

Java Gateway Programmer’s Guide

EsiObjects V4.0

ESI Technology Corporation

5 Commonwealth Road

Natick, MA. 01760

www.esitechnology.com

Information in this document is subject to change without notice. Companies,
names and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written
permission of ESI Technology Corporation.

 2001 ESI Technology Corporation. All rights reserved.

EsiObjects is a registered trademark of ESI Technology Corporation.

DSM, Cache, MSM are registered trademarks of InterSystems Corporation.

Microsoft, Visual Basic, Windows and Windows NT are registered trademarks of
Microsoft Corporation.

Table of Contents
JAVA GATEWAY PROGRAMMER’S GUIDE... 1

ESIOBJECTS V4.0... 1

TABLE OF CONTENTS ... 3

INTRODUCTION ...I

DOCUMENT CONVENTION ... II

OVERVIEW.. 3
WHAT IS THE JAVA GATEWAY?... 3
SCOPE OF THIS DOCUMENT.. 3
THE JAVA GATEWAY PACKAGE... 4
WHAT ELSE YOU WILL NEED.. 4

CONCEPTS... 5
COMMUNICATIONS DIAGRAM.. 5
THE JAVA GATEWAY, AND GENERATED PROXIES .. 6

The Java Gateway.. 6
Generated Proxies ... 6

OVERVIEW OF THE COM.ESITECHNOLOGY.EO PACKAGE... 6
Major Classes Used by the User.. 6
BTO Implementations .. 7
Exceptions.. 8
Interfaces ... 9
Implementation Classes ... 9

USER INTERFACE ... 11
CLASS LIBRARY PROPERTIES PAGE... 11
CLASS PROPERTIES PAGE .. 12
GENERATE JAVA PROXIES INTERFACE .. 13

BASIC OPERATIONS... 16
GETTING STARTED... 16

Installing and locating the EsiObjectsV4.JAR... 16
Import com.esitechnology.eo.* .. 16
Example: .. 17
Declare the TCPGateway Object... 17
Example: .. 17
Create an instance of a TCPGateway Object .. 17
Example: .. 17

CONNECTION.. 17
Using openConnection() .. 18
Common Exceptions and Their Causes ... 18

DISCONNECTION .. 18
Example ... 19
Effects of Disconnection .. 19

USING LOOKUPOBJECT().. 19
Locating System Variables... 19
Locating Class Objects .. 19
Locating an O% Name... 20
Examples: .. 20

WORKING WITH VARIANTS.. 21
What is a Variant ... 21
Creating a Variant ... 21
Get Data from a Variant.. 22
Set Data into a Variant .. 23
Clearing & Deleting Variants.. 23
Objects in Variants .. 23

CREATING AND DESTROYING OBJECTS (LIFESPAN SERVICES).. 23
simpleCreateObject()... 24
createObject() .. 25
destroyObject() .. 26

PROXY USAGE ... 28
CONCEPTS .. 28

Generation (Java) .. 28
Parentage & Inheritance ... 28

STRUCTURE.. 29
Methods.. 29
Properties & Relationships.. 29
Events... 30

COMPARING ... 31
EXAMPLE CLASS .. 31
LIMITATIONS.. 32
FUTURE .. 32

PROGRAMMING WITH GENERIC PROXIES ... 33
BACKGROUND.. 33
PLATFORM ISSUES.. 33

Proxy Modes .. 33
Java Gateway... 33
PersonalJava Gateway .. 33

CLASSES... 33
GenericProxy... 33
ProxyHelper... 34

EXAMPLES: .. 34
Examples Using Proxy... 35
Example Using a Generic Proxy ... 36
Example Using a ProxyHelper .. 37

BULK DATA TRANSFER MECHANISMS ... 39
CONCEPTS .. 39

Types .. 39
Streams .. 40
Transfer Dynamics... 40
Common Conventions .. 40
java.io Object Support ... 41

Common Error Methods .. 41
BULK TRANSFER OBJECTS (BTO) ... 41

BTOList.. 41
Overview.. 41
BTONvList ... 42
BTOTable... 44
BTOText... 46

STREAMS.. 48
EVENT PROCESSING.. 49

OVERVIEW ... 49
Process description.. 49
What can be watched ... 51
The Event Queue.. 51
Possible Complications.. 51

WHAT HOOKS ARE GENERATED ... 52
Properties and Relationships... 52
Events... 52

POLLING FOR EVENTS .. 52
Using dispatchEvents() .. 52

CONTROLLING EVENT DISPATCH .. 53
ADVANCED USAGE... 54

DIRECT GATEWAY FUNCTIONS.. 54
General Purpose Services.. 54
Object Services .. 54
Life Cycle Services... 58
Event Processing.. 58
Service Hooks .. 60
Object Debugging.. 60

HANDLERS ... 60
Client Services ... 61
Output .. 61
Status.. 61
BTO Object Factory... 61
Debugger ... 61

 i

Introduction
This guide is designed to assist the EsiObjects programmer in using the Java
Gateway to build object oriented application systems. It contains the following:
• An overview of the Java Gateway.
• The concepts of the Java Gateway.
• Description of the commands and features added to the EsiObjects Development

Enviroment.
• How to perform basic lifespan operations.
• How to use the gateway with proxies.
• Description and how to use Bulk Transfer Objects in conjuction with the gateway.
• How to use event processing through the gateway.
• How to use some advanced features of the gateway.

 ii

Document Convention
EsiObjects documentation uses the following typographical conventions:

For more information on
this subject please refer to
the BREAK Command
section of this Guide.

Underlined text is used to highlight a reference to
another section of this manual or another guide.

Property In text, italicized words indicate defined terms that
are usually used for the first time. Words are also
italicized for emphasis.

CREATE Words in bold and capitalized are EsiObjects
commands or keywords.

Set T%Test=I%Pat.Name This font is used for code examples.

 3

Overview
What is the Java Gateway?

The Java Gateway is a set of Java classes that allows Java applications to access
one or more EsiObjects servers. TCP/IP handles communications between a Java
client and the EsiObjects server, which is the only method this implementation
provides.

The gateway, in conjunction with Java Proxies, allows for efficient and
specialized services to the server. These components are all described in this
document.

Using the gateway and proxies, a Java client can connect to the EsiObjects server
and have access to the basic services in EsiObjects: object creation and
destruction, operations on methods, properties, and relationships, events and
more.

The client, when connected to the server via the gateway, occupies one M process
that handles the communications between Java and EsiObjects. Thus the objects
created within this process are valid only in the client that issued them, unless the
object is created as a shared object (more on this later.)

Scope of this Document
This document describes the basic usage of the Java Gateway and gives examples
using JDK 1.3 using Forte. Using this guide you will learn how to:
• Connect and disconnect a Java client to an EsiObjects server.
• Create Java Proxies from EsiObjects that are included in your Java application. These

proxies represent the actual objects on the server.
• Lookup, create and destroy objects.
• Use Proxy objects on the client to invoke methods, set and get property values, and

set relationships on server objects.
• Use event processing.
• Use bulk data transfer objects that are supplied with the gateway to allow the transfer

of bulk data across from the server for manipulation on the client, and then back to
the server.

Java documentation is included with the Gateway that describes the
com.esitechnology.eo package.

 4

The Java Gateway Package
When you install the Java Gateway from the installation kit, several components
will be placed on your system.
• EsiObjectsV4.JAR – The JAR file of the Java Gateway classes – required for

runtime.
• EsiObjectsV4Doc.Zip – The Java Docs for the Java Gateway.

What Else You Will Need
• JRE – Java Runtime environment, version 1.2 or better.
• EsiObjects Server – A running EsiObjectsV4.0 or better.

 5

Concepts
Communications Diagram

The diagram below shows how the Java Gateway relates to the EsiObjects server.
EsiObjects classes that define objects to be accessed from the client have Java
Proxies generated for them. This process produces a java file for each generated
class. The class files are included in the client application. Also included is the
java gateway package. At runtime, the gateway is connected to a TCP Listener
process running on an EsiObjects server. Once connected, the Java programmer
can access the EsiObjects server via the gateway. The gateway is the object that
routes requests from the client to the server. A Java Proxy object maps to a server
object. Operations invoked on the proxy are sent, via the gateway, to the servant
object. The operation is executed on that object any result is returned back to the
proxy.

Not shown in the diagram are the Bulk Transfer Objects (BTO) that the gateway
provides for retrieving and sending collections of data to and from the server.
These objects are described later in this guide.

The gateway and generated java proxies are included in the Java client. The
gateway uses TCP/IP to connect to a TCP listener that is running on the
EsiObjects server. Proxies are used to invoke operations on objects within the
server.

 6

The Java Gateway, and Generated Proxies
The Java Gateway

The Java gateway is a set Java classes that provide a communications link to the
EsiObjects server. Once connected to a server, the gateway provides services for
creating and looking up objects. These objects are created as proxy objects on the
java side and are connected to a corresponding object on the server side. These
proxies use the services of the gateway to connect to the server object. Methods,
properties, and relationships of these objects are handled via the gateway that
provides the connection from client to server.

Besides handling the connection to the server, and routing requests from the
proxy object to the server object, the gateway has a set of common support classes
such as Variant and bulk transfer objects (BTO) that provide services for moving
large amounts of data between client and server.

The classes provided in the gateway are all extensible by the user.

Generated Proxies
From within EsiObjects, a user generates a Java Proxy class from EsiObjects class
definitions. These proxies are java class files that contain the methods, properties,
and relationships defined in that class. You can generate only the Java interfaces
for each of the services defined in the class, or the implementation code as well.
The implementation file contains all the necessary functionality to communicate
from the client to the server object since the connection to the gateway is
automatically handled within the generated proxy code.

Overview of the com.esitechnology.eo Package
The following sections deal with the contents of the gateway package – namely
the com.esitechnology.eo package. The information presented here is a basic
overview. Detailed reference information can be found in the Java Doc provided
with the gateway.

Major Classes Used by the User

TCPGateway

This class is the primary implementation of the Gateway interface. It provides the
main communications component for talking to the EsiObjects Server.

 7

Variant

When data is passed to and from EsiObjects, there needs to be a consistent and
known representation of the data. For this purpose, the Variant class is used. It
acts as a generalized data holder. The Variant data type is the default parameter
and return data type.

EoEventListener

The gateway provides for events. This means a Java client can “watch” objects in
the server and be notified of events that have occurred. This class is the
generalized definition for an Event Listener that is responsible for responding to
events.

EOEvent

When an event occurs in EsiObjects, the data corresponding to that event is
passed to the client in an EOEvent structure.

EOPropertyChangeEvent

In EsiObjects, properties can be watched for changes. Thus, when a property is
modified, EsiObjects throws an event that watchers receive. This event is
generated by the server as an EOPropertyChangeEvent.

SimpleClientServices

EsiObjects can provide some client services such as asserting a message box to
the client display, etc. These basic services are provided in this class.

Subclasses of Interface Base – Generated by EsiObjects.

All Proxy classes generated are subclasses of InterfaceBase class.

BTO Implementations
Bulk Transfer Objects enable the passing of data from clients to servers and back.
Below is a brief description of each of the BTOs available to the programmer.

List

A List is a simple sequential collection of Variants. It provides the
implementation of BTOList interface.

 8

NvList

The NvList provides a list of named items. It provides the implementation of
BTONvList interface. Each item in the list may be given a name – also called a
“key”. Names need not be unique. An index based on name is maintained which
allows items to be retrieved by name. An NvList object can also be used like a
Map that maps names to values. The NvList is implemented as a sequential
collection of Variants; each one of them may be named.

Table

A Table is a collection of data organized by rows & columns. It is optimized for
row based operations more than column based lookups, etc. Table provides the
implementation of BTOTable interface.

In Java, the Table is implemented as a collection of Variants arranged into a table.
The Table supports names columns.

To be useful the Table should always be dimensioned especially the number of
columns in the table. Although it is legal to specify zero for one of the two
dimensions, this is not recommended. Rows and columns are zero-based.

Text

The Text object supports very long block text. Given the restrictions of most M
systems, large blocks of text must be store in a collection of blocks. The Text
object is the client side representation of the ESI$Text object. It provides the
implementation of BTOText interface.

The operations on Text facilitate the breaking of the large text object into smaller
chunks that can be stored in M.

NamedCell

This object mimics a cell in an NvList. It has two fields: Name and Value.
Methods on the NvList can make use of a NamedCell object to set and retrieve an
element from an NvList.

Exceptions
The following are the additional exceptions that are used by the gateway.

NoConversion

When converting data, especially from within a Variant type to a specific type,
this error is generated when data cannot be converted to the requested type. This
exception extends Error and thus this exception need not appear in a catch block.

 9

RequestFailed

This exception indicates that a proxy service request failed.

Interfaces
CoreObject – defines the required services for a proxy object.

Gateway – General definition of the gateway service available in EsiObjects.

BTO – Generic interface implemented by all EsiObjects Bulk Transfer Objects.
Provides the core services needed for identification wire transport form.

BTOList – Defines the interface for a simple list.

BTONamedCell – A named data item. NvLists are collections of these.

BTONvList – Interface to a list of items that are named.

BTOTable – Interface to a Table collection containing elements arranged by
rows and columns.

BTOText – Interface for a string of text.

ClientServices – Standard Client Side services requested by the Server.

EoEventListener – Interface for an Event Listener.

OutputHandler – Abstraction of an Output Service that the server may call.
Standard Pane Ids: 0=General Output, 1=Build, 2=Debug.

StatusHandler – Interface for a Status Handler (a Wait Window.)

StatusHandlerFactory – Interface to create Status handlers.

DebugSink – Interface for debugging related service callbacks. This defines the
basic interface that the EsiObjects Service will invoke while debugging.

DebuggingServices – Interface to the debugging service provided by a gateway.

Implementation Classes
DataTransferTracker – The DataTransferTracker allocates and track Id strings
for objects to give these objects a reversible identifier.

EventManager

InterfaceBase – Base class for all interface objects to EsiObjects. Note: All
method names start with “javaProxy_” to avoid conflicts with the actual method
names in EsiObjects.

Parameter – Abstraction of a Parameter to be passed into EsiObjects.

 10

WeakValueMap – Used to track EsiObject Object Id and associate them to the
equivalent proxy object. The use of the class will insure that the mapping alone
does not keep the proxy alive.

TCPDebuggingServices – Implementation of the TCP Debugging services.

 11

User Interface
Class Library Properties Page

Right clicking on a library name in the EsiObjects Session Browser window will
bring up a Property Sheet dialog for the library. This dialog contains two pages.
The 2nd tab “Java” contains a single prompt for the name of the Java package in
which proxies from this library will be created.

The Java page for the Class Library Properties dialog.

When you generate a proxy for any class in this library, the package that the
proxy will be created in will be whatever is entered here. For example, when
generating a Java Proxy for a class in the Tutorial library, the top of the .java file
will contain the following entry:

package com.esitechnology.proxies.Tutorial;

Whatever name was entered in the Java Package field on this dialog will be used
as the package name in the generated .java file.

Note: The default package name is displayed in the Java Package field until it is
changed. Setting this field to null will restore the default value.

 12

Class Properties Page
Similar to a Class Library, a property dialog can be brought up for a class by
right-clicking on the class name in the Session Browser window and selecting
Properties.

The following dialog is displayed:

The Class Properties Dialog with the Java page selected.

Selecting the Java tab allows you to specify three fields:

Proxy Class

This is the location of the proxy that will be generated. The default value for the
Proxy Class field is the value of the package name entered for the class library
(see above) with the name of the class appended. This default value remains here
until changed. Setting this field to null will reinstate the default value.

Generate All Interfaces

Selecting this option (the default) will generate code for all services in all
interfaces. Un-selecting this field will cause the java proxy to be generated with
Primary interface services only.

Variant Parameters

By default parameters on the Java generated code will be of type Variant. Un-
selecting this field will cause all parameters to be of type String.

Example:

Here is an example of a generated code for the Person class in Tutorial Library

 13

Variant Parameters:
public abstract Variant getAddress() throws RequestFailed;
public abstract void setAddress(Variant Param1) throws
RequestFailed;

Without Variant Parameters:
public abstract Variant getAddress() throws RequestFailed;
public abstract void setAddress(String Param1) throws

RequestFailed;

Note the return types are always Variant. But the parameter type changes from
Variant to String depending on the setting in the Class Properties dialog.

Generate Java Proxies Interface
You can use the default values in the Class Library and Class property pages or
modify them for your needs. The next step is to generate the java proxy itself. The
Generate Java Proxy option is available from several areas:

Popup menu on a class – this will allow you to generate a proxy just for the
selected class.

Popup menu on a class library – this will generate proxies for all classes in the
library.

From the Tools | Java menu. – generating proxies from this option will generate
a proxy for whatever is currently selected in the Session Browser panel. If a class
is selected, then a proxy for that class is made. If a library is selected, then all
classes in that library will have proxies generated from them.

 14

Below is illustrated the Generate Java Proxy option from the Class popup menu.
This menu is displayed when you right-click on a class name.

Generate Java Proxy option from the Class popup menu

 15

Similarly, right clicking on a Class Library name in the Session Browser will also
bring up a menu that includes this option.

In each case, when you select the Generate Java Proxy option, the following
dialog is displayed.

The Java Proxy Dialog

Base Directory – specify the base location under which the java package/proxy
code will be placed.

Generate Interfaces – selecting this will generate interface signatures for
services implemented in the class.

Generate Implementations – selecting this will generate implementation code
for the proxies.

The file(s) generated are:
• ClassnameImpl.java – for implementation code
• Classname.java – for the interface

For example, if we generate both interface and implementation code for the class
Tutorial$Person, using a base directory of D:\EsiObjectsV4.0 and default package
names, two files would be created:

D:\EsiObjectsV4.0\com\esitechnology\proxies\Tutorial\P
erson.java
D:\EsiObjectsV4.0\com\esitechnology\proxies\Tutorial\P
ersonImpl.java

The first file is the interface file and the second is the proxy implementation code.

 16

Basic Operations
Once you have generated the proxies for classes you wish to make use of in your
Java application, you need to incorporate these proxies and the gateway into your
client. The following sections describe how to include the gateway and proxies in
your client and the types of operations available to you via the gateway. This
includes connecting to an EsiObjects server, creating objects within the server
from your client and invoking services on them.

Getting Started
The following steps will get you started in hooking up your Java client to
EsiObjects using the Gateway.

Installing and locating the EsiObjectsV4.JAR
In order to use the Java Gateway the EsiObjectV4.JAR must appear in the users
Class path. Depending on how you are developing the mechanism for doing this
may vary.
• In JDK 1.2 the environment variable CLASSPATH could be used.
• In all JDK versions there is a command line qualifier on the Java Compiler (JAVAC)

to specify the Class path.

Most development environments have a mechanism for specifying the
CLASSPATH.

For example, in Forte you can mount the JAR as a File System

For Deployment:

When the user deploys an application written using the Java Gateway they will
need to package the EsiObjectV4.JAR file with their product, and they will need
to load this file with their application. The end users will need to make sure the
JAR file is in their class path for the installed application.

When running an application interactive the JAVA.EXE program is used. It
accepts a command line qualifier to specify the class path.

If the application is deployed over the web, the EsiObjectV4.JAR will need to be
included.

Import com.esitechnology.eo.*
It is recommend that your Java code should include an import statement for the
“com.esitechnology.eo” package. This will simplify the development process.
This step is optional, but it omitted full class names number be used. It is also
possible to import only selected classes from the package.

 17

Example:
//Import the entire package
import com.esitechnology.eo.*;
//Imports the selected items from the package
import com.esitechnology.eo.TCPGateway;
import com.esitechnology.eo.Variant;

Declare the TCPGateway Object
In order to use the TCPGateway an instance must first be declared with in your
application. Depending on wheather, you have imported the com.esitechnology.eo
package or not the form of the declariation will vary. In either case the class of
gateway is com.esitechnology.eo.TCPGateway.

Example:
/* Declaration of TCPGateway when importing the

com.esitechnology.eo package */
import com.esitechnology.eo.*;
private TCPGateway theGateway;

//Declaration of the TCPGateway when no impoer is done
private com.esitechnololgy.eo.TCPGateway theGateway;

Create an instance of a TCPGateway Object
In Java declarion of an object does not create the object, thus it must be created
before it can be used. This is done using the new operator.

Example:
import com.esitechnology.eo.*;
.
.
.

private TCPGateway theGateway; // Declare the Gateway
theGateway = new TCPGateway(); // Create the Gateway
//Alternative method Declare & Create the Gateway
private TCPGateway anotherGateway = new TCPGateway();

Connection
Users of the gateway connect to the server explicitly. Often, an application looks
up local information about what server and port to connect to from its
configuration information and then explicitly connect to that server. Some
applications will query the user for this information. In any case, the
openConnection method is invoked to initiate the connection.

 18

Using openConnection()
OpenConnection() will establish a TCP/IP connection to an EsiObjects TCP
listener. This method requires a valid a Host Id and Socket Number. Upon
conclusion of the call, the Gateway will be associated with a session and can
make requests. Note that the connection may well be redirected to another host
and port.

Example:
try{

theGateway.openConnection(“appsrv4.esitechnology.com”,9000,””)
}
catch (UnknownHostException exp){
//Handle the exception
}
catch(RequestFailed exp{
//Handle the Exception
}
catch(IOException exp){
//Handle the Exception
}

Common Exceptions and Their Causes
The following lists the common exceptions you may get when attempting to
connect to the server.

UnknownHostException
• Bad Host Name or Address specified
• There could be a DNS problem
• Requested Address is not reachable from your location

RequestFailed
• Bad Port specified in the parameters
• EsiObjects server listener is not running at requested port
• Server overloaded

IOException
• This indicates a communications error.

Disconnection
To disconnect the gateway from the sever, the closeConnection() method is
invoked on the gateway.

 19

Example
theGateway.closeConnection();

Effects of Disconnection
Once the gateway disconnects from the EsiObjects server, any requests made on
the gateway will result in exceptions. Similarly, any invocation of services on a
Java proxy will also generate an exception.

Bulk Transfer Objects (BTO) will still work since these objects exist completely
on the client.

Using lookupObject()
Once a connection is made to the server one of the first tasks is locating objects
on the server.

The lookupObject() is one mechanism for locating persistent and system objects
on the Server.

Locating System Variables
The table below lists the system objects that the lookupObject() service may
find. The names in the Table are not case sensitive.

System Object Abbreviation Description

$ENVIRONMENT $ENV The Environment object associated with
this connections

$LIBRARY $LIB The default Library

$LIBRAYRLIST The List of all Class Libraries

$SYSPOOL The System Name Pool

Locating Class Objects
The lookupObject() service may be used to find the Class Object associated with
a class name. When looking up the class, the name used should be the full class
name prefixed with an underscore. For example to find the class object for the
class TimeStamp in the Base Class Library the name would be:
_Base$TimeStamp

The standard format for nested class names is:
Lib$Class>Nest1>Nest2

 20

Locating an O% Name
LookupObject() may also be used to find named objects in the current default
domain. When coding in EsiObjects such names are prefixed with an “O%”.
When using the lookupObject() service, the O% should not be used. Instead just
the name is specified.

If a name is not found then an empty string will be returned. It is thus possible to
check to see if name is defined by checking against the empty string.

Examples:
//Define the Variants to get the result
Variant environment;
Variant setClass;
Variant database;
Database DB;
//Find $ENV
environment=theGateway.lookupObject(“$Env”);
//Find the Class Base$Set
setClass=theGateway.lookupObject(“_Base$Set”);
//Check if an O%Database is defined
database=theGateway.lookupObject(“Database”);
If (data .getString().length()==0){

// Code to deal with the undefined Database
}
else{

//The Database is defined lets get it
DB = (Database)database.getObject(); // extracts the Proxy

object
// from the variant

}

 21

Working with Variants
The last line in the example above shows how to get a handle to a Proxy object
from the Variant. The following sections deal with Variants.

What is a Variant
A Variant is a data type that can be thought of as a generic container for primitive
data. A variant is a structure that contains 2 fields: one that contains an indicator
of what actual type of data is contained in the variant (a Boolean, integer, string,
etc) and the second field contains the data.

The types of data that can be placed in a variant are listed below.
• Boolean
• Double
• Float
• Integer
• Long
• Object
• Short
• String

Variant are used extensively by the Gateway. Parameters used on calls into the
gateway, by default, are variants. Return data from these calls are also variants.

Creating a Variant
Variant can be created with data seeded into them, or without data. When using
the new command, a parameter is passed that contains the data to place into the
Variant.

Create without Data
Variant x = new Variant()

Create with Data
Variant x = new Variant(dob)

 22

Declaring a Variant

Variants can also be simply declared and data set into it.

Example:
Variant ret; // declare a variant
try {
// delete
ret = db.Delete(curPer.getValue()); // fill in with result
.
.
.

Variant v = o[0]; // declared and seeded with data

Used in a Argument

When passing a variant as an argument the new command is useful. For example:
if (rdbMale.isSelected()) nvl.setAt("Sex", new Variant("Male"));

Get Data from a Variant
Getting data from a variant is accomplished by requesting the specific datatype.
For example, if the variant contains an object, the programmer uses the
getObject() call. If the variant contains text, getString() is invoked.

Examples:

The following example shows a variant being returned from a service call. The
method invocation returns a variant data type. The Object is obtained from the
variant via the getObject() call.
Variant v = db.GetOrgNameList(new
Variant(txtSelOrg.getText()+""));
NvList nvl = (NvList)v.getObject();
/* The next example shows how a text string is extracted from a
variant. */
protected String oidEnv = "";
Variant vaRet = null;
vaRet = gw.lookupObject("$ENV");
oidEnv = vaRet.getString();

 23

Set Data into a Variant
Setting a value into a variant requires invoking the proper method corresponding
to the type of data being inserted. If you are inserting a string:

va.setString(“Hello”);

inserting a Boolean:
va.setBoolean(0);

Refer to the Java Docs for information on what data can be set into a variant.

Clearing & Deleting Variants
To clear a variant for use, the clear() method is to be used.

va.clear();

Deleting a variant is accomplished by setting the variable to null.
va=null;

Objects in Variants
Variants can also contain objects. The setObject() method is used to insert an
object. The following objects can be inserted into a variant.
• Objects that implement CoreObject interface.
• Objects that implement the BTO interface.
• Objects that implements Stream interface.
• Other objects such as java objects.

Creating and Destroying Objects (Lifespan
services)

Lifespan services are used to create and destroy objects on the server. They allow
the client to directly create and destroy objects on the EsiObjects server.

Lifespan services are those services used to create and destroy objects on the
server. They allow the client to directly create and destroy objects. This section
of the guide deals with creation and destruction of objects using the gateway.
There are two methods supplied with the gateway for creating objects:
simpleCreateObject() and createObject(). The method destroyObject() is used
for object destruction.

In EsiObjects, the format of the Create command is as follows:
Create Var=ClassName(param1,…):(keyword=value,…):(property=value,…)

Recall that the params are those parameters that are passed into the CREATE
method in the Factory interface.

 24

SimpleCreateObject() allows for specifying positional parameters, only the
SHARE keyword, and no property assignments. CreateObject() allows you to
make full use of the EsiObjects construction syntax – both positional and named
parameters, most creation keywords, and property assignments.

simpleCreateObject()
Syntax: simpleCreateObject(classname, flags, params)

This method handles simple cases of object construction. The method returns an
Object within a Variant. Only classname and flags are required. Use this method
if you wish to create objects without using named parameters. It does allow for
creating shared objects. In summary, simpleCreateObject():
• Is used to create objects with out special construction requirements.
• Supports creation of shared objects.
• Does not support specifying FIXED or BASE locations for the object.
• Supports positional parameter passing only by using an array of Variants.
• Does not support specifying properties for the construction of the object.

Use createObject() if other creation features are needed, such as named
parameters or property assignments.

The method accepts three parameters:
• The class name (string) for the object you want to create. You should use the fully

qualified class name, which consists of the class library name along with the class
name, e.g. “Base$Array”.

• A flag (long) indicating whether the object is to be a child (0) or a shared object (1).
• An array of Variants (may be empty) for positional parameters for the

Factory::CREATE method of the class.

Examples:
#import com.esitechnology.proxies.SuperBase.Query;
#import com.esitechnology.proxies.Corp.Person;
Query query;
Variant [] params;
/* Create a temporary object of the hypothetical class
SuperBase$Query. Creating an object of this type requires three
creation parameters
*/
params = new Variant[3];
// The database to use for the Query
params[0] = new Variant(”MainDatabase”);
// The UserName
params[1] = new Variant(”Jones, Fred C”);
// The Encrypted Password
params[2] = new Variant(”LKE028833HGX2”);

 25

query = (Query)theGateway.simpleCreateObject(Superbase$Query”, 0,

params);

/* When we are done with the object we should destroy it.
Create a Shared object and tell a security tracker object about
it.
*/
Person person;
//We only have a single parameter on the call
params = new Variant[1];
params[0] = new Variant(”Jones, Fred C”);
person=(Person) theGateway.simpleCreateObject(“Corp$Person”, 1,

params)
securityTracker.RegisterPerson(Person);

createObject()
Syntax: createObject(classname, flags, params, namedParams, options,
properties)

This method allows objects to be created using a broad range of functionality. It
supports almost every aspect of the EsiObjects Create command. The method
returns an Object. In addition to the functionality provided by
simpleCreateObject() this method supports:
• Supports most creation keywords.
• Supports Named Parameter passing.
• Supports creation-time property assignment.
• Many of the parameters are optional, they be omitted or an empty collection passed

in their place.
• Positional parameters are passed as a BTOList.
• Named Parameters are passed as a BTONvList. The Value of each element in the list

is the value of the parameter, while the Name of the element is used as the parameter
name.

• Creation Options are passed as a BTONvList. The Name of each element is the
creation keyword (case sensitive), while the value of the Element is the value of the
creation keyword.

• Creation Properties are passed as a BTONvList. The Name of each element is the
name of the property, while the Value of the element is the value to be assigned to
the property.

Examples:
#import com.esitechnology.proxies.Local.OrderServer;
OrderServer orderServer;
List parameters = new List();
NvList options = new NvList();
NvList namedParams = new NvList();
NvList properties = new NvList();
//We are going to create an object of a class “Local$OrderServer”

 26

/* We create this class in the default domain, with a name of
OrderServer. To do this will need to define two Create options:
*/
//Using the default domain
options.setAt(“Domain”,new Variant(“”)) ;
//The Name “OrderServer”
options.setAt(“Name”,”new Variant(“OrderServer”));
/* In order to Create an Object in the server we specific an few
parameters. The first two parameters may be passed positionally,
so we set them in the Parameters Object */
//Set the size of the parameter object
parameters.setDimension(2);
//The User Name
parameters.setElement(0,new Variant(”Jones, Mark”));
/* The creation also requires an authentication token, which will
be passed as a NamedParameter */
//Pass the Token we have already defined. (In a variant)
namedParams.setPair(-1,”AToken”,Token);
parameters.setElement(1,new Variant(”All”));
/* We also want to define a few properties of the object when it
is created */
properties.setAt(“MaxClients”,new Variant(10));
properties.setAt(“EnableEvents”,new Variant(1));
//Ok we are now ready to Create the Object
orderServer = (OrderServer) theGateway.createObject(

“Local$OrderServer”, 0, parameters, namedParams, options,
properties);
//Example of the Same creation without Properties
orderServer = (OrderServer) theGateway.createObject(

“Local$OrderServer”, 0,
parameters, namedParams, options, null).
//Example without named parameters or properties
orderServer = (OrderServer) theGateway.createObject(

“Local$OrderServer”, 0,
parameters, null, options, null).

destroyObject()
Syntax: destroyObject(objectId)

This method destroys the server object corresponding to the objectId. It is
equivalent to the Destroy command in EsiObjects. Keep in mind that in
EsiObjects, when using Destroy the object may not always die. The object may
have their reference count decremented instead, or they may reject the attempt
altogether.

When destroying the object, you can use the following forms to specify the object
id:
• Proxy

 27

• String
• Variant

Examples:
//Define three different object forms
InterfaceBase obj; //Proxy
String objectOID; //String
Variant temp //Variant
//Get the object in various ways
obj = theGateway.Lookup(“ObjectToKill1”).getObject();
objectOID = theGateway.Lookup(“ObjectToKill2”).getString();
temp = theGateway.Lookup(“ObjectToKill3”);
//Ok now delete it
theGatway.destroyObject(obj);
theGatway.destroyObject(objectOID);
theGatway.destroyObject(temp);

 28

Proxy Usage
The main function of the Gateway is to allow a Java client to invoke methods,
properties, relationships, etc. on objects within the server. Proxy objects on the
client allow this to happen.

A Class in EsiObjects is a blueprint for the state and behavior an object will have.
A Class defines the interface to the object – namely the method, properties,
relationships and events that an object of that class will provide. EsiObjects
supports the ability to generate Java code for any Class defined in EsiObjects.
Generating the Java code places the interface of the object in Java code that can
then be included in your Java application. This generated code becomes a Java
Class definition for an object called a Proxy. All the necessary supporting code to
enable the proxy to communicate to the server via the Gateway is also embedded
into the generated code.

On the client side, Java can create instances of these Proxies like any normal Java
object. Behind the scenes, the Java uses the gateway to invoke the creation of the
server object that becomes attached to the client side proxy.

Since the generated code includes all the services provided by the server object,
the client can invoke these services in a transparent fashion. The proxy object uses
the gateway to invoke the service on the server object to which it is attached.

Concepts
Generation (Java)

As detailed above, the Java code is generated from within EsiObjects. When
selecting this option you may generate only the interface file or you may also
generate the implementation file. The implementation file includes all the
necessary supporting code to attach the client side Proxy object with a server side
object.

Parentage & Inheritance
Proxies are really two parts, the interface that extends the same hierarchy as found
in EsiObjects, and the actual proxy implementation that generally extends
InterfaceBase and implements the proxy interface.

Because the generated proxy code includes the services in the EsiObjects class
and also those inherited by InterfaceBase, all methods from InterfaceBase begin
with javaProxy_ to avoid possible name conflicts with the names from
EsiObjects.

 29

Structure
When invoking operations on a proxy, you have available to you all the methods,
properties, and relationships on the objects you generated proxies for. Invoking
these services is similar to invoking any service on a Java object:
Object_id.Servicename for invoking services in the Primary interface. If you wish
to invoke services in other interfaces, prefix the service name with the interface
name and underscore (_).

The format of the Servicename is explained below.

Methods
If the service is a method the name of the method is used.

Properties & Relationships
For property and relationship invocations, the format of the service name is
getServicename if you want to get the current value of the property or
relationship. If you want to set the value, then the format is setServicename.

Examples

Assuming that PerProxy is a proxy object for a server object of type
Tutorial$Person, and a Person object has properties for Sex, and Address (among
others), we can invoke the value accessor for the property in the following way:
String s = PerProxy.getSex().getString();

Note that the getSex() call returns a Variant and thus the getString() call extracts
the data in the variant as a string value.

The parameters for setting the value depend on how you generated the proxy. If
you generated the proxy with the Variant Parameters setting to TRUE, then you
must use variants for the parameter. Otherwise a string value may be used.
// Variant parameter
PerProxy.setSex(new Variant(“Male”));

// string parameter
PerProxy.setSex(“M”);

The following example shows an invocation of a method on a proxy for an object
of type Tutorial$Organization.
NvList pers = (NvList)OrgProxy.EmployeeList().getObject();

OrgProxy.EmployeeList invokes the method “EmployeeList” in the Primary
interface of the object. Since a variant is returned, the getObject() method is
called to extract the object handle from the variant. This handle is then cast to an
NvList datatype.

 30

The following example shows that a method ResetTestDB is being called in the
Initialize interface for this proxy object. The proxy “db” is of type
Tutorial$Database.
db.Initialize_ResetTestDB();

Future plans

Currently property Value and Assign accessors are the only ones that can be
invoked via the proxy. In the future, other accessor methods may become
available to proxy invocation.

Events
Proxy objects can also be used for event processing. A Java client can watch an
object in EsiObjects by making use of the event related services.

When generating a Java Proxy for a class, all events, relationships and properties
have corresponding event services created for them. For example, in the class
Tutorial$Database, there are many events such as “Deleted”, “StoreRecord”, etc.
Also any property or relationship can also be watched such as OrganizationDB.

Each of these has two event calls generated for each. addServiceNameListener()
and removeServiceNameListner. Where ServiceName is the name of an event,
property or relationship. Both opertions take a single argument: an
EOEventListener. The EOEventListener provides the “callback” method to be
invoked on the client whenever the specified event occurs in the server.

addServiceNameListener()

Invoking this method on a Proxy places a “watch” on the server object for the
event specified by the ServiceName.

removeServiceNameListener()

To remove a watch on an object this method is called on the proxy.

Example

The following code places a watch on an object for the StoreRecord event.
db.addStoreRecordListener(new EoEventListener() {
public void eventOccurred(EOEvent evt) {
dbStoreRecordEventOccurred(evt);
}
});

The section Event Processing below describes in more detail about how to use
events in the gateway.

 31

Comparing
To determine whether two proxy objects point to the same object, the “==” test
should be used for comparison.

Example Class
For this example, we created a class “Hello” in the User class library. This class
contained one method in the Primary interface called “DisplayMessage”.

The method DisplayMessage in class User$Hello

This method will display a message box on the screen with a specified message.
The method accepts three parameters: the text of the message, the title for the
message box, and the type of icon to display in the message box. Only the first
parameter is required. The other two have default values if not specified.

Next we generate a Java Proxy for this class, generating both the implementation
and interface files.

EsiObjects generated two files in the directory specified in the package path (set
in the Properties page of the class.) Helloimpl.java and Hello.java are the files
containing the implementation code and the interface respectively.

Below is the code that was generated for the interface file.
package com.esitechnology.proxies.User;
import com.esitechnology.eo.*;
/** Interface to the EsiObjects Class Hello */
public interface Hello extends CoreObject
{
public abstract Variant DisplayMessage(Variant Param1) throws
RequestFailed;

 32

public abstract Variant DisplayMessage(Variant Param1, Variant
Param2) throws RequestFailed;

public abstract Variant DisplayMessage(Variant Param1, Variant
Param2, Variant Param3) throws RequestFailed;

}

Note that even though the EsiObjects class contained only 1 method,
DisplayMessage, the generated proxy offers three of these methods.

This is because of the optional parameters that can be passed in this method. If an
EsiObjects method has input parameters, the Java proxy will contain a
corresponding method for any required parameters. Any optional parameters will
have a separate method generated for each permutation of those parameters.

Thus in the example above, the first DisplayMessage was generated with the
required parameters – in this case just the one. The second and third generated
methods are for the two optional parameters.

Only positional parameter passing is allowed when invoking services on Proxies.
No keyword parameter passing is supported.

Limitations
Named Parameters on method invocations are not supported in the Gateway.

Strong data typing is not implemented in this version of the gateway. It may be
implemented in future versions.

Future
In the future it may be possible to generate Java proxies that have stronger typing.
These proxies will have specified returns types and parameter types based on
what is on the EsiObjects server. To some degree this will work hand in hand with
the addition of stronger typing in EsiObjects which is also planned for future
development. For example one near term change will be to have the relationships
generate (and use) their known type information.

For example, given a Class1 with a relationship Rel1. This is a unary relationship
to an instance of Class2:

The proxies now generate:
public Variant getRel1();
public void setRel1(Variant value);

With strong typing the following will be generated:
public Class2 getRel1();
public void setRet1(Class2 value);

 33

Programming with Generic Proxies
Background

Generic proxies provide the ability to access objects that do not have a proxy available on
the client. Depending on how the Gateway is configured, Generic Proxies can be used to
supplement a client which only has a partial set of proxies generated.

Platform Issues
Proxy Modes

TCPGateway Constant Description Value
PROXYMODE_NO_GENERIC Generic proxies are

never used.
0

PROXYMODE_ALLOW_GENERIC Generic proxies are
loaded if the normal
class proxy is not found.

1

PROXYMODE_ONLY_GENERIC Always use a Generic
Proxies.

2

Java Gateway
The Java Gateway supports all three proxies modes. By default the Java Gateway will
startup in PROXYMODE_ALLOW_GENERIC. The Proxy Mode may be controlled
using the getProxyMode and setProxyMode methods of the Gateway.

PersonalJava Gateway
The Persona Java Gateway differs from the Full Java Gateway in that it only supports
Generic Proxies. The getProxyMode method of the PersonalJava Gateway will always
return a value of PROXYMODE_ONLY_GENERIC. Since the Personal Java Gateway is
designed to work in low memory environments it was engineered to use only Generic
Proxies, thus saving the local memory that would otherwise be required for the generate
proxies.

Classes
GenericProxy

The GenericProxy provides a generic interface for accessing objects. In order to call a
service the user must provide the Service Name and a Parameter Array of the
Argumemts.

Methods
Method Description
addEventListener Add an Event Listener.

 34

addPropertyListener Add a Property Listener.
Invoke Invoke a Method.
propetyDataFn Invoke $Data operation on a Property.
propetryGet Get a Properties Value.
propetryGetFn Invoke $Get operation on a Property.
propetryKill Invoke Kill operation on a Property.
propertyNormalizeFn Invoke $Normalize operation on a

Property.
propertyOrderFn Invoke $Order operation on a

Property.
propertyQueryFn Invoke $Query operation on a

Property.
propertySet Set a Property.
propetyValidateFn Invoke $Validate operation on a

Property.
removeEventListener Remove an Event Listener.
removePropertyListener Remove a Property Listener.

ProxyHelper
Working with the GenericProxy can be cumbersome; the ProxyHelper class provides a
simplified façade for accessing the proxy. In order to invoke a service the user must
provide a Service Make and the Arguments as Strings or Variants.

Methods:
Method Description
Invoke Invoke a Method
propertyGet Get a Property
propertySet Set a Property
setProxy Associate the ProxyHelper to a

GenericProxy.

Examples:
The following is a set of examples that show how Generic Proxies differ from “Normal”
proxy calls. The examples as simplified, and do not include any exception handling. The
examples assume a the following interface for a generated proxy:

package com.esitechnology.proxies.RGTest;

import com.esitechnology.eo.*;
import java.beans.PropertyChangeListener;

/** Interface to the EsiObjects Class ProxyExample */
public interface ProxyExample extends CoreObject
{

 35

 public abstract Variant Method1() throws RequestFailed;

 public abstract Variant Method1(Variant Arg1) throws RequestFailed;

 public abstract Variant Method1(Variant Arg1, Variant Arg2) throws RequestFailed;

 public abstract Variant Method2(Variant Arg1) throws RequestFailed;

 public abstract Variant Method2(Variant Arg1, Variant Arg2) throws RequestFailed;

 public abstract Variant getProperty1() throws RequestFailed;

 public abstract void setProperty1(Variant Value) throws RequestFailed;
 public abstract void addProperty1Listener(java.beans.PropertyChangeListener listener);

 public abstract void removeProperty1Listener(java.beans.PropertyChangeListener listener);

 public abstract Variant getProperty2(Variant Arg) throws RequestFailed;

 public abstract void setProperty2(Variant Value, Variant Arg) throws RequestFailed;
 public abstract void addProperty2Listener(java.beans.PropertyChangeListener listener);

 public abstract void removeProperty2Listener(java.beans.PropertyChangeListener listener);

public abstract Variant Secondary_Method3(Variant Arg1) throws RequestFailed;

}

Examples Using Proxy

//Preexisting variables
// result – a Variant with a proxy object in it
// listener – a java.beans.PropertyChangeListener.

//Declare the Proxy
ProxyExample obj;
//Get the proxies from prior call that stored the result in a variant (result)
obj=(ProxyExample) result.getObject()

//Declare a few variants for parameters
Variant va1=new Variant();
Variant va2=new Variant();

//Declare a Variant for the return value
Variant callResult;

//Call Method1
va1.setString(“Test Value”);
va2.setString(“Another String”);
callResult=obj.Method1(va1,va2);

//Call Method2
va1.setInt(10);

 36

va2.setInt(300);
callResult=obj.Method2(va1,va2);

//Get Property1
callResult=obj.getProperty1();

//Set Property2

Variant value=new Variant();
value.setString(“Test Value:);
va1.setString(:”Key”);

obj.setProperty2(value, va1);

//Call Method 3 in the Secondary Interface
va1.setString(“A String Value);
callresult=obj.Secondary_Method3(va1);

//Add A Property Listener for Property2
obj.addProperty2Listener(listener);

//Remove a Property Listener
obj.removeProperty2Listener(listener);

Example Using a Generic Proxy
//Preexisting variables
// result – a Variant with a proxy object in it
// listener – a java.beans.PropertyChangeListener.

//Declare the Proxy
GenericProxy obj;
//Get the proxies from prior call that stored the result in a variant (result)
obj=(GenericProxy) result.getObject()

//Declare a few variants for parameters
Variant va1=new Variant();
Variant va2=new Variant();

//Declare a Variant for the return value
Variant callResult;

//Declare a Parameter array
Parameter[] params;

//Call Method1
params=new Parameter[2];
params[0]=new Parameter(“Test Value”);
params[1]=new Parameter(“Another String”);
callResult=obj.invoke(“Primary::Method1”,0,params);

//Call Method2
va1.setInt(10);
va2.setInt(300);
params=new Parameter[2];

 37

params[0]=new Parameter(va1);
params[1]=new Parameter();
params[1].data=va2;
callResult=obj.invoke(“Primary::Method2”,0,params);

//Get Property1
callResult=obj.getProperty(“Primary::Property1”,0,null);

//Set Property2

Variant value=new Variant();
value.setString(“Test Value”);
params=new Parameter[1];
params[0]=new Parameter(“Key”);
obj.setProperty(value,”Primary::Property2”,0,params);

//Call Method 3 in the Secondary Interface
params=new Parameter[1];
params[0]=new Parameter(“A String Value”);
callresult=obj.invoke(“Secondary::Method3”,0,params);

//Add A Property Listener for Property2
obj.addPropertyListener(”Primary::Property2”,listener);

//Remove a Property Listener
obj.removePropertyListener(”Primary::Property2”,listener);

Example Using a ProxyHelper
//Pre- exiting variables
// result – a Variant with a proxy object in it
// listener – a java.beans.PropertyChangeListener.

//Declare the Proxy
GenericProxy obj;
ProxyHelper helper;

//Get the proxies from prior call that stored the result in a variant (result)
obj=(GenericProxy) result.getObject()
helper = new ProxyHelper(obj);

//Declare a few variants for parameters
Variant va1=new Variant();
Variant va2=new Variant();

//Declare a Variant for the return value
Variant callResult;

//Call Method1
callResult=helper.invoke(“Primary::Method1”,”Test Value”,”Another String”);

//Call Method2
va1.setInt(10);
va2.setInt(300);
callResult=helper.invoke(“Primary::.Method2”,va1,va2);

 38

//Get Property1
callResult=helper.getProperty(“Primary::Property1”);

//Set Property2

Variant value=new Variant();
value.setString(“Test Value:);

helper.setProperty2(value, “Primary::Property1”,”Key”);

//Call Method 3 in the Secondary Interface
callresult=helper.invoke(“Secondary::Method3”,”A String Value”);

//Add A Property Listener for Property2
obj.addPropertyListener(”Primary::Property2”,listener);

//Remove a Property Listener
obj.removePropertyListener(”Primary::Property2”,listener);

 39

Bulk Data Transfer mechanisms
The Java Gateway contains a number of data types that allow for the transfer of
collections or large amounts of data in bulk to and from the server.

This section deals with what these objects are and how to use them.

Concepts
Below is a table of the bulk transfer objects (BTO) supplied in gateway package.

Types
Package com.esitechnology.eo

Interface Standard
Implementation

EsiObjects
Equivalent

Description Collection?

BTOList List ESI$List A list of items Yes

BTONVList NVList ESI$NVList A list of items
with Names

Yes

BTOTable Table ESI$Table A
multicolumn
table

Yes

BTOText Text ESI$Text A Large Text
object

No

The List, NVList, and Table objects are collections into which elements can be
inserted, removed and iterated.

Text objects deal with large amounts of string data. All of these objects can be
created on the server and passed to the client. In other words, an ESI$List object
created in EsiObjects can be returned to the client and used within the client as a
List object. Conversely, if the client creates a List object and passes it into the
server in a method parameter, the resultant object in the server is an ESI$List
object.

The implementations of these objects are overrideable by creating a Subclass of
BTOObjectFactory.

 40

Streams
The Java Gateway will allow any of the following classes (or their descendants)
to be passed to the EsiObjects server.
• java.io.InputStream
• java.io.OutputStream
• java.io.Writer
• java.io.Reader

On the EsiObjects server these objects will be represented as an ESI$TCPStream.

Transfer Dynamics
When a BTO object is passed as an argument (or used as a return value) the entire
contents of that collection is transferred to the other side. In the case of a BTO
object used as an argument of a call from the client to the server, the contents of
the object will be transferred to the server in total, and at the conclusion of the call
the new contents will be transferred back to the client.

Common Conventions

Index Basis

All structures have elements numbered from zero (0) to their Dimension minus
one (1). Thus if you set the Dimension property of a List to 10, the indexes go
from zero to nine.

Effects of Dimension

An attempt to set an element outside of the dimensioned bounds of a collection
will result in an error. This means that all collections should be dimensioned prior
to being filled. The only exception is when an append operation is being
performed, which will cause the collection to grow.

Appending Items

Setting an item at position negative one (-1) will cause the item to be placed at the
end of the collection and the dimension of the collection to be increased.

Common Error Handing

All BTO objects listed in the table above support a set of common error handling
facilities. These facilities allow error information to be associated with the
collection directly. These facilities might be used by methods that validate the
contents of the collections.

 41

java.io Object Support
The following classes (and their decendants) from java.io are understood by the
gateway and will be transported to the server correctly. The server will be
presented with an ESI$TCPStream object. This provides a mechanism whereby
the server may read & write to the clients file system.
• java.io.InputStream
• java.io.OutputStream
• java.io.Writer
• java.io.Reader

Common Error Methods
The common error methods are supported by all BTO object that support “Data
by Value”. They provide a set of common facilities for associating error
information with a BTO Object.

Details on these error methods are available in the Java Doc for
com.esitechnology.eo.BTO

Bulk Transfer Objects (BTO)
BTOList

Overview
This object is used as a collection for a singleton list of items.

Please refer to the Java Doc for package com.esitechnology.eo.BTOList for
details on the interface. For details on the implementation of List refer to the Java
Doc for com.esitechnology.eo.List.

Within EsiObjects, this object type is represented as an ESI$List.

Example:
// Import the com.esitechnology.eo package
import com.esitechnology.eo.*;
// Define the List
List theList = new List();
// Set the size of the List via the Dimension property
theList.setDimension(12);
// Load the List with some data
for (int item=0; item < theList.getDimension(); item++){

Variant value = new Variant();
value.setString(“Item: “ + item);
theList.setElement(item, value);

}

 42

// Append a few items into the List via the SetElement using -1
index
theList.setElement(-1, new Variant(“Extra Item 1”);
theList.setElement(-1, new Variant(“Extra Item 2”);
// Fill a JComboBox with items from the List
for (int item=0; item < theList.getDimension(); item++){

value = theList.getElement(item);
cbox.addItem(value.getString());

}

BTONvList

Overview

The NVList provides a list of named items. Each item on the list may be given a
name. Names need not be unique. An index based on name is maintained which
allows items to be retrieved by name. An NVList object can also be used like a
Map.

Please refer to the Java Doc for package com.esitechnology.eo.BTONvList for
details on the interface. For details on the implementation of List refer to the Java
Doc for com.esitechnology.eo.NvList.

Within EsiObjects, this object type is represented as an ESI$NVList.

Example

In this example, the bridgeServer, object is a proxy object created from an
EsiObjects class RGTest that contains various methods for testing the BTO
objects.
private BridgeServer bridgeServer

bridgeServer=(BridgeServer)theGateway.simpleCreateObject("RGTest$BridgeSe

rver",

0,null);

.

.

.

private boolean NvListTest() {

try{

//NvList - Local Tests
NvList nvList;
nvList=new NvList();
//Populating List
for (int a=1;a<11;a++){

String key;
Variant value;
key="Key"+a;

 43

value=new Variant();
value.setInt(a);
nvList.setPair(-1,key,value);

}

int size=nvList.getDimension();
// UpdateStatus is a separate function to print output
UpdateStatus("List Dimension = "+size);
for (int a=0;a<size;a++){

String key;
Variant value;
key=nvList.getName(a);
value=nvList.getElement(a);
UpdateStatus("Key = " + key);
UpdateStatus("Value = "+value.getString());

}

//Remote Tests
nvList.clearAll();
Variant vaList;
vaList = new Variant();
vaList.setObject(nvList);
// invoke the NVListText method on the RGTest object
bridgeServer.NVListTest(vaList);
size=nvList.getDimension();
UpdateStatus("List Dimension = "+size);
for (int a=0;a<size;a++){

String key;
Variant value;
key=nvList.getName(a);
value=nvList.getElement(a);
UpdateStatus("Key = " + key);
UpdateStatus("Value = "+value.getString());

}
//List as Return Value Test
nvList=(NvList)bridgeServer.NVListRet().getObject();
size=nvList.getDimension();
UpdateStatus("List Dimension = "+size);
for (int a=0;a<size;a++){

String key;
Variant value;
key=nvList.getName(a);
value=nvList.getElement(a);
UpdateStatus("Key = " + key);
UpdateStatus("Value = "+value.getString());

}

}
catch(OutOfBoundsException exp){

 44

UpdateStatus(exp.toString());
return false;

}
catch(NoConversion exp){

UpdateStatus(exp.toString());
return false;

}
catch(RequestFailed exp){

UpdateStatus(exp.toString());
return false;

}

return true;
}

BTOTable

Overview

The Table provides for a collection of data organized by rows & columns. The
table is optimized for row based operations rather than column access. To be
useful the table must always be dimensioned, although it is legal to specify zero
for one of the two dimensions.

Please refer to the Java Doc for package com.esitechnology.eo.BTOTable for
details on the interface. For details on the implementation of List refer to the Java
Doc for com.esitechnology.eo.Table

Within EsiObjects, this object type is represented as an ESI$Table

Example

In this example, the bridgeServer, object is a proxy object created from an
EsiObjects class RGTest that contains various methods for testing the BTO
objects.
private BridgeServer bridgeServer

bridgeServer=(BridgeServer)theGateway.simpleCreateObject("RGTest$BridgeSe

rver",

0,null);

.

.

.

private boolean TableTest(){
// Test a BTO Table
try{

//Table local Tests
Table table;
table=new Table();
UpdateStatus("Dimensioning Table");

 45

table.setDimension(0,4);
UpdateStatus("Populating Table");
Variant[] params;
params = new Variant[4];
for (int a=1;a<11;a++){

params[0]=new Variant(a);
params[1]=new Variant("Const string");
params[2]=new Variant((float)3.1415);
params[3]=new Variant(false);
table.addRowV(params);

}
java.awt.Dimension size;
size=table.getDimensions();
for (int a=0;a<size.height;a++){

StringBuffer buf;
Variant value;
buf=new StringBuffer();
for (int b=0;b<size.width;b++){

value=table.getCell(a,b);
buf.append(value.getString());
buf.append(" ");

}
UpdateStatus(buf.toString());

}
Variant vaTable;
vaTable=new Variant(table);
//Calling Server - Table as Argument
bridgeServer.TableTest(vaTable);
size=table.getDimensions();
for (int a=0;a<size.height;a++){

StringBuffer buf;
Variant value;
buf=new StringBuffer();
for (int b=0;b<size.width;b++){

value=table.getCell(a,b);
buf.append(value.getString());
buf.append(" ");

}
UpdateStatus(buf.toString()); // function to print

}
//Calling Server - Table Return
table=(Table)bridgeServer.TableRet().getObject();
size=table.getDimensions();
UpdateStatus("Size = "+size.toString());
for (int a=0;a<size.height;a++){

StringBuffer buf;
Variant value;
buf=new StringBuffer();
for (int b=0;b<size.width;b++){

 46

value=table.getCell(a,b);
buf.append(value.getString());
buf.append(" ");

}
UpdateStatus(buf.toString());

}

}
catch(OutOfBoundsException exp){

UpdateStatus(exp.toString());
return false;

}
catch(NoConversion exp){

UpdateStatus(exp.toString());
return false;

}
catch(RequestFailed exp){

UpdateStatus(exp.toString());
return false;

}

return true;
}

BTOText

Overview

The BTOText object supports very long block text. Given the restrictions of most
M systems, large blocks of text must be store in a section of Blocks. The
BTOText object is the client side representation of the ESI$Text object which
supports unbounded text blocks. The operations on BTOText facilitate the
breaking of the large text object into smaller chunks that can be stored in M.

Access is provide to the text in four manners:

1. As a single text string.

2. By line (As delimited by CR/LF.)

3. By a substring.

4. By text block of a given a specific size.

The TCP transport will automatically create this type of object on the server side
when it receives text that is too large for the M system to handle.

Please refer to the Java Doc for package com.esitechnology.eo.BTOText for
details on the interface.

For details on the implementation of List refer to the Java Doc for
com.esitechnology.eo.Text.

 47

Within EsiObjects, this object type is represented as an ESI$Text.

Example

In this example, the bridgeServer, object is a proxy object created from an
EsiObjects class RGTest that contains various methods for testing the BTO
objects.
private BridgeServer bridgeServer

bridgeServer=(BridgeServer)theGateway.simpleCreateObject("RGTest$BridgeSe

rver",

0,null);

.

.

.

private boolean TextTest(){
//Test BTO Text
try{

//Local Tests
Text text;
text = new Text();
//Simple SetText call
text.setText("Set the text to a simple string");
//UpdateStatus is a separate function to output a string
UpdateStatus(text.getText());
UpdateStatus("Clear");
text.clear();
UpdateStatus(text.getText());
//Append Tests
for (int a=1;a<100;a++){

text.append("123456789012345678901234567890");
}
UpdateStatus(text.getText());
UpdateStatus("Length = "+text.getLength());
text.clear();
//Line test
for (int a=0;a<100;a++){

text.append(a+" 123456789012345678901234567890\r\n");
}
UpdateStatus("Line Count = "+text.getLineCount());
UpdateStatus("Line 13 = "+text.getLine(13));
int blocks;
blocks=text.getBlockCount(510);
UpdateStatus("Length = "+text.getLength());
UpdateStatus("Blocks = "+blocks+", 510 chars per block");
for (int a=0;a<blocks;a++){

UpdateStatus("Block "+a+" = "+text.getBlock(a,510));
}
//Text - Remote Tests
Variant vaText;

 48

vaText = new Variant();
vaText.setObject(text);
//Calling TextTest
bridgeServer.TextTest(vaText);
//Viewing Returned text
int lines;
lines=text.getLineCount();
UpdateStatus("Lines returned = "+lines);
for (int a=0;a<lines;a++){

UpdateStatus(text.getLine(a));
}
//Calling TextRet
text=(Text)bridgeServer.TextRet().getObject();
UpdateStatus("Viewing Returned text");
lines=text.getLineCount();
UpdateStatus("Lines returned = "+lines);
for (int a=0;a<lines;a++){

UpdateStatus(text.getLine(a));
}

}
catch (StringIndexOutOfBoundsException exp)
{

UpdateStatus(exp.toString());
return false;

}
catch(RequestFailed exp){

UpdateStatus(exp.toString());
return false;

}

return true;
}

Streams
The EsiObject TCPGateway supports the transport of stream objects by reference
to the server. This provide a mechanism for stream based I/O between the Client
and the EsiObjects Server. When the object is received by the EsiObjects Server it
will be represented by and Instance of ESI$TCPStream.

The Gateway provides support for any object that extends one of the following
classes:
• java.io.InputStream
• java.io.OutputStream
• java.io.Writer
• java.io.Reader

 49

Event Processing
Overview

One of the most powerful features in EsiObjects is event processing. Objects can
watch other objects for events or changes in state. The Java Gateway brings that
same functionality to the client. Using the event processing capability of the
gateway, a client can watch an object on the server for a specific event/state-
change, or any event/state-change. When the event occurs, a specified method is
invoked on the client (known as a “callback”.) Thus clients can register for and
respond to events that occur on the server.

One of the most common uses for event processing is for keeping a client display
of data current with what is on the server. Especially when more than one process
is changing data on the server. The client can register for events that occur when
data is changed. When the event is thrown, the callback method is invoked and
that method could update the client display with the most recent data.

In EsiObjects we say that an object will “watch” another object for a specific
event or category of events. The watched object will “throw” the event when it
encounters it by placing the event on an event queue.

Below we describe how a client makes use of event processing using the gateway.

Process description
There are several steps that must be done for event processing to be implemented
on the client.
• The programmer must write the callback method.
• The programmer must define an Event Listener. This is a datatype EOEventListener

that contains the reference to the callback method for the event

In the client code the programmer must:
• Create an EOEventListener.
• Watch the object. This actually “registers” the fact that the client is going to watch a

specified object for some type(s) of events. During the time that this watch is active,
if the event occurs in the object, the specified callback method in the client is
invoked.

• When the client no longer wants to watch the object, it should ignore the object. This
deactivates the Watch.

Each of these steps is detailed below.

Create a Callback method

Callback methods are defined in the following format:
public void callbackmethodname(EOEvent evt)

 50

The callback accepts one parameter of type EOEvent, which is defined in the
gateway. EOEvent is a structure sent by the server when an event occurs. This
structure contains information associated with the event: the name of the event,
the object in which the event occurred, and other parameters containing
information supplied by the server on the event.

Refer to the Java Doc for details on the EOEvent structure.

Typically, the callback will extract the data out of the EOEvent structure and use
the data to take appropriate action.

Create a Listener

A Listener object is one that contains information for the callback method.
Anytime a watch is invoked from the client, a Listener object must be associated
with the watch. The constructor for the listener accepts a reference to the callback
method associated with this listener.

Example

In the following example, a listener orgRelAddedListener is created. The
callback method orgRelAddedEventOccurred is associated with this listener.
Note that the listener has defined inline the implementation of the
eventOccurred() method.
private EoEventListener orgRelAddedListener = null;
orgRelAddedListener = new EoEventListener() {

public void eventOccurred(EOEvent evt) {
orgRelAddedEventOccurred(evt); }}

Add Listener

Each event, property or unary relationship within a proxy has two event services
generated for them: addServiceNameListener() and
removeServiceNameListener(). (Where ServiceName is the name of an event,
property or relationship.)

Both operations take a single argument: an EOEventListener. The
EOEventListener provides the “callback” method to be invoked on the client
whenever the specified event occurs in the server.

The addSeviceNameListener() establishes a watch on the server object
represented by the proxy. When the specified ServiceName event occurs, the
associated callback method is invoked.

Example

In the following example a proxy object (which is a Base$Set object) is being
watched for ElementAdded events to occur. Whenever this event occurs in the
server object, the callback associated with the orgRelAddedListener will be
invoked.

 51

employerSet.addElementAddedListener(orgRelAddedListener);

Handle Event

eventOccurred is invoked on each listener which in turn calls the callback
associated with the event listener when it was created (see above.)

Remove Listener

The removeServiceNameListener() method invoked on the proxy will remove
the watch on the server object. This method takes a single argument: the
EOEventListener associated with the watch to be removed.

Example

This example shows the removing of a watch on a set object for ElementAdded
events.
employerSet.removeElementAddedListener(orgRelAddedListener);

What can be watched
• Properties
• Events
• Unary Relationships

To watch a relationship that is of cardinality “many”, you must first get the handle
to the relationship object and then watch for events on that object.

The Event Queue
Each client connection to the server is allocated an event queue. Whenever an
event occurs the event is place on the event queue for the client to pick up. There
are two ways in which the event queue has its events pulled and sent to the client:

At the conclusion of a call to the server, the event queue for the connection is
checked and all of the events are dispatched back to the client at that time.

The dispatchEvents() method of the Gateway may also be used to explicitly
dispatch any events that might have been caused by the actions of others. This
method essentially polls the server for any events on the queue and if any are
found, they are dispatched to the client. Typically a Timer could be set up to
execute this method at regular intervals to check for any events that have
occurred.

Possible Complications
If the proxy object is not referenced, the event will be short circuited, and the
listener will not be invoked. When the proxy object is finalized, an ignore will be
issued to the server if there are any attached listeners.

 52

What Hooks Are Generated
In the Proxy generated code, each property, unary relationship, and programmer-
defined event has corresponding code generated.

Properties and Relationships
For example, for the Tutorial$Person class, the following was generated for the
Address property. Relationships are generated in the same way.
import java.beans.PropertyChangeListener;
.
.
.
public void addAddressListener(PropertyChangeListener listener){

javaProxy_addPropertyListener("Primary::Address",listener);
}
public void removeAddressListener(PropertyChangeListener

listener){
javaProxy_removePropertyListener("Primary::Address",listener);

}

Events
For the Tutorial$Database class, the programmer-defined event Deleted had the
following code generated.
public void addDeletedListener(EoEventListener listener){

javaProxy_addEventListener("Primary::Deleted",listener);
}
public void removeDeletedListener(EoEventListener listener){

javaProxy_removeEventListener("Primary::Deleted",listener);
}

Polling for Events
When your application is sitting idle, you may want to check the server to see if
there are any events that have occurred. The Gateway provides the method
dispatchEvents() that will dispatch any events that may be enqueued on the
server.

Using dispatchEvents()
The usage of dispatchEvents() is rather simple. It simply needs to be invoked. It
is suggested that this be done in either the applications idle time processing or by
using a timer.

 53

Controlling Event Dispatch
There are several mechanisms for controlling event processing (all available in
the Gateway):
• Event processing can be enabled/disabled using the setEventDispatchEnabled()

method.
• The number of events outstanding can be checked using the

getNumberOfEventsPresent() method.
• You can determine if event processing is enabled by using the

getEventDispatchEnabled() method.

 54

Advanced Usage
The following sections deal with using advanced features of the Gateway. Apart
from invoking services on Proxy objects, you can also deal with the Gateway
directly to invoke services on objects, make use of event processing etc. In fact
you must use the Gateway directly in order to Create and Destroy objects.

In addition to services provided by the Gateway, the Gateway can have its
functionality extended by providing handlers for the server to use. An example
would be providing the server with a Handle to an output window so that server
output messages could be directed to that object.

Direct Gateway Functions
The Java Gateway includes services that allow for direct invocations on the
server. For example, an object on the server can have a method invoked on it
without a proxy.

The following sections summarize the functions provided by the Gateway.

General Purpose Services
The Gateway provides a couple of calls that are invoked on the Gateway itself and
provide general services.

isReady() – Returns a boolean indicating if the Gateway is connected.

lookupObject() – Service to find objects on the server (see above.)

Object Services
Object services are those methods, properties, and relationships implemented by
an object. In General, you use a generated Proxy object to invoke these services
on a server object. However, the Gateway does provide for invoking services of
an object directly, via an API.

General Conventions

To invoke a method, property, or relationship on a server object, you need the
object id, the name of the service, and an array of parameters if parameters are
required for the call. Additionally, you can specify certain flags on the call that
affect how the service is delivered to the object.

 55

The Call Flags

The call flags are used on a number of object service call points and alter the basic
behavior to the call. In general these flags suppress the generation of errors on the
server. The flags may be comibined using a Boolean Or operator (|). If now
special handling is desired then the falg MODEIFIERFG_NONE should be
passed.

MODIFIERFG_NONE No special handling is desired.

MODIFIERFG_EXISTENCE Causes the invocation to be ignored if the target
object does not exist. Normally an error results
if the target object does not exist

MODIFIERFG_KNOWS Causes the invocation to be ignored if the target
object does understand the message. Normally
an error results if the target object does support
the operation

MODIFIERFG_FILTER Causes unknown parameters to be ignored
(Filtered).

The Parameters Array

The Gateway provides a data type called Parameter. See the Java Docs for
information on this data type. When passing parameters on the calls below, an
array of these parameters is what is used. This provides a mechanism whereby
named parameters may be passed to an object.

Specific Services

invoke

Invokes a method on a specified object. The modifier flags are set in the third
parameter, and any parameters are placed in the parameter array.
public Variant invoke(java.lang.String object,

java.lang.String method,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

propertyGet

Invokes the Get property accessor method on a specified object. The modifier
flags are set in the third parameter, and any parameters are placed in the
parameter array.
public Variant propertyGet(java.lang.String object,

java.lang.String property,
int modifierFlags,

 56

Parameter[] paramArgs)
throws RequestFailed

propertySet

Invokes the Assign property accessor method on a specified object. The value to
assign to the property is specified in the first parameter. The modifier flags are set
in the fourth parameter, and any parameters are placed in the parameter array.
public boolean propertySet(Variant newValue,

java.lang.String object,
java.lang.String property,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

propertyKill

Invokes the Kill property accessor method on a specified object. The modifier
flags are set in the third parameter, and any parameters are placed in the
parameter array.
public boolean propertyKill(java.lang.String object,

java.lang.String property,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

propertyDataFn

Invokes the Data property accessor method on a specified object. The modifier
flags are set in the third parameter, and any parameters are placed in the
parameter array.
public Variant propertyDataFn(java.lang.String object,

java.lang.String property,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

propertyGetFn

Similar to the propertyGet() above, this service Invokes the Get property
accessor method on a specified object. The difference is that a default value is
specified if the property is not set. The modifier flags are set in the fourth
parameter, and any parameters are placed in the parameter array.
public Variant propertyGetFn(Variant defaultVal,

java.lang.String object,
java.lang.String property,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

 57

propertyOrderFn

Invokes the Order property accessor method on a specified object. The modifier
flags are set in the fourth parameter, and any parameters are placed in the
parameter array. The first parameter specifies whether the order should go
forward (1) or reverse (-1).
public Variant propertyOrderFn(Variant direction,

java.lang.String object,
java.lang.String property,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

propertyQueryFn

Invokes the Query property accessor method on a specified object. The modifier
flags are set in the third parameter, and any parameters are placed in the
parameter array.
public Variant propertyQueryFn(java.lang.String object,

java.lang.String property,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

propertyNormalizeFn

Invokes the $Normalize property accessor method on a specified object. The
modifier flags are set in the fourth parameter, and any parameters are placed in
the parameter array. The first parameter is the value being normalized.
public Variant propertyNormalizeFn(Variant value,

java.lang.String object,
java.lang.String property,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

propertyValidateFn

Invokes the $Valid property accessor method on a specified object. The modifier
flags are set in the fourth parameter, and any parameters are placed in the
parameter array. The first parameter is the value being validated.
public Variant propertyValidateFn(Variant value,

java.lang.String object,
java.lang.String property,
int modifierFlags,
Parameter[] paramArgs)

throws RequestFailed

 58

Life Cycle Services
The gateway provides three services for creating and destroying objects.

createObject()

Creates an object on the server allowing the programmer to use most of the
functionality available to create an object. Positional and named parameters can
be used, along with property assignments.
public CoreObject createObject(java.lang.String className,

int createFlags,
BTONvList createKeywords,
BTOList params,
BTONvList namedParams,
BTONvList properties)

throws RequestFailed

simpleCreateObject()

Creates an object using a simplified call. Positional parameters only.
public CoreObject simpleCreateObject(java.lang.String className,

int createFlags,
Variant[] params)

throws RequestFailed

destroyObject

Destroys a specified object on the server.

Destroy an Object, given the objects OID as a string:
public void destroyObject(java.lang.String object)

throws RequestFailed

Destroy an Object, given a IntefaceBase derived class:
public void destroyObject(CoreObject object)

throws RequestFailed

Destroy an Object, given a Variant with the object in it:
public void destroyObject(Variant object)

throws RequestFailed

Event Processing
The following services deal with event processing.

 59

dispatchEvents

This method of the Gateway may be used to explicitly dispatch any events that
might have been caused by the actions of other objects. This method essentially
polls the server for any events on the queue and if any are found, they are
dispatched to the client. Typically a Timer could be set up to execute this method
at regular intervals to check for any events that have occurred.

getEventDispatchEnabled

You can determine if event processing is enabled by using the
getEventDispatchEnabled() method. This method returns a Boolean.

setEventDispatchEnabled

Event processing can be enabled/disabled using the setEventDispatchEnabled()
method. This provide a control mechanism to avoid dispatch during certain calls
or while a specific process is being exceuted.

getNumberOfEventsPresent

The number of events outstanding can be checked using the
getNumberOfEventsPresent() method. This may be helpful in the management
of the event dispatching.

watch

This service is used only by proxy object to take out watches on the server object.
It should not be invoked directly.

ignore

This service is used only by proxy object to remove watches taken on the server
object. It should not be invoked directly.

 60

Service Hooks
The Gateway provides a number of service hook points that allow the developer
to customize the gateway’s functionality. In all cases pass a null value to the
service hook will restore the default.

Handler Description

setOutputHandler() Establish the object that will handle Server
output messages

setStatusHandlerFactory()

Establish the Factory used for Status
request message handlers

setClientServicesImplementation() Establishes the ClientServices

setBTOObjectFactory() Establishes the BTOObjectFactory that the
Gateway will uses to create BTO objects

setDebugger() Establishes what debugger should be used
by the gateway (if any)

Object Debugging
The Gateway provides a single method relating to object debugging, called
getDebuggingServices. This service will get the DebuggingServices object
associated with the gateway. For security reasons some implementations of the
gateway may return null for this service.

getDebuggingServices

Invoking this method on the Gateway will return an instance of the
DebuggingServices interface. As mentioned above, some implementations may
return NULL on this call. The Java Docs reference contains more information on
the DebuggingServices interface.

This interface contains services such as ObjectInfo, ObjectXecute, ObjectEval,
among others. These calls are not stack related – in other words, the execution of
the service happens in a stateless manner. State from previous invocations is not
preserved.
Note: These services may not be available on all gateway implementations, and should
only be used for development, never for deployment.

Handlers
Handlers are interfaces that may be hooked to the gateway to handle specific
types of server requests. In general they allow the application to implement
extensions to the Gateway’s behavior.

 61

Client Services
This handler allows for common user interface services from the server. These
services are: messageBox, messageBeep, reportError, reportWarning.

Interface to Implement: ClientServices

Attachment call: setClientServicesImplementation

Output
Common handler for outputting text messages from the server. An example
implementation is the Outputwindow in the EsiObjects development client.

Interface to Implement: OutputHandler

Attachment call: setOutputHandler

Status
Creates a StatusHandler instances for Server wait requested. An example is the
Status windows in the EsiObjects Development client.

Interface to Implement: StatusHandlerFactory

Attachment call: setStatusHandlerFactory

BTO Object Factory
Allows the implementer to override the default BTO Objects that are created by
the gateway. For example this make it possible for the implementer to implement
their own version of BTOTable and have it returned to them by the Gateway.

Interface to Implement: BTOObjectFactory

Attachment call: setBTOObjectFactory

Debugger
Service will handle debugging messages from the server.
Interface to Implement: DebugSink
Attachment call: setDebugger

	Introduction
	Document Convention
	Overview
	What is the Java Gateway?
	Scope of this Document
	The Java Gateway Package
	What Else You Will Need

	Concepts
	Communications Diagram
	The Java Gateway, and Generated Proxies
	The Java Gateway
	Generated Proxies

	Overview of the com.esitechnology.eo Package
	Major Classes Used by the User
	TCPGateway
	Variant
	EoEventListener
	EOEvent
	EOPropertyChangeEvent
	SimpleClientServices
	Subclasses of Interface Base – Generated by EsiObjects.

	BTO Implementations
	List
	NvList
	Table
	Text
	NamedCell

	Exceptions
	NoConversion
	RequestFailed

	Interfaces
	Implementation Classes

	User Interface
	Class Library Properties Page
	Class Properties Page
	Generate Java Proxies Interface

	Basic Operations
	Getting Started
	Installing and locating the EsiObjectsV4.JAR
	Import com.esitechnology.eo.*
	Example:
	Declare the TCPGateway Object
	Example:
	Create an instance of a TCPGateway Object
	Example:

	Connection
	Using openConnection()
	Example:

	Common Exceptions and Their Causes
	UnknownHostException
	RequestFailed
	IOException

	Disconnection
	Example
	Effects of Disconnection

	Using lookupObject()
	Locating System Variables
	Locating Class Objects
	Locating an O% Name
	Examples:

	Working with Variants
	What is a Variant
	Creating a Variant
	Create without Data
	Create with Data
	Declaring a Variant
	Example:

	Used in a Argument

	Get Data from a Variant
	Examples:

	Set Data into a Variant
	Clearing & Deleting Variants
	Objects in Variants

	Creating and Destroying Objects (Lifespan services)
	simpleCreateObject()
	Examples:

	createObject()
	Examples:

	destroyObject()
	Examples:

	Proxy Usage
	Concepts
	Generation (Java)
	Parentage & Inheritance

	Structure
	Methods
	Properties & Relationships
	Examples
	Future plans

	Events
	addServiceNameListener()
	removeServiceNameListener()
	Example

	Comparing
	Example Class
	Limitations
	Future

	Programming with Generic Proxies
	Background
	Platform Issues
	Proxy Modes
	
	TCPGateway Constant

	Java Gateway
	PersonalJava Gateway

	Classes
	GenericProxy
	Methods

	ProxyHelper
	Methods:

	Examples:
	Examples Using Proxy
	Example Using a Generic Proxy
	Example Using a ProxyHelper

	Bulk Data Transfer mechanisms
	Concepts
	Types
	Streams
	Transfer Dynamics
	Common Conventions
	Index Basis
	Effects of Dimension
	Appending Items
	Common Error Handing

	java.io Object Support
	Common Error Methods

	Bulk Transfer Objects (BTO)
	BTOList
	Overview
	Example:

	BTONvList
	Overview
	Example

	BTOTable
	Overview
	Example

	BTOText
	Overview
	Example

	Streams

	Event Processing
	Overview
	Process description
	Create a Callback method
	Create a Listener
	Example

	Add Listener
	Example

	Handle Event
	Remove Listener
	Example

	What can be watched
	The Event Queue
	Possible Complications

	What Hooks Are Generated
	Properties and Relationships
	Events

	Polling for Events
	Using dispatchEvents()

	Controlling Event Dispatch

	Advanced Usage
	Direct Gateway Functions
	General Purpose Services
	Object Services
	General Conventions
	The Call Flags
	The Parameters Array
	Specific Services
	invoke
	propertyGet
	propertySet
	propertyKill
	propertyDataFn
	propertyGetFn
	propertyOrderFn
	propertyQueryFn
	propertyNormalizeFn
	propertyValidateFn

	Life Cycle Services
	createObject()
	simpleCreateObject()
	destroyObject

	Event Processing
	dispatchEvents
	getEventDispatchEnabled
	setEventDispatchEnabled
	getNumberOfEventsPresent
	watch
	ignore

	Service Hooks
	Object Debugging
	getDebuggingServices

	Handlers
	Client Services
	Output
	Status
	BTO Object Factory
	Debugger

