans

Currently property Vaue and Assign accessors are the only ones that can be
invoked viathe proxy. In the future, other accessor methods may become
available to proxy invocation.

Events

Proxy objects can also be used for event processing. A Javaclient can watch an
object in EsiObjects by making use of the event related services.

When generating a Java Proxy for aclass, all events, relationships and properties
have corresponding event services created for them. For example, in the class
Tutorial$Database, there are many events such as “Deleted”, “ StoreRecord”, etc.
Also any property or relationship can also be watched such as OrganizationDB.

Each of these has two event calls generated for each. addServiceNameL istener ()
and removeServiceNameL istner. Where ServiceName is the name of an event,
property or relationship. Both opertions take a single argument: an
EOEventListener. The EOEventListener provides the “callback” method to be
invoked on the client whenever the specified event occursin the server.

addServiceNameListener()

Invoking this method on a Proxy places a“watch” on the server object for the
event specified by the ServiceName.

removeServiceNameListener()

To remove awatch on an object this method is called on the proxy.

Example

The following code places awatch on an object for the StoreRecord event.
db. addSt or eRecor dLi st ener (new EoEvent Li stener () {

public void event Cccurred(ECEvent evt) {

dbSt or eRecor dEvent Cccurred(evt);

}

1)

The section Event Processing below describes in more detail about how to use
eventsin the gateway.

31

Comparing

To determine whether two proxy objects point to the same object, the “==" test
should be used for comparison.

Example Class

For this example, we created aclass “Hello” in the User classlibrary. This class
contained one method in the Primary interface called “ DisplayMessage”.

o« | wllbmcic - Melhad - UamiHaks - M'sssey : Disple® noags

= [3l | B B ! Rk LT &
Er
S LA (Required)Thiessage
+ @ Chant (Ophonal TR Tle="ExDbjscts W4 0"
6 1B Deach PO cenal TS can="Esclameti on
= B HandAnalyree 1
2 Halr o $an Bssa(Test ThMascage Titke T T boon TSon|
o Mesied Clrsses o
{ vanables
= IBs P
o A - o | B
g |
Lema | et [0ETDET 2565 AN uglg.iﬂ
a— = E
Ikzer§Hally - Fnmany Displmbleszags I
I Teesi chass and et far Jowa qenerasan s ks [
| 1 ST, v T By 7 -
Real Locel I mm o

The method DisplayM essage in class User $Hello

This method will display a message box on the screen with a specified message.
The method accepts three parameters: the text of the message, thetitle for the
message box, and the type of icon to display in the message box. Only the first
parameter is required. The other two have default valuesif not specified.

Next we generate a Java Proxy for this class, generating both the implementation
and interfacefiles.

EsiObjects generated two filesin the directory specified in the package path (set
in the Properties page of the class.) Helloimpl.java and Hello.java are the files
containing the implementation code and the interface respectively.

Below isthe code that was generated for the interface file.

package com esitechnol ogy. proxi es. User;

i mport com esitechnol ogy. eo. *;

/** Interface to the Esi Objects Class Hello */

public interface Hell o extends CoreObject

{

public abstract Variant D splayMessage(Variant Paraml) throws
Request Fai | ed,;

32

public abstract Variant D splayMessage(Variant Paraml, Variant
Param2) throws Request Fail ed;

public abstract Variant D splayMessage(Variant Paraml, Variant
Param2, Variant ParanB) throws RequestFail ed;

}

Note that even though the EsiObjects class contained only 1 method,
DisplayMessage, the generated proxy offers three of these methods.

Thisis because of the optional parameters that can be passed in this method. If an
EsiObjects method has input parameters, the Java proxy will contain a
corresponding method for any required parameters. Any optional parameters will
have a separate method generated for each permutation of those parameters.

Thus in the example above, the first DisplayM essage was generated with the
required parameters — in this case just the one. The second and third generated
methods are for the two optiona parameters.

Only positional parameter passing is allowed when invoking services on Proxies.
No keyword parameter passing is supported.

Limitations

Named Parameters on method invocations are not supported in the Gateway.

Strong data typing is not implemented in this version of the gateway. It may be
implemented in future versions.

Future

In the future it may be possible to generate Java proxies that have stronger typing.
These proxies will have specified returns types and parameter types based on
what is on the EsiObjects server. To some degree thiswill work hand in hand with
the addition of stronger typing in EsiObjects which is also planned for future
development. For example one near term change will be to have the rel ationships
generate (and use) their known type information.

For example, given a Classl with arelationship Rel1. Thisisaunary relationship
to an instance of Class2:

The proxies now generate:

public Variant getRel 1();

public void setRel 1(Variant val ue);
With strong typing the following will be generated:

public O ass2 getRel 1();
public void setRet1(d ass2 val ue);

33

Programming with Generic Proxies

Background

Generic proxies provide the ability to access objects that do not have a proxy available on
the client. Depending on how the Gateway is configured, Generic Proxies can be used to
supplement a client which only has a partial set of proxies generated.

Platform Issues

Proxy Modes

TCPGateway Constant Description Value
PROXYMODE_NO_GENERIC Generic proxies are 0
never used.
PROXYMODE_ALLOW_GENERIC Generic proxies are 1

loaded if the normal
class proxy is not found.

PROXYMODE_ONLY_GENERIC Always use a Generic 2
Proxies.

Java Gateway

The Java Gateway supports all three proxies modes. By default the Java Gateway will
startup in PROXYMODE_ALLOW_GENERIC. The Proxy Mode may be controlled
using the getProxyM ode and setProxyM ode methods of the Gateway.

PersonalJava Gateway

The Persona Java Gateway differs from the Full Java Gateway in that it only supports
Generic Proxies. The getProxyMode method of the Personal Java Gateway will always
return avalue of PROXYMODE_ONLY_GENERIC. Since the Personal Java Gateway is
designed to work in low memory environments it was engineered to use only Generic
Proxies, thus saving the local memory that would otherwise be required for the generate
proxies.

Classes

GenericProxy

The GenericProxy provides a generic interface for accessing objects. In order to call a
service the user must provide the Service Name and a Parameter Array of the
Argumemts.

Methods

Method Description

addEventListener Add an Event Listener.

addPropertyListener

Add a Property Listener.

Invoke Invoke a Method.

propetyDataFn Invoke $Data operation on a Property.

propetryGet Get a Properties Value.

propetryGetFn Invoke $Get operation on a Property.

propetryKill Invoke Kill operation on a Property.

propertyNormalizeFn Invoke $Normalize operation on a
Property.

propertyOrderFn Invoke $Order operation on a
Property.

propertyQueryFn Invoke $Query operation on a
Property.

property Set Set a Property.

propetyVaidateFn

Invoke $Validate operation on a

Property.

removeEventListener

Remove an Event Listener.

removePropertyL istener

Remove a Property Listener.

ProxyHelper

Working with the GenericProxy can be cumbersome; the ProxyHel per class provides a
simplified fagade for accessing the proxy. In order to invoke a service the user must
provide a Service Make and the Arguments as Strings or Variants.

Methods:

Method Description

Invoke Invoke a M ethod

propertyGet Get a Property

property Set Set a Property

setProxy Associate the ProxyHelper to a
GenericProxy.

Examples:

Thefollowing is aset of examples that show how Generic Proxies differ from “Normal”
proxy calls. The examples as simplified, and do not include any exception handling. The
examples assume a the following interface for a generated proxy:

package com.esitechnol ogy.proxies.RGTest;

import com.esitechnology.eo.*;

import java.beans.PropertyChangel istener;

/** Interface to the EsiObjects Class ProxyExample */
public interface ProxyExample extends CoreObject

{

35

public abstract Variant Method1() throws RequestFailed;

public abstract Variant Method1(Variant Argl) throws RequestFailed;

public abstract Variant Method1(Variant Argl, Variant Arg2) throws RequestFailed;
public abstract Variant Method2(Variant Argl) throws RequestFailed;

public abstract Variant Method2(Variant Argl, Variant Arg2) throws RequestFailed;
public abstract Variant getPropertyl1() throws RequestFailed;

public abstract void setProperty1l(Variant Value) throws RequestFailed;
public abstract void addPropertylL istener(java.beans.PropertyChangel istener listener);

public abstract void removePropertylListener(java.beans.PropertyChangeL istener listener);
public abstract Variant getProperty2(Variant Arg) throws RequestFailed;

public abstract void setProperty2(Variant Value, Variant Arg) throws RequestFailed;
public abstract void addProperty2L istener(java.beans.PropertyChangel istener listener);

public abstract void removeProperty2Listener(java.beans.PropertyChangeL istener listener);

public abstract Variant Secondary Method3(Variant Argl) throws RequestFailed;

Examples Using Proxy

/IPreexisting variables
/I result —aVariant with a proxy object in it
/I listener — ajava.beans.PropertyChangel istener.

/IDeclare the Proxy

ProxyExample obyj;

//Get the proxies from prior call that stored the result in avariant (result)
obj=(ProxyExample) result.getObject()

/IDeclare afew variants for parameters
Variant val=new Variant();
Variant va2=new Variant();

/IDeclare aVariant for the return value
Variant calResult;

/ICal Methodl

val.setString(“ Test Value”);
va2.setString(“ Another String”);
callResult=0bj.Method1(val,va2);

//Call Method2
val.setInt(10);

va2.setInt(300);
callResult=0bj.Method2(val,va2);

//Get Propertyl
callResult=0bj.getProperty1();

//Set Property2

Variant value=new Variant();
value.setString(“ Test Vaue);
val.setString(:" Key”);

obj.setProperty2(value, val);

/ICall Method 3 in the Secondary Interface
val.setString(“A String Value);
callresult=0bj.Secondary M ethod3(val);

/IAdd A Property Listener for Property2
obj.addProperty2Listener(listener);

/[Remove a Property Listener
obj.removeProperty2Listener(listener);

Example Using a Generic Proxy

/[Preexisting variables
/I result —aVariant with a proxy object in it
/I listener — ajava.beans.PropertyChangel istener.

/IDeclare the Proxy

GenericProxy obj;

//Get the proxies from prior call that stored the result in avariant (result)
obj=(GenericProxy) result.getObject()

/IDeclare afew variants for parameters
Variant val=new Variant();
Variant va2=new Variant();

/IDeclare aVariant for the return value
Variant calResult;

/IDeclare a Parameter array
Parameter[] params;

/ICall Methodl

params=new Parameter[2];

paramg[0]=new Parameter(“ Test Vaue’);

paramg[1]=new Parameter(* Another String”);
callResult=0bj.invoke(* Primary::Methodl1”,0,params);

//Call Method2
val.setInt(10);
va2.setInt(300);
params=new Parameter[2];

37

paramg 0]=new Parameter(val);

paramg 1]=new Parameter();

paramg 1] .data=va2;

callResult=0bj.invoke(* Primary::Method2” ,0,params);

//Get Propertyl
callResult=0bj.getProperty(“Primary::Property1”,0,null);

//Set Property2

Variant value=new Variant();

value.setString(“ Test Value”);

params=new Parameter[1];

paramg 0]=new Parameter(“Key");
obj.setProperty(value,” Primary::Property2” ,0,params);

/ICall Method 3 in the Secondary Interface
params=new Parameter[1];

paramg 0]=new Parameter(“A String Value”);
callresult=0bj.invoke(* Secondary::Method3” ,0,params);

/IAdd A Property Listener for Property2
obj.addPropertyListener(” Primary::Property2” listener);

/[Remove a Property Listener
obj.removePropertyListener(” Primary::Property2” listener);

Example Using a ProxyHelper

/[Pre- exiting variables
/I result —aVariant with a proxy object in it
/I listener — ajava.beans.PropertyChangel istener.

/IDeclare the Proxy
GenericProxy obj;
ProxyHelper helper;

//Get the proxies from prior call that stored the result in avariant (result)
obj=(GenericProxy) result.getObject()
helper = new ProxyHelper(obj);

/IDeclare afew variants for parameters
Variant val=new Variant();
Variant va2=new Variant();

/IDeclare aVariant for the return value
Variant callResult;

//Call Methodl
callResult=helper.invoke(“ Primary::Methodl”,” Test Value”,” Another String”);

/ICall Method2

val.setInt(10);

va2.setnt(300);

callResult=hel per.invoke(* Primary::.Method2” val,va2);

//Get Propertyl
callResult=hel per.getProperty(“ Primary::Property1”);

//Set Property2

Variant value=new Variant();
value.setString(“ Test Value));

helper.setProperty2(value, “Primary::Propertyl”,”Key");

/ICall Method 3 in the Secondary Interface
callresult=hel per.invoke(* Secondary::Method3",” A String Value');

/IAdd A Property Listener for Property2
obj.addPropertyListener(” Primary::Property2” listener);

/IRemove a Property Listener
obj.removePropertyListener(” Primary::Property2” listener);

38

39

Bulk Data Transfer mechanisms

The Java Gateway contains a number of data types that allow for the transfer of
collections or large amounts of datain bulk to and from the server.

This section deals with what these objects are and how to use them.

Concepts
Below isatable of the bulk transfer objects (BTO) supplied in gateway package.
Types
Package com.esitechnology.eo
Interface Standard EsiObjects Description Collection?
Implementation | Equivalent
BTOList List ESI$List A list of items | Yes
BTONVList | NVList ESISNVList | Alistof items | Yes
with Names
BTOTable | Table ESI$Table A Yes
multicolumn
table
BTOText Text ESI$Text A Large Text | No
object

The List, NVList, and Table objects are collections into which elements can be
inserted, removed and iterated.

Text objects deal with large amounts of string data. All of these objects can be
created on the server and passed to the client. In other words, an ESI$List object
created in EsiObjects can be returned to the client and used within the client asa
List object. Conversely, if the client creates a List object and passesit into the
server in amethod parameter, the resultant object in the server isan ESI$List
object.

The implementations of these objects are overrideable by creating a Subclass of
BTOODbjectFactory.

40

Streams

The Java Gateway will alow any of the following classes (or their descendants)
to be passed to the EsiObjects server.

e javaio.lnputStream

e javaio.OutputStream
e javaio.Writer

* javaio.Reader

On the EsiObjects server these objects will be represented as an ESISTCPStream.
Transfer Dynamics

When aBTO object is passed as an argument (or used as areturn value) the entire
contents of that collection is transferred to the other side. In the case of aBTO
object used as an argument of a call from the client to the server, the contents of
the object will be transferred to the server in total, and at the conclusion of the call
the new contents will be transferred back to the client.

Common Conventions

Index Basis

All structures have elements numbered from zero (0) to their Dimension minus
one (1). Thusif you set the Dimension property of a List to 10, the indexes go
from zero to nine.

Effects of Dimension

An attempt to set an element outside of the dimensioned bounds of a collection
will result in an error. This means that all collections should be dimensioned prior
to being filled. The only exception is when an append operation is being
performed, which will cause the collection to grow.

Appending Items

Setting an item at position negative one (-1) will cause the item to be placed at the
end of the collection and the dimension of the collection to be increased.

Common Error Handing

All BTO objectslisted in the table above support a set of common error handling
facilities. These facilities allow error information to be associated with the
collection directly. These facilities might be used by methods that validate the
contents of the collections.

41

java.io Object Support

The following classes (and their decendants) from java.io are understood by the
gateway and will be transported to the server correctly. The server will be
presented with an ESI$TCPStream object. This provides a mechanism whereby
the server may read & write to the clients file system.

e javaio.lnputStream

e javaio.OutputStream

* javaio.Writer

* javaio.Reader

Common Error Methods

The common error methods are supported by all BTO object that support “Data
by Value’. They provide a set of common facilities for associating error
information with aBTO Object.

Details on these error methods are available in the Java Doc for
com.esitechnology.eo.BTO

Bulk Transfer Objects (BTO)
BTOList

Overview

This object isused as a collection for asingleton list of items.

Please refer to the Java Doc for package com.esitechnology.eo.BTOL ist for
details on the interface. For details on the implementation of List refer to the Java
Doc for com.esitechnology.eo.List.

Within EsiObjects, this object type is represented as an ESI$List.

Example:

/1 1nmport the com esitechnol ogy. eo package

i mport com esitechnol ogy. eo. *;

/1 Define the List

Li st theList = new List();

/1 Set the size of the List via the Di nension property

t helLi st. set Di mensi on(12) ;

/1 Load the List with sone data

for (int items0; item < theList.getDimension(); item+){
Variant value = new Variant();
value.setString(“ltem “ + item;
t heLi st. setEl enent(item val ue);

42

/1 Append a fewitens into the List via the SetEl enent using -1
i ndex
t heLi st.setEl enent (-1, new Variant(“Extra Item1”);
t helLi st.setEl enent (-1, new Variant(“Extra Item 2");
/1 Fill a JConboBox with items fromthe List
for (int itenFO; item < thelist.getDinension(); item+){
val ue = theList.getEl enent(iten);
cbox. addl tem(val ue. getString());

}
BTONUVList

Overview

The NVList provides alist of named items. Each item on the list may be given a
name. Names need not be unique. An index based on name is maintained which
alowsitemsto be retrieved by name. An NVList object can also be used like a

Map.

Please refer to the Java Doc for package com.esitechnology.eo.BTONvL st for
details on the interface. For details on the implementation of List refer to the Java
Doc for com.esitechnology.eo.NvList.

Within EsiObjects, this object typeis represented as an ESISNVList.
Example

In this example, the bridgeServer, object is a proxy object created from an
EsiObjects class RGTest that contains various methods for testing the BTO
objects.

private BridgeServer bridgeServer

bri dgeServer=(Bri dgeServer)theGat enay. si npl eCr eat eObj ect (" RGTest $Bri dgeSe
rver",

0, null);

private bool ean NvListTest() {

try{

/1 NvLi st - Local Tests

NvLi st nvLi st;

nvLi st =new NvList();

/1 Popul ati ng Li st

for (int a=1;a<1l; a++){
String key;
Vari ant val ue;
key="Key" +a;

val ue=new Vari ant () ;
val ue. setlnt(a);
nvLi st.setPair (-1, key, val ue);

}

i nt size=nvlLi st. get D nension();
/1 UpdateStatus is a separate function to print output

Updat eSt at us("Li st Di mension = "+size);
for (int a=0;a<size;at++){
String key;

Vari ant val ue;

key=nvLi st. get Name(a) ;

val ue=nvLi st. get El enent (a);

UpdateStatus("Key = " + key);

Updat eSt at us("Val ue = "+value.getString());

}

// Renmot e Tests

nvList.clearAll();

Vari ant vali st;

vaLi st = new Variant();

vali st. set Obj ect (nvList);

/1 invoke the NVLi st Text method on the RGTest object
bri dgeServer. NVLi st Test (vali st);

si ze=nvLi st. get Di nension();

Updat eSt at us("Li st Di mension = "+size);
for (int a=0;a<size;at++){
String key;

Vari ant val ue;
key=nvLi st. get Name(a) ;
val ue=nvLi st. get El enent (a);
UpdateStatus("Key =" + key);
Updat eSt at us("Val ue = "+value.getString());
}
//List as Return Val ue Test
nvLi st =(NvLi st) bri dgeServer. NVLi st Ret (). get Cbj ect () ;
si ze=nvLi st. get Di nension();

Updat eSt at us("Li st Di mension = "+size);
for (int a=0; a<size; a++){
String key;

Vari ant val ue;

key=nvLi st. get Name(a);

val ue=nvLi st. get El enent (a);

UpdateStatus("Key =" + key);

Updat eSt at us("Value = "+value.getString());

}
cat ch(Qut Of BoundsExcepti on exp){

}

Updat eSt at us(exp.toString());
return false;

}

cat ch(NoConver si on exp) {
Updat eSt at us(exp.toString());
return false;

}

cat ch(Request Fai | ed exp){
Updat eSt at us(exp.toString());
return false;

}
return true;
BTOTable

Overview
The Table provides for a collection of data organized by rows & columns. The
table is optimized for row based operations rather than column access. To be
useful the table must always be dimensioned, although it islegal to specify zero
for one of the two dimensions.
Please refer to the Java Doc for package com.esitechnology.eo.BT OTable for
details on the interface. For details on the implementation of List refer to the Java
Doc for com.esitechnology.eo.Table
Within EsiObjects, this object type is represented as an ESI$Table

Example

In this example, the bridgeServer, object is a proxy object created from an
EsiObjects class RGTest that contains various methods for testing the BTO
objects.

private BridgeServer bridgeServer

bri dgeServer =(Bri dgeServer)theGat eway. si npl eCr eat eCbj ect (" RGTest $Bri dgeSe
rver",

0, null);

private bool ean Tabl eTest (){
/1 Test a BTO Table
try{
/] Tabl e | ocal Tests
Tabl e tabl e;
t abl e=new Tabl e();
Updat eSt at us(" Di mensi oni ng Tabl e");

t abl e. set Di nensi on(0, 4);
Updat eSt at us(" Popul ati ng Tabl e");
Variant[] parans;
params = new Variant[4];
for (int a=1;a<11; a++){
par ans[0] =new Vari ant (a) ;
par anms[1] =new Vari ant (" Const string");
par anms[2] =new Vari ant ((fl oat) 3. 1415) ;
par anms[3] =new Vari ant (f al se);
t abl e. addRowM(par ans) ;
}
j ava. awt . Di nensi on si ze;
si ze=t abl e. get Di mensi ons();
for (int a=0; a<size. hei ght; a++){
StringBuffer buf;
Vari ant val ue;
buf =new Stri ngBuffer();
for (int b=0;b<size.w dth; b++){
val ue=t abl e. get Cel | (a, b) ;
buf . append(val ue. getString());
buf . append(" ");

}
Updat eSt at us(buf.toString());

}
Vari ant vaTabl e;
vaTabl e=new Vari ant (t abl e);
//Calling Server - Table as Argunent
bri dgeServer. Tabl eTest (vaTabl e) ;
si ze=t abl e. get Di mensi ons();
for (int a=0; a<size. hei ght;a++){
StringBuffer buf;
Vari ant val ue;
buf =new Stri ngBuffer();
for (int b=0;b<size.w dth;b++){
val ue=t abl e. get Cel | (a, b);
buf . append(val ue. getString());
buf . append(" ");
}
Updat eSt at us(buf.toString()); // function to print
}
//Calling Server - Table Return
t abl e=(Tabl e) bri dgeServer. Tabl eRet (). get Obj ect () ;
si ze=t abl e. get Di mensi ons();
UpdateStatus("Size = "+size.toString());
for (int a=0; a<si ze. hei ght; a++){
StringBuf fer buf;
Vari ant val ue;
buf =new St ri ngBuffer();
for (int b=0;b<size.w dth; b++){

45

}

46

val ue=t abl e. get Cel | (a, b) ;
buf . append(val ue. get String());
buf . append(" ");

}
Updat eSt at us(buf.toString());

}
cat ch(Qut Of BoundsExcepti on exp) {

Updat eSt at us(exp.toString());
return fal se;

}

cat ch(NoConver si on exp) {
Updat eSt at us(exp. toString());
return fal se;

}

cat ch(Request Fai | ed exp){
Updat eSt at us(exp. toString());
return fal se;

}

return true;

BTOText

Overview

The BTOText object supports very long block text. Given the restrictions of most
M systems, large blocks of text must be store in a section of Blocks. The
BTOText object isthe client side representation of the ESI$Text object which
supports unbounded text blocks. The operations on BTOText facilitate the
breaking of the large text object into smaller chunks that can be stored in M.

Access is provide to the text in four manners:

1. Asasingletext string.

2. Byline (Asddimited by CR/LF.)

3. By asubstring.

4. By text block of a given a specific size.

The TCP transport will automatically create this type of object on the server side
when it receives text that istoo large for the M system to handle.

Please refer to the Java Doc for package com.esitechnology.eo.BTOText for
details on the interface.

For details on the implementation of List refer to the Java Doc for
com.esitechnology.eo.Text.

47

Within EsiObjects, this object typeis represented as an ESI$Text.
Example

In this example, the bridgeServer, object is a proxy object created from an
EsiObjects class RGTest that contains various methods for testing the BTO
objects.

private BridgeServer bridgeServer

bri dgeServer=(Bri dgeServer)theGat enway. si npl eCr eat eObj ect (" RGTest $Bri dgeSe
rver",

0, null);

private bool ean Text Test () {
/] Test BTO Text
try{
//Local Tests
Text text;
text = new Text();
/1 Sinmpl e Set Text cal
text.setText("Set the text to a sinple string");
/! UpdateStatus is a separate function to output a string
Updat eSt at us(text. get Text());
UpdateStatus("C ear");
text.clear();
Updat eSt at us(text. get Text ());
[/ Append Tests
for (int a=1;a<100; a++){
t ext. append("123456789012345678901234567890") ;
}
Updat eSt at us(text. get Text());
Updat eSt at us("Length = "+text.getLength());
text.clear();
//Line test
for (int a=0;a<100; a++){
text.append(a+" 123456789012345678901234567890\r\n");
}
Updat eSt at us("Li ne Count = "+text.getLineCount());
Updat eStatus("Line 13 = "+text.getLine(13));
i nt bl ocks;
bl ocks=t ext . get Bl ockCount (510) ;
Updat eSt at us(" Lengt h "+t ext.getLength());
Updat eSt at us(" Bl ocks = "+bl ocks+", 510 chars per bl ock");
for (int a=0;a<bl ocks; a++){
Updat eSt at us(" Bl ock "+a+" = "+text.getBl ock(a, 510));

}

// Text - Renpte Tests
Vari ant vaText;

vaText = new Variant();
vaText . set Obj ect (text);
/1 Calling TextTest
bri dgeServer. Text Test (vaText);
/1 Vi ewi ng Returned text
int Iines;
I i nes=t ext.getLineCount();
Updat eStat us("Lines returned = "+l ines);
for (int a=0;a<lines;a+t+)({
Updat eSt at us(t ext. getLine(a));
}
/1 Calling TextRet
t ext =(Text) bri dgeServer. Text Ret (). get Cbj ect () ;
Updat eSt at us(" Vi ewi ng Returned text");
I i nes=t ext. getLi neCount();
Updat eSt at us("Li nes returned = "+l ines);
for (int a=0;a<lines; a+t+)(
Updat eSt at us(t ext. getLine(a));

}
}
catch (Stringl ndexQut Of BoundsExcepti on exp)
{
Updat eSt at us(exp.toString());
return false;
}

cat ch(Request Fai | ed exp){
Updat eSt at us(exp.toString());
return fal se;

}
return t rue,;

}

Streams

The EsiObject TCPGateway supports the transport of stream objects by reference
to the server. This provide a mechanism for stream based I/O between the Client
and the EsiObjects Server. When the object is received by the EsiObjects Server it
will be represented by and Instance of ESI$TCPStream.

The Gateway provides support for any object that extends one of the following
classes:

e javaio.lnputStream

e javaio.OutputStream
e javaio.Writer

* javaio.Reader

49

Event Processing

Overview

One of the most powerful featuresin EsiObjects is event processing. Objects can
watch other objects for events or changes in state. The Java Gateway brings that
same functionality to the client. Using the event processing capability of the
gateway, a client can watch an object on the server for a specific event/state-
change, or any event/state-change. When the event occurs, a specified method is
invoked on the client (known as a* callback”.) Thus clients can register for and
respond to events that occur on the server.

One of the most common uses for event processing is for keeping a client display
of data current with what is on the server. Especially when more than one process
is changing data on the server. The client can register for events that occur when
datais changed. When the event is thrown, the callback method isinvoked and
that method could update the client display with the most recent data.

In EsiObjects we say that an object will “watch” another object for a specific
event or category of events. The watched object will “throw” the event when it
encountersit by placing the event on an event queue.

Below we describe how a client makes use of event processing using the gateway.
Process description

There are severa steps that must be done for event processing to be implemented
on the client.

* The programmer must write the callback method.

e The programmer must define an Event Listener. Thisis a datatype EOEventListener
that contains the reference to the callback method for the event

In the client code the programmer must:
* Create an EOEventListener.

e Watch the object. This actually “registers’ the fact that the client is going to watch a
specified object for some type(s) of events. During the time that this watch is active,
if the event occurs in the object, the specified callback method in the client is
invoked.

* When the client no longer wants to watch the object, it should ignore the object. This
deactivates the Watch.

Each of these stepsis detailed below.
Create a Callback method

Callback methods are defined in the following format:
public void cal | backnet hodname(EOEvent evt)

50

The callback accepts one parameter of type EOEvent, which is defined in the
gateway. EOEvent is a structure sent by the server when an event occurs. This
structure contains information associated with the event: the name of the event,
the object in which the event occurred, and other parameters containing
information supplied by the server on the event.

Refer to the Java Doc for details on the EOEvent structure.

Typicaly, the callback will extract the data out of the EOEvent structure and use
the data to take appropriate action.

Create a Listener

A Listener object is one that contains information for the callback method.
Anytime awatch isinvoked from the client, a Listener object must be associated
with the watch. The constructor for the listener accepts a reference to the callback
method associated with this listener.

Example

In the following example, alistener orgRel AddedListener is created. The

callback method orgRel AddedEventOccurred is associated with this listener.

Note that the listener has defined inline the implementation of the

eventOccurred() method.

private EoEventLi stener orgRel AddedLi st ener

or gRel AddedLi stener = new EoEvent Li st ener ()
public void event Cccurred(ECEvent evt)

or gRel AddedEvent Cccurred(evt); }}

Add Listener

nul | ;

[I ||

Each event, property or unary relationship within a proxy has two event services
generated for them: addServiceNameL istener () and

removeServiceNameL istener (). (Where ServiceName is the name of an event,
property or relationship.)

Both operations take a single argument: an EOEventListener. The
EOEventListener provides the “callback” method to be invoked on the client
whenever the specified event occursin the server.

The addSeviceNamel istener () establishes awatch on the server object
represented by the proxy. When the specified ServiceName event occurs, the
associated callback method is invoked.

Example

In the following example a proxy object (which is a Base$Set object) is being
watched for ElementAdded events to occur. Whenever this event occursin the
server object, the callback associated with the orgRel AddedL istener will be
invoked.

51

enpl oyer Set . addEl enment AddedLi st ener (or gRel AddedLi st ener);
Handle Event

eventOccurred is invoked on each listener which in turn calls the callback
associated with the event listener when it was created (see above.)

Remove Listener

The removeServiceNameL istener () method invoked on the proxy will remove
the watch on the server object. This method takes a single argument: the
EOEventListener associated with the watch to be removed.

Example

This example shows the removing of awatch on a set object for ElementAdded
events.
enpl oyer Set . r enoveEl ement AddedLi st ener (or gRel AddedLi st ener);

What can be watched

» Properties
* Events
* Unary Relationships

To watch arelationship that is of cardinality “many”, you must first get the handle
to the relationship object and then watch for events on that object.

The Event Queue

Each client connection to the server is alocated an event queue. Whenever an
event occurs the event is place on the event queue for the client to pick up. There
are two ways in which the event queue has its events pulled and sent to the client:

At the conclusion of acall to the server, the event queue for the connection is
checked and all of the events are dispatched back to the client at that time.

The dispatchEvents() method of the Gateway may also be used to explicitly
dispatch any events that might have been caused by the actions of others. This
method essentially polls the server for any events on the queue and if any are
found, they are dispatched to the client. Typically a Timer could be set up to
execute this method at regular intervals to check for any events that have
occurred.

Possible Complications

If the proxy object is not referenced, the event will be short circuited, and the
listener will not be invoked. When the proxy object is finalized, an ignore will be
issued to the server if there are any attached listeners.

52

What Hooks Are Generated

In the Proxy generated code, each property, unary relationship, and programmer-
defined event has corresponding code generated.

Properties and Relationships

For example, for the Tutorial $Person class, the following was generated for the
Address property. Relationships are generated in the same way.

i mport j ava. beans. PropertyChangeli st ener

public void addAddressLi stener (PropertyChangelLi stener |istener)({
j avaPr oxy_addPropertyLi stener ("Primary:: Address", | i stener);

}

public void renoveAddr essLi st ener (PropertyChangelLi st ener
listener)({
j avaProxy_renmovePropertyli stener ("Primary:: Address", | i stener);

}
Events

For the Tutorial$Database class, the programmer-defined event Deleted had the
following code generated.

public voi d addDel et edLi st ener (EoEvent Li stener |istener)({

j avaProxy_addEvent Li stener ("Prinary:: Del eted",|istener);
}
public void renoveDel et edLi st ener (EoEvent Li st ener |istener){

j avaProxy_renmoveEvent Li stener("Prinmary:: Del eted", i stener);
}

Polling for Events

When your application is sitting idle, you may want to check the server to seeif
there are any events that have occurred. The Gateway provides the method
dispatchEvents() that will dispatch any events that may be enqueued on the
server.

Using dispatchEvents()

The usage of dispatchEvents() is rather simple. It simply needs to be invoked. It
is suggested that this be done in either the applicationsidle time processing or by
using atimer.

53

Controlling Event Dispatch

There are several mechanisms for controlling event processing (all available in
the Gateway):

Event processing can be enabled/disabled using the setEventDispatchEnabled()
method.

The number of events outstanding can be checked using the
getNumber Of EventsPresent() method.

Y ou can determine if event processing is enabled by using the
getEventDispatchEnabled() method.

Advanced Usage

The following sections deal with using advanced features of the Gateway. Apart
from invoking services on Proxy objects, you can also deal with the Gateway
directly to invoke services on objects, make use of event processing etc. In fact
you must use the Gateway directly in order to Create and Destroy objects.

In addition to services provided by the Gateway, the Gateway can have its
functionality extended by providing handlers for the server to use. An example
would be providing the server with a Handle to an output window so that server
output messages could be directed to that object.

Direct Gateway Functions

The Java Gateway includes services that allow for direct invocations on the
server. For example, an object on the server can have a method invoked on it
without a proxy.

The following sections summarize the functions provided by the Gateway.
General Purpose Services

The Gateway provides a couple of callsthat are invoked on the Gateway itself and
provide general services.

isReady() — Returns a boolean indicating if the Gateway is connected.

lookupObject() — Service to find objects on the server (see above.)
Object Services

Object services are those methods, properties, and relationships implemented by
an object. In General, you use a generated Proxy object to invoke these services
on a server object. However, the Gateway does provide for invoking services of
an object directly, viaan API.

General Conventions

To invoke a method, property, or relationship on a server object, you need the
object id, the name of the service, and an array of parametersif parameters are
required for the call. Additionally, you can specify certain flags on the call that
affect how the serviceis delivered to the object.

55

The Call Flags

The call flags are used on a number of object service call points and alter the basic
behavior to the call. In general these flags suppress the generation of errors on the
server. The flags may be comibined using a Boolean Or operator (]). If now
special handling is desired then the falg MODEIFIERFG_NONE should be
passed.

MODIFIERFG_NONE No specia handling is desired.

MODIFIERFG_EXISTENCE | Causestheinvocation to be ignored if the target
object does not exist. Normally an error results
if the target object does not exist

MODIFIERFG_KNOWS Causes the invocation to be ignored if the target
object does understand the message. Normally
an error resultsif the target object does support
the operation

MODIFIERFG_FILTER Causes unknown parameters to be ignored
(Filtered).

The Parameters Array

The Gateway provides a datatype called Parameter. See the Java Docs for
information on this data type. When passing parameters on the calls below, an
array of these parametersiswhat is used. This provides a mechanism whereby
named parameters may be passed to an object.

Specific Services
invoke

Invokes a method on a specified object. The modifier flags are set in the third
parameter, and any parameters are placed in the parameter array.
public Variant invoke(java.lang.String object,
java.lang. String met hod,
i nt nodifierFl ags,
Paraneter[] paramArgs)
t hrows Request Fail ed

propertyGet

Invokes the Get property accessor method on a specified object. The modifier
flags are set in the third parameter, and any parameters are placed in the
parameter array.

public Variant propertyGet(java.lang. String object,

java.l ang. String property,
i nt nodifierFl ags,

56

Par ameter[] paramArgs)
t hrows Request Fail ed

propertySet

Invokes the Assign property accessor method on a specified object. Thevaueto
assign to the property is specified in the first parameter. The modifier flags are set
in the fourth parameter, and any parameters are placed in the parameter array.

public bool ean propertySet (Variant newval ue,
java.lang. String object,
java.lang. String property,
i nt nodi fierFl ags,
Par amet er[] paranmArgs)
t hrows Request Fail ed

propertyKill

Invokes the Kill property accessor method on a specified object. The modifier
flags are set in the third parameter, and any parameters are placed in the
parameter array.

public bool ean propertyKill (java.lang. String object,
java.lang. String property,
i nt nodi fierFl ags,
Par armeter[] paramArgs)
t hrows Request Fail ed

propertyDataFn

Invokes the Data property accessor method on a specified object. The modifier
flags are set in the third parameter, and any parameters are placed in the
parameter array.

public Variant propertyDataFn(java.lang. String object,
java.lang. String property,
i nt nmodi fierFl ags,
Par armeter[] paramArgs)
t hrows Request Fail ed

propertyGetFn

Similar to the propertyGet() above, this service Invokes the Get property
accessor method on a specified object. The differenceisthat a default valueis
specified if the property is not set. The modifier flags are set in the fourth
parameter, and any parameters are placed in the parameter array.

public Variant propertyGet Fn(Variant defaultVal,
java.l ang. String object,
java.lang. String property,
i nt nmodi fierFl ags,
Par armeter[] paramArgs)
t hrows Request Fai |l ed

57

propertyOrderFn

Invokes the Order property accessor method on a specified object. The modifier
flags are set in the fourth parameter, and any parameters are placed in the
parameter array. The first parameter specifies whether the order should go
forward (1) or reverse (-1).

public Variant propertyOrderFn(Variant direction
java.lang. String object,
java.lang. String property,
i nt nmodi fierFl ags,
Par amet er[] paramAr gs)
t hrows Request Fail ed

propertyQueryFn

Invokes the Query property accessor method on a specified object. The modifier
flags are set in the third parameter, and any parameters are placed in the
parameter array.

public Variant propertyQueryFn(java.lang. String object,
java.lang. String property,
i nt nmodi fierFl ags,
Par armeter[] paramArgs)
t hrows Request Fail ed

propertyNormalizeFn

Invokes the $Nor malize property accessor method on a specified object. The
modifier flags are set in the fourth parameter, and any parameters are placed in
the parameter array. The first parameter is the value being normalized.

public Variant propertyNormalizeFn(Variant val ue,
java.lang. String object,
java.lang. String property,
i nt nodifierFl ags,
Paraneter[] paramArgs)
t hrows Request Fail ed

propertyValidateFn

Invokes the $Valid property accessor method on a specified object. The modifier
flags are set in the fourth parameter, and any parameters are placed in the
parameter array. Thefirst parameter is the value being validated.

public Variant propertyValidateFn(Variant val ue,
java.l ang. String object,
java.lang. String property,
i nt nmodi fierFl ags,
Par ameter[] paramArgs)
t hrows Request Fail ed

58

Life Cycle Services

The gateway provides three services for creating and destroying objects.
createObject()

Creates an object on the server allowing the programmer to use most of the
functionality available to create an object. Positional and named parameters can
be used, along with property assignments.

public Corebject createbject(java.lang. String classNane,
i nt createFl ags,
BTONvLi st creat eKeywor ds,
BTOLi st par ans,
BTONvLi st namedPar ans,
BTONvLi st properties)
t hrows Request Fail ed

simpleCreateObject()

Creates an object using asimplified call. Positional parameters only.

public Corebject sinpleCreateCbject(java.lang.String classNane,
i nt createFl ags,
Variant[] parans)
t hrows Request Fail ed

destroyObject

Destroys a specified object on the server.

Destroy an Object, given the objects OID as a string:
public void destroy(Chject(java.lang.String object)
t hrows Request Fai | ed

Destroy an Object, given aIntefaceBase derived class:

public void destroyQhject(CoreCbject object)
t hrows Request Fail ed

Destroy an Object, given aVariant with the object in it:
public void destroyQoject(Variant object)

t hrows Request Fai | ed
Event Processing

The following services deal with event processing.

59

dispatchEvents

This method of the Gateway may be used to explicitly dispatch any events that
might have been caused by the actions of other objects. This method essentially
polls the server for any events on the queue and if any are found, they are
dispatched to the client. Typically a Timer could be set up to execute this method
at regular intervals to check for any events that have occurred.

getEventDispatchEnabled

Y ou can determine if event processing is enabled by using the
getEventDispatchEnabled() method. This method returns a Boolean.

setEventDispatchEnabled

Event processing can be enabled/disabled using the setEventDispatchEnabled()
method. This provide a control mechanism to avoid dispatch during certain calls
or while a specific process is being exceuted.

getNumberOfEventsPresent

The number of events outstanding can be checked using the
getNumber OfEventsPr esent() method. This may be helpful in the management
of the event dispatching.

watch

This serviceis used only by proxy object to take out watches on the server object.
It should not be invoked directly.

ignore

This serviceis used only by proxy object to remove watches taken on the server
object. It should not be invoked directly.

60

Service Hooks

The Gateway provides a number of service hook points that allow the devel oper
to customize the gateway’ s functionality. In all cases pass a null value to the
service hook will restore the default.

Handler Description

setOutputHandler() Establish the object that will handle Server
output messages

setStatusHandlerFactory() Establish the Factory used for Status
request message handlers

setClientServicesimplementation() | Establishes the ClientServices

setBTOODbj ectFactory() Establishes the BTOODbjectFactory that the
Gateway will usesto create BTO objects

setDebugger() Establishes what debugger should be used
by the gateway (if any)

Object Debugging

The Gateway provides a single method relating to object debugging, called
getDebuggingServices. This service will get the DebuggingServices object
associated with the gateway. For security reasons some implementations of the
gateway may return null for this service.

getDebuggingServices

Invoking this method on the Gateway will return an instance of the
DebuggingServices interface. As mentioned above, some implementations may
return NULL on this call. The Java Docs reference contains more information on
the DebuggingServices interface.

This interface contains services such as Objectinfo, ObjectX ecute, ObjectEval,
among others. These calls are not stack related — in other words, the execution of
the service happens in a stateless manner. State from previous invocations is not
preserved.

Note: These services may not be available on all gateway implementations, and should
only be used for development, never for deployment.

Handlers

Handlers are interfaces that may be hooked to the gateway to handle specific
types of server requests. In general they allow the application to implement
extensions to the Gateway’ s behavior.

61

Client Services

This handler allows for common user interface services from the server. These
services are: messageBox, messageBeep, reportError, reportWarning.

Interface to | mplement: ClientServices

Attachment call: setClientServiceslmplementation
Output

Common handler for outputting text messages from the server. An example
implementation is the Outputwindow in the EsiObjects development client.

Interface to | mplement: OutputHandler

Attachment call: setOutputHandler
Status

Creates a StatusHandler instances for Server wait requested. An example isthe
Status windows in the EsiObjects Devel opment client.

Interfaceto Implement: StatusHandlerFactory

Attachment call: setStatusHandlerFactory
BTO Object Factory

Allows the implementer to override the default BTO Objects that are created by
the gateway. For example this make it possible for the implementer to implement
their own version of BTOTable and have it returned to them by the Gateway.

Interface to | mplement: BTOODbjectFactory

Attachment call: setBTOQODbjectFactory

Debugger

Service will handle debugging messages from the server.
Interface to |mplement: DebugSink
Attachment call: setDebugger

	Introduction
	Document Convention
	Overview
	What is the Java Gateway?
	Scope of this Document
	The Java Gateway Package
	What Else You Will Need

	Concepts
	Communications Diagram
	The Java Gateway, and Generated Proxies
	The Java Gateway
	Generated Proxies

	Overview of the com.esitechnology.eo Package
	Major Classes Used by the User
	TCPGateway
	Variant
	EoEventListener
	EOEvent
	EOPropertyChangeEvent
	SimpleClientServices
	Subclasses of Interface Base – Generated by EsiObjects.

	BTO Implementations
	List
	NvList
	Table
	Text
	NamedCell

	Exceptions
	NoConversion
	RequestFailed

	Interfaces
	Implementation Classes

	User Interface
	Class Library Properties Page
	Class Properties Page
	Generate Java Proxies Interface

	Basic Operations
	Getting Started
	Installing and locating the EsiObjectsV4.JAR
	Import com.esitechnology.eo.*
	Example:
	Declare the TCPGateway Object
	Example:
	Create an instance of a TCPGateway Object
	Example:

	Connection
	Using openConnection()
	Example:

	Common Exceptions and Their Causes
	UnknownHostException
	RequestFailed
	IOException

	Disconnection
	Example
	Effects of Disconnection

	Using lookupObject()
	Locating System Variables
	Locating Class Objects
	Locating an O% Name
	Examples:

	Working with Variants
	What is a Variant
	Creating a Variant
	Create without Data
	Create with Data
	Declaring a Variant
	Example:

	Used in a Argument

	Get Data from a Variant
	Examples:

	Set Data into a Variant
	Clearing & Deleting Variants
	Objects in Variants

	Creating and Destroying Objects (Lifespan services)
	simpleCreateObject()
	Examples:

	createObject()
	Examples:

	destroyObject()
	Examples:

	Proxy Usage
	Concepts
	Generation (Java)
	Parentage & Inheritance

	Structure
	Methods
	Properties & Relationships
	Examples
	Future plans

	Events
	addServiceNameListener()
	removeServiceNameListener()
	Example

	Comparing
	Example Class
	Limitations
	Future

	Programming with Generic Proxies
	Background
	Platform Issues
	Proxy Modes
	
	TCPGateway Constant

	Java Gateway
	PersonalJava Gateway

	Classes
	GenericProxy
	Methods

	ProxyHelper
	Methods:

	Examples:
	Examples Using Proxy
	Example Using a Generic Proxy
	Example Using a ProxyHelper

	Bulk Data Transfer mechanisms
	Concepts
	Types
	Streams
	Transfer Dynamics
	Common Conventions
	Index Basis
	Effects of Dimension
	Appending Items
	Common Error Handing

	java.io Object Support
	Common Error Methods

	Bulk Transfer Objects (BTO)
	BTOList
	Overview
	Example:

	BTONvList
	Overview
	Example

	BTOTable
	Overview
	Example

	BTOText
	Overview
	Example

	Streams

	Event Processing
	Overview
	Process description
	Create a Callback method
	Create a Listener
	Example

	Add Listener
	Example

	Handle Event
	Remove Listener
	Example

	What can be watched
	The Event Queue
	Possible Complications

	What Hooks Are Generated
	Properties and Relationships
	Events

	Polling for Events
	Using dispatchEvents()

	Controlling Event Dispatch

	Advanced Usage
	Direct Gateway Functions
	General Purpose Services
	Object Services
	General Conventions
	The Call Flags
	The Parameters Array
	Specific Services
	invoke
	propertyGet
	propertySet
	propertyKill
	propertyDataFn
	propertyGetFn
	propertyOrderFn
	propertyQueryFn
	propertyNormalizeFn
	propertyValidateFn

	Life Cycle Services
	createObject()
	simpleCreateObject()
	destroyObject

	Event Processing
	dispatchEvents
	getEventDispatchEnabled
	setEventDispatchEnabled
	getNumberOfEventsPresent
	watch
	ignore

	Service Hooks
	Object Debugging
	getDebuggingServices

	Handlers
	Client Services
	Output
	Status
	BTO Object Factory
	Debugger

