

Language Reference Guide

EsiObjects V4.2

(c) Copyright 1994 - 2004, ESI Technology Corp, Bolton MA

This document contains the intellectual property of its copyright holder(s) and is made
available under a license. If you are not familiar with the terms of the license, please refer
to the license.txt file that is a part of the distribution kit.

Information in this document is subject to change without notice. Companies, names and
data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of ESI Technology
Corporation.

Trademarks

EsiObjects is a registered trademark of ESI Technology Corporation.

GT.M is a registered trademark of Sanchez Inc.

DSM, Cache, MSM are registered trademarks of InterSystems Corporation.

Microsoft, Visual Basic, Windows and Windows NT are registered trademarks of
Microsoft Corporation.

Table of Contents
LANGUAGE REFERENCE GUIDE.. 1

ESIOBJECTS V4.1... 1

TABLE OF CONTENTS ... 3

INTRODUCTION ...I

DOCUMENT CONVENTIONS ...I

LANGUAGE CONCEPTS... 1
INTERFACES AND SERVICES .. 1
METHOD AND PROPERTIES .. 2

Code Body Structure .. 2
Message Syntax .. 25
Callback Syntax.. 28

USING EXPRESSIONS ... 35
Expressions .. 35

VARIABLES ... 37
Syntax of a Variable Name... 37
Variable Scoping.. 40
Variable Inheritance .. 42

COMMANDS.. 52
BREAK .. 53
CLOSE ... 54
CREATE .. 57
DESTROY.. 62
DO COMMAND - INTRODUCTION .. 64

DO Command - Parameters... 69
DO Command - Argumentless.. 69
DO Command - Callbacks ... 70

ELSE .. 73
EVENT... 75
FOR .. 77
GOTO... 81
HALT ... 83
HANG .. 84
IF .. 86
IGNORE... 88
JOB... 90
KILL... 92
LOCK ... 95
MERGE.. 98
NEW... 100
OPEN ... 102
PRESERVE.. 105
QUIT .. 107
READ ... 110
SET... 113
USE .. 118
WATCH ... 121

WRITE ... 125
XECUTE .. 128
ZAPPLY... 130

SPECIAL VARIABLES... 132
$CALLER .. 133
$CALLFRAME.. 134
$CHILDCNT.. 135
$CHILDREN.. 136
$CLASS ... 137
$DEVICE ... 138
$DOMAIN.. 140
$ECODE... 141
$ENVIRONMENT... 143
$ESTACK .. 144
$ETRAP ... 145
$HOROLOG .. 146
$INTERFACE .. 147
$IO.. 148
$JOB... 149
$KEY.. 150
$LASTCHILDID.. 151
EXAMPLES $LIBRARY .. 152
$LOCALOBJECTS.. 153
$MAXNUM ... 154
$MEMORYOBJECTS ... 155
$MAXSTR ... 156
$MESSAGE ... 157
$MINNUM... 158
$PARAMETERS.. 159
$PARAMETERLIST ... 160
$PEERS.. 161
$POINTER ... 162
$POOL ... 163
$PRINCIPAL ... 164
$PRIVILEGED .. 165
$QUIT .. 166
$REFERENCE ... 167
$RETURN.. 168
$ROOTOBJECTS .. 169
$SELF... 170
$SHAREDOBJECTS ... 171
$STACK... 172
$STORAGE.. 173
$SUPER ... 174
$SYSPOOL .. 175
$SYSTEM .. 176
$TEST .. 177
$X... 180
$Y... 181
$ZVIRDATA.. 182

FUNCTIONS... 183
$ASCII ... 184
$ASNVECTOR .. 187
$ASSOCIATE.. 189

$CALLBACK .. 190
$CHAR... 192
$CLASSOID .. 194
$COPY ... 195
$DATA... 196
$DELEGATE ... 199
$EXIST... 200
$EXTCALLBACK... 202
$EXTRACT.. 204
$FIND... 209
$FNUMBER... 211
$FREECB... 215
$GET .. 216
$GETENTRYREF.. 218
$INFO... 219
$ISA ... 221
$JUSTIFY .. 222
$LENGTH.. 225
$LIBRARY .. 228
$LOOKUP.. 229
$NAME .. 231
$NORMALIZE .. 233
$OIDPTR ... 235
$ORDER .. 236
$OSR .. 239
$PIECE... 240
$PROTECT .. 244
$PTROID ... 245
$PTRSTR ... 246
$QLENGTH ... 247
$QSUBSCRIPT.. 248
$QUERY .. 249
$QUOTE .. 252
$RANDOM .. 253
$REVERSE .. 254
$SELECT ... 256
$STACK... 259
$TEXT.. 261
$TRANSLATE... 263
$VALID ... 266
$WALK.. 267
$WATCHDETECT .. 269
$ZLENGTH.. 271
$ZPIECE .. 273

OPERATORS ... 275
ARITHMETIC OPERATORS.. 276

Binary ADD (+) ... 277
Binary DIVIDE (/).. 278
Binary EXPONENTIATION (**) ... 278
Binary INTEGER DIVIDE (\) .. 280
Unary MINUS (–)... 282
Binary MODULO (#) ... 284
Binary MULTIPLY (*) ... 286
Unary PLUS (+)... 287
Binary SUBTRACT (-).. 288

RELATIONAL OPERATORS ... 289
Binary CONTAINS ([).. 290
Binary EQUALS... 292
Binary FOLLOWS (])... 294
Binary LESS THAN (<).. 296
Binary GREATER THAN (>) ... 298
Binary PATTERN MATCH (?)... 300
Binary SORTS AFTER (]])... 303

LOGICAL OPERATORS.. 306
Binary AND (&) ... 307
Binary INCLUSIVE OR (!)... 309
Unary NOT (') .. 311

STRING OPERATOR.. 313
Binary CONCATENATE .. 314

INDIRECTION (@) OPERATOR.. 315
Argument Indirection ... 316
Name Indirection.. 316
Subscript Indirection.. 317
Pattern Indirection... 318
Class Element Indirection .. 318
Parameter List Indirection ... 319

INDEX ... 320

 i

Introduction
This guide contains some language concepts for the EsiObjects programming system. It
contains the following:

• Language Concepts section that covers all functionality supported within a method
or property code body.

• All EsiObjects commands, special variables, functions and operators.

Document Conventions
EsiObjects documentation uses the following typographical conventions:

For more information on
this subject please refer to
the BREAK Command
section of this guide.

Underlined text is used to highlight a reference to
another section of this guide or another guide.

Property In text, italicized words indicate defined terms that
are usually used for the first time. Words are also
italicized for emphasis.

CREATE Words in bold and capitalized are EsiObjects
commands or keywords.

Set T%Test=I%Pat.Name This font is used for code examples.

 Language Concepts 1

Language Concepts
The EsiObjects language is based upon the ANSI standard MUMPS (M) language. The
M language is a powerful string handling language that, by definition, implements a
hierarchical, multi-dimensional array construct whose instances may exist persistently or
non-persistently.

EsiObjects uses the M language and embedded array specification as an enabling
technology. The object model implemented using M code and array structures is based on
the Smalltalk object model. This model is class based. Classes contain the definitional
information needed to instantiate an object. Classes contain:

• Interfaces that contain class services

• Variable definitions

Interfaces and Services
Interfaces provide a way of partitioning a class’s services. Interfaces offer the
programmer a way to logically separate the services of a class. Each interface can
potentially contain up to four service types. They are:

• Relationships

• Events

• Methods

• Properties
A relationship is a special type of service that is covered in detail in the Programmer’s
Reference Guide. Relationships are created using existing classes and code;
consequently, they are not of interest here.

The EsiObjects implementation added the concept of events to the M language. It is a
mechanism that permits the programmer to broadcast an event to objects that have taken
out a watch on that event. The mechanism uses another EsiObjects feature added to the M
language, the callback. The callback mechanism uses methods to hold the code to be
executed.

Methods are code bodies that give an object its behavior. Methods are stored at the class
level. Every instance of a class has access to a method that exists within an interface of
the class. Method code bodies contain lines of code just like M routines. However,
method code bodies contain other features not found in a normal M routine such as
compiler directives and input specifications.

 Language Concepts 2

Properties within EsiObjects are generally used to expose the state of an object. Each
EsiObjects property consists of a number of specialized methods called accessors.
Accessors are:

• Assign

• Create

• Kill

• Value

• $Data

• $Get

• $Normalize

• $Order

• $Query

• $Valid

Each accessor represents a code body that is mapped to an EsiObjects language element.
For example, if code exists for the Kill accessor, it will be invoked whenever the property
is used within an object message of the Kill argument.

The method and property accessor support the same structure and features.

Method and Properties
Code Body Structure
A method is callable code body associated with a class. This code body can be invoked
on any object instantiated from that class. A message is a request that can be sent to an
object that may invoke a method to be performed.

An accessor is a special purpose method that is attached to a property and controls access
to the property. An accessor is an action that is associated with a property.

Illustrated below is the general structure of a method code body.

A method may begin with an Options Specification Block, which defines the options
that define the method. That is, what type it is, whether it is inheritable, what values is
passes back, etc. If the Options block is defined, it must precede the Input Specification.

The Input Specification Block, if present, declares parameters and their internal
mappings.

The combination of the Options Specification Block and the Input Specification Block
form a full specification of the method or property. Combined, these two blocks can be
used to generate a textual specification of the method or property.

 Language Concepts 3

The remainder of the method body consists of the Logic Block consisting of one or more
lines of EsiObjects code and compiler directives.

Code Body Components

All EsiObjects properties have accessor methods. Note that these are standard methods,
and they share the method structure described in this section.

Options Specification Block

An EsiObjects Options Specification lets you define a specification of the method or
property accessor code body such that:
1. A total textual representation can be produced outside of the EsiObjects environment
2. And, strong typing can be enforced.

It must be placed at the beginning of the code body and before the Input Specification if
it exists. Specifying options actually has an affect on the compiler. Consequently care
must be taken to insure accuracy. The options are also used by various code generation
add-ons (e.g. The Java Proxies builder).

The following is the syntax for an options specification:
optionspec ::={ws} OPTIONS:{ws}({ws} L optionitem) {comment text} eol

where:

 Language Concepts 4

The following is an example of an Option Specification that contains two option items
and a comment:

Options:(Type=Base$Set,Method) ; Return type is Base$Set and it’s a Method

White space in an Options Specification can contain tab characters, spaces, end-of-line
characters, and comment text (preceded by a semicolon and terminated by an end-of-line
character). White space allows option specifications to extend beyond a single line. For
example:

Options: (

Type=Base$Set, ; Return type is Base$Set

Method ; This code body is a Method

)

In the previous example, each option item is specified on a separate line and its purpose
is documented by a comment. This is the preferred method of coding option
specifications because it is easier to read and understand.

The following table outlines the various option items currently available for EsiObjects.

Option Items Description

Abstract Abstract indicates that the service is a placeholder and
must be implemented by a subclass.

AnyKeyword AnyKeyword indicates the method or property will accept
any keyword parameter as being valid.

Class Class flags the code body as being a part of the Factory
interface. It is basically a class level method.

Constant Constant indicates that the service returns a constant
value. The parser may resolve this constant during the
compile.

ws is optional white space
 can be one of the following:
 SP
 TAB
 Eol
 ; {comment text} eol
OPTIONS is the Options: which is not case sensitive
optionitem is a list of option items enclosed in

parentheses (or curly brackets) and separated
by commas

comment text are optional comments (comments can be
preceded by a semicolon for clarity, but it is
not required)

 Language Concepts 5

Experimental Flags the method or properties as being Experimental.

Id = Identifier Associates an identifier to this service. This identifier may
by presented to the user during errors or debugging.

Inheritable Inheritable means the method can be seen by subclasses.

Method or

Property_Set or

Property_Kill or

Property_Get or

Property_Create or

Property_DataFn or

Property_GetFn or

Property_OrderFn or

Property_QueryFn or

Property_NormalizeFn or

Property_ValidateFn

Identifies the type of the code body. Only those listed are
valid and must be spelled properly.

Name = Full Name Name of the code body (Method or Property).

Platform = Platform
Expected

Where Platform Expected can be DSM, MSM, Cache,
GT.M or All. It is strictly a documentation flag at this
point.

Private or Public Private identifies the method as private to the class. It is
not a part of the classes’ protocol.

Public means the method is exposed as a part of the classes
protocol.

Privileged Privileged means the method has privileges to execute
those language elements that required privileges such as
$OIDPTR and $PTROID.

Static This keyword indicates that the service is called in a static
manner (i.e. without an instance). When this option is
present references to instance variables is illegal. A Parser
code PARSE_STATIC_NOINVAR will result.

Throws = Exception Identifies the service as throwing the noted exception.
Each exception that is thrown by the service should appear

 Language Concepts 6

in the options block. The exception must be a subclass of
the class ESI$Exception. This option is available from
V4.1 and higher.

Type = Return Type or
Void

Defines the return type of the method or property if it is
applicable. If you use the Type= format, the compiler will
insure that the value returned from the method is of the
type specified. For example:

Options:(Type=HIS$Patient)

will insure that the return value is an object of the
HIS$Patient class.

Alternatively, you may specify Void, there will be no
return type returned.

UsesIO UsesIO flags the method or property body as using direct
IO devices that are specific to the M implementation.

Virtual Virtual flags the method or property as being a part of a
virtual class. It cannot access instance variables since
virtual objects do not have state.

 Language Concepts 7

Input Specification Block

An EsiObjects Input Specification must be placed between the Options Specification
Block, if it exists, and the Logic Block. It defines the method's input parameters and their
internal mappings.

The following is the syntax for an Input Specification:
inputspec ::={ws} INPUT:{ws}({ws} L inputitem) {comment text} eol

where:
ws is optional white space
 can be one of the following:
 SP
 TAB
 Eol
 ; {comment text} eol
INPUT is the Input: keyword, which is not case

sensitive
inputitem is a list of input items enclosed in

parentheses
comment text are optional comments (comments can be

preceded by a semicolon for clarity, but it is
not required)

The following is the syntax of an input item:
inputitem ::= {{paramopt} keyword:} {pers} {ws}
 {paramopt}glvn pers
 {paramopt}glvn=expr

An input item can be null, but can contain up to three parts. The first argument specifies a
keyword if the parameter can be passed by keyword. The second argument specifies a
variable mapping and possibly an expression to calculate the default value. Either of
these arguments can specify a parameter option. The third argument of an input item
consists of ignored white space and comment lines.

The following is an example of an Input Specification that contains two input items and a
comment:

Input:(P%Dir,P%Index) ; direction and index name

 Language Concepts 8

White space in an Input Specification can contain tab characters, spaces, end-of-line
characters, and comment text (preceded by a semicolon and terminated by an end-of-line
character). White space allows the Input Specification to extend beyond a single line, for
example:

Input: (

P%FieldId, ; Prevalidated field number (ID)

P%Value ; Value to be validated.

)

In the previous example, each variable is specified on a separate line and its purpose is
documented by a comment. This is the preferred method of coding input specifications
because it is easier to read and understand.

The following sections describe the valid parameter options (paramopt) associated with
the keyword (keyword:).

Parameter Options

Required or Optional

The Required parameter option is used to force the system to generate an error if a value
is not passed in. If it is not specified or if Optional is specified, then the value need not
be passed in and an error will not be generated. The default is Optional.

The following example contains an Input Specification with two mappings.

Input:((Required)Field:P%Field,Value:P%Value="")

In the previous example, the first parameter is Required, is identified by the keyword
Field, and maps into the symbol P%Field. The second parameter is Optional, is
identified by the keyword Value, and it maps into the symbol P%Value. If the second
parameter is not specified, it receives the default value of NULL ("").

In, Out or InOut

The In, Out and InOut parameter options give you control over the destination of
parameter values.

If neither option is specified (or the In option only), the compiler will default to the In
option. This means a value may only be passed into the specified variable. It will not be
passed back to the caller.

If the Out parameter option is specified by itself, this means that a value cannot be passed
into the specified variable. The variable and value associated with the Out option will be
passed back through the calling contexts and be made available to those contexts. This
mechanism is classically used to return special conditions that occurred such as an error
that terminated processing. It is a replacement for the traditional M call-by-reference
syntax that violates encapsulation.

 Language Concepts 9

If the In and Out parameters are specified simultaneously (In, Out or InOut), this means
that a value can be passed in and bound to the specified variable. Additionally, it will be
passed back to the calling contexts.

The method that uses the In, Out and InOut parameters must declare them.

For example:

Input: (

(In)P%Name,

(InOut)P%ErrStat,

(Out)P%ErrMsg

)

The first parameter declares the parameter variable P%Name as an In only parameter.
This means that a value may only be passed into the current context. It cannot be passed
out.

The second parameter is declared as both In or Out (could have been specified as In,Out).
This means a value may be passed in and it will be passed back by the system once the
current execution is popped from the stack.

The third parameter is declared as strictly an Out parameter. This means it cannot accept
a value passed in and can only pass a value back to its caller.

On the caller’s side, the parameters must specify how the values are being passed. This
needs to match the way the Input Specification is declared. An example of the calling
syntax for the Input Specification above follows:

Do T%Patient.Validate(“Doe, John D”,[InOut]T%ErrStat,[Out]T%ErrMsg).

EsiObjects has replaced the pass-by-value and pass-by-reference mechanism of standard
MUMPS with the In/Out mechanism because it does not break encapsulation. It uses the
messaging mechanism to pass back values to a calling context in a safe way. The call-by-
reference mechanism of standard MUMPS breaks encapsulation by letting one object
directly access the state of another object.

Alias

The Alias parameter option lets you use different keywords when mapping parameter
values. This option is useful when two or more callers use different keywords.

 Language Concepts 10

The following example illustrates how a typical Input Specification would look using the
Alias option.

Input: (

PatientName:P%PatNam,

(Alias)Name:P%PatNam,

DateOfBirth:P%DOB

)

Parameters can be passed in by keyword or by the traditional M approach - by position.
Passing by keyword lets the caller to specify the parameters in any order as long as the
keyword is specified. The following illustrates how passing values in by keyword would
work when two different objects call the Lookup method.

Object 1:

Do T%PatObj.Lookup(DateOfBirth:”10-Jan-42”,PatientName:”Doe, John D”)

Object 2:

Do T%PatObj.Lookup(Name:”Doe, John D”, DateOfBirth:”10-Jan-42”,)

Notice that Object 1 uses the PatientName keyword and the order is different from the
Input Specification. Because keywords are used, the order does not matter.

Object 2 passes the patient’s name in using the Name keyword specified by the Alias
parameter option.

Use of the Alias parameter option in the Input Specification does not take up a position.
That is, an Object 3 could call the Lookup method using positional parameters and the
values would map properly. For example:

Do T%PatObj.Lookup(”Doe, John D”,”10-Jan-42”,)

Type=

The Type parameter option lets you restrict a parameter value to an OID of an object of a
particular Library$Class. For example:

Input: (

(Type=HIS$Patient)PatientName:P%PatNam,

(Alias)Name:P%PatNam,

(Type=Base$TimeStamp)DateOfBirth:P%DOB

)

By specifying the Type=HIS$Patient on the first parameter, the compiler will generate
the proper runtime code to insure that the value being passed in is an instance OID of the
Patient class in the HIS library. Additionally, the Type=Base$TimeStamp will force the

 Language Concepts 11

runtime module to make sure the values is an OID of the TimeStamp Call in the Base
library.

The Type parameter option helps eliminate errors due to bad parameter passing.

System

The System keyword flags the parameter a being system generated. It is required and
should never be deleted. Additionally, the System keyword should be attached to those
system-generated parameters. Specifically, the first parameter on the following property
accessors should be flagged as System.
• Assign
• $Get
• Create
• $Order
• $Normalize
• $Valid

Parameter Variable Assignment

The mapping of input parameters to their associated symbols can involve complex
interactions.

The list of input parameters can consist of positional parameters, keyword parameters,
and void parameters. All the parameters in an actual method parameter list are assumed
to be positional until the first keyword parameter is encountered. After the first keyword
is encountered, all the parameters are assumed to be keyword.

The following is a list of the input item keyword syntaxes:

keyword: A keyword is declared, but no

mapping is associated with it. This is
known as a void mapping.

keyword:variable A keyword is mapped into a
variable.

keyword:var=value A keyword maps into a variable. A
certain value is used as the default if
no value is passed as a parameter.

variable A positional parameter maps into the
specified variable.

variable... The variable name is used as the
root of an array. All remaining
parameters appear as array nodes,
and the base of the array contains
the address of the highest-
numbered parameter to receive a
value.

 Language Concepts 12

variable=value A positional parameter maps into the
specified variable. A default value is
specified in case the parameter is
not passed.

Example 1: Simple Parameter Passing

This example shows the simplest form of positional parameter passing. Three variables
P%Name, P%Tag, and P%ParamList are declared in the Input Specification. The three
values (1, 2, and 3) are passed positionally in the actual method parameter list. Therefore,
inside the method body P%Name is equal to 1, P%Tag is equal to 2, and P%ParamList is
equal to 3.

 Language Concepts 13

Input Specification

Input:(P%Name,P%Tag,P%ParamList)

Method Call

DO Object.Method(1,2,3)

Internal Mappings

P%Name=1

P%Tag=2

P%ParamList=3

Example 2: Array Parameter Passing

This example illustrates the use of an array parameter in the Input Specification. Three
periods are used to specify that all remaining parameters should be included as array
nodes of P%ParamList.

The first two parameters are passed positionally into the variables P%Name and P%Tag.
The third input item in the input specification is the array P%ParamList. Because there
are a total of 6 parameters, parameters 3 through 6 appear as array nodes P%ParamList(1)
through P%ParamList(4), and the root node C contains the total number of array nodes.

Input Specification

Input:(P%Name,P%Tag,P%ParamList...)

Method Call

DO Object.Method(1,2,3,4,5,6)

Internal Mappings

P%Name=1

P%Tag=2

P%ParamList=4 P%ParamList(1)=3

P%ParamList(2)=4

P%ParamList(3)=5

P%ParamList(4)=6

 Language Concepts 14

Example 3: Using Keywords on Parameters

In this example, the keyword WindowSize is declared as the sixth parameter, which is to
be mapped into the variable P%Height. P%ParamList is declared as an array of all the
remaining parameters. Therefore, when the keyword WindowSize is specified, the
associated value appears in two places:

• In the array node P%ParamList(4) because it is the sixth parameter

• In the variable P%Height because it uses the keyword WindowSize

Input Specification

Input:(P%Name,P%Tag,P%ParamList...,,,WindowSize:P%Height)

Method Call

DO Object.Method("Text",WindowSize:12)

Internal Mappings

P%Name="Text"

P%ParamList=4

P%ParamList(4)=12

P%Height=12

Example 4: Using Keyword and Positional Parameters

In this example, the Input Specification declares void mappings for the keywords Key
and Type, and maps WindowSize into P%Height. These three keywords are declared as
the fourth through sixth parameters, respectively. Also, the keyword W maps to the array
P%ParamList, which is an array containing all parameters after the third. The method
actual list passes values into the keywords Key, Type, and WindowSize. They map
positionally into the array P%ParamList and WindowSize maps explicitly into the
variable P%Height.

Input Specification

Input:(P%Name,P%Tag,W:P%ParamList...,Key:,Type:,WindowSize:P%Height)

Method Call

DO Object.Method(Key:1,Type:10,WindowSize:15)

Internal Mappings

P%ParamList=4 P%ParamList(2)=1

P%ParamList(3)=10

P%ParamList(4)=15

P%Height=15

 Language Concepts 15

Example 5: Defaulting Parameter Values

In this example, the Input Specification maps keyword Key into variable P%SVal with a
default value of Text and maps keyword Type into the variable P%Height with a default
value of 10. Key is passed the string EsiObjects, which is passed to P%SVal. P%Height
gets the default value 10 because a value was not passed in by the method call.

Input Specification

Input:(Key:P%SVal="Text",Type:P%Height=10)

Method Call

DO Object.Method(Key:"EsiObjects")

Internal Mappings

P%Height=10

P%SVal="EsiObjects"

Example 6: Positional and Keyword Parameters

In this example, two positional parameters P%Name and P%Tag are declared, and
P%Tag defaults to P%Name. A single value (10) is passed into the first parameter and it
maps into P%Name. P%Tag is also 10 by default because it refers to P%Name.

Input Specification

Input:(P%Name,P%Tag=P%Name)

Method Call

DO Object.Method(10)

Internal Mappings

P%Name=10

P%Tag=10

Example 7: Unspecified Parameters

In this example, two positional parameters P%Name and P%Tag are declared and
P%Name defaults to P%Tag. A single value (10) is passed into the first parameter and it
maps into P%Name. P%Tag is not defined.

Input Specification

Input:(P%Name=P%Tag,P%Tag)

Method Call

 Language Concepts 16

DO Object.Method(10)

Internal Mappings

P%Name=10

Example 8: More Unspecified Parameters

In this example, two positional parameters P%Name and P%Tag are declared and
P%Name defaults to P%Tag. A single value (10) is passed into the first parameter and it
maps into P%Name. Because a value is passed into P%Name, its default is not used.
P%Tag is not defined.

Input Specification

Input:(P%Name=P%Tag,P%Tag)

Method Call

DO Object.Method(10)

Internal Mappings

P%Name=10

Example 9: Positional and Keyword Errors

In this example, three positional parameters P%SVal, P%Name, and P%Tag are declared.
P%Name defaults to P%Tag. A single value (10) is passed into the first parameter, so it
maps into P%SVal. An error occurs in this example when an attempt is made to assign a
default value to P%Name. Its default value is P%Tag, but P%Tag is undefined. It is less
misleading if the Input Specification had declared P%Name as a Required parameter.

Input Specification

Input:(P%SVal,P%Name=P%Tag,P%Tag)

Method Call

DO Object.Method(10)

Internal Mappings

P%SVal=10

ERROR: P%Tag is undefined!

Example 10: Positional and Keyword Mapping

In this example, two keyword parameters Key and Type are specified. Key maps into
P%SVal, which defaults to P%Height and Type maps into P%Height. The value 10 is

 Language Concepts 17

passed to Type, so P%Height becomes 10. P%SVal also gets this value because its
default is P%Height.

Input Specification

Input:

(

(Required)Key:P%SVal=P%Height,

Type:P%SVal

)

Method Call

DO Object.Method(Type:10)

Internal Mappings

P%Height=10

P%SVal=10

Logic Block

Four Types of Lines

The syntax described in this section defines the structure of a line of EsiObjects code
found in the Logic Block. The following is the syntax of a line:

line ::= Formalline Eol
 Codeline
 Directive
 Blankline

The lines in an EsiObjects method fall into the following categories:

• Formal lines A formal line (formalline) begins with a label, followed by a formal
parameter list (a list of local variable names in parentheses), a line-start indicator
(space or tab), and the body of the line.

 formalline ::= label formallist ls linebody

• Code lines A code line (codeline) optionally can begin with a label that is
followed by a line-start indicator (a space or a tab), and the body of a code line.

codeline ::= { label } ls { li ... } linebody

• The body of a code line can begin optionally with level indicators, which indicate
the dot-indent level in an argumentless DO block. Level indicators consist of
periods and any number of optional spaces. The total number of periods indicates
the line's actual level.

 Language Concepts 18

• Preprocessor directives A preprocessor directive (directive) alters the
compilation of the method. For more information about preprocessor directives,
see the Preprocessor Directives section of this guide.

• Blank lines These lines contain no text and are ignored.
The line body (linebody) consists of one or more commands, separated by one or more
spaces. The last command on the line never requires spaces after it. The following is the
syntax of a line body:
linebody ::= commands {cs comment} Eol
 Comment

The following is the syntax for a comment and command space:
comment ::= ; {;} { commenttext }

cs ::= SP ...

A semicolon can occur in the command position, which indicates that the remainder of
the line is a comment text. The compiler ignores comments. Comments preceded by two
contiguous semicolons are never stripped by the compiler and can be accessed with the
$TEXT function (subject to certain restrictions). For more information, see the
description of the $TEXT function.

Command space cs consist of one or more spaces.

The commands (commands) on the line consist of one or more commands and their
arguments, separated by at least one space. The following is the syntax of a command:
commands ::= command {SP command ...}

As defined by the previous syntax, a command consists of a command and its argument,
or consists of an argumentless command followed by a single space. Therefore, there
must be at least two spaces between an argumentless command such as ELSE and the
next command on the line. However, if the last command on the line is argumentless (as
in the case of QUIT), it does not require any spaces before the end of the line.

Line Syntax Examples

The following example contains a formal line and four code lines.

GETITEM(N,OBJECT) ; Return element N of OBJECT

IF $GET(OBJECT)="" DO

. SET OBJECT=$SELF.GetBaseItem ; Create object

. DO OBJECT.LoadElements

QUIT $GET(OBJECT.Elements(N))

Note the following about the previous example:

• The first line is a formal line, which contains a starting label, a formal parameter
list with two parameters, and a comment. The line-start indicator is a space.

• The last four lines begin with a tab, followed immediately by the line body. Tabs
are stored internally as spaces.

 Language Concepts 19

• The third and fourth lines have a level indicator (a period), indicating that both
lines are at level 1.

The following example contains four code lines:

; Calculate return value and exit...

IF '$DATA(T%Result) SET $RETURN=11 ; Descendant+value

ELSE SET $RETURN=T%Result ; Two spaces between ELSE and SET

QUIT

 Language Concepts 20

Note the following about the previous example:

• The first line is a comment line (everything after the semicolon is ignored).

• The second line contains IF and SET commands with arguments and ends with a
comment.

• The third line begins with an argumentless command, ELSE, which is separated
by two spaces from the SET command.

• The final line has an argumentless command, QUIT, which does not require any
spaces before the end of the line.

Labels and Label Keywords - Introduction

Formal lines and code lines can have labels as shown by the following syntax:
codeline ::= { label } ls { li ... } linebody

The following example shows a line containing a label, followed by a line-start indicator
and a comment:

DISPLAY ; Display the entries in the object's element array.

A formal line begins with a label, followed by a formal parameter list, a line start
indicator (space or tab), and the body of the line. The syntax is as follows:
formalline ::= label formallist ls linebody

A formal parameter list is a list of local variable names enclosed in parentheses.
Sometimes there are no local names in the parameter list (for example, in the case of an
extrinsic variable). The syntax for a formal parameter list is as follows:
formallist ::= ({L localname})

The following example shows a line containing a label and a formal parameter list,
followed by a line-start indicator and a comment.

GETITEM(N,OBJECT) ; Return element N of OBJECT

Labels in EsiObjects

An EsiObjects label consists of a label name, which optionally can be preceded by a list
of label keywords, enclosed in parentheses and separated by commas. Label use
declaration (keywords) is provided in EsiObjects to support:

• Callbacks

• Event processing

• Label inheritance
If no label keywords are specified, the default keywords Local and Private are used. The
syntax of a label in EsiObjects is as follows:
label ::= {(L labelkeyword)} labelname

 Language Concepts 21

Label Keywords

Keyword Description
Local Local to this code body (not inherited).
Common Inheritable by implementations of this method found

at ancestor and descendant classes.
Private Cannot be seen from outside this method.
Public Can be found by the external lookup mechanism.

Another method for this object could define the label
as a callback entry point with the $EXTCALLBACK
function.

Handler Callbacks can be made to this label from outside the
context of any object when they come in with a
jacketed nonobject context. The $ASSOCIATE
function must be used to associate to an object
before instance variables can be accessed. Also,
you can use $SELF.

Open Label can be found and advertised to external
routines. It is not jacketed like handler methods. The
label can reveal some piece of functionality (for
example, generate a random legal file name), but
cannot associate to an object. This keyword is not
recommended for general use.

Label Inheritance

EsiObjects supports label inheritance, which is indicated by preceding the line label with
an asterisk (*). The following is an example of label inheritance:

DO *TEST

The previous example accesses the label TEST that is implemented within the same
method at the superclass. TEST must be a public label for this to work.

Introduction to Preprocessor Directives

Preprocessor directives are used in EsiObjects to affect the compilation of a method. All
directives are positional and are in effect once the directive is compiled. See the table
below for a list of the preprocessor directives that are supported by EsiObjects.
Directive Description
#define symbol Defines a symbol.
#undef symbol Kills a symbol.
#ifdef symbol Compiles the code lines that follow

the directive if the symbol is defined.
#ifndef symbol Compiles the code lines that follow

the directive if the symbol is not
defined.

#endif Ends the conditional block.
#m Compiles the block as standard M

code.

 Language Concepts 22

#endm Ends M compilation.
#ifver version Will compile the code if the current

implementation version is greater
than or equal to the requested
version number. The requested
number is the full number such as
4.0.2.8.

#ifnver version Will compile the code if the current
implementation version is less than
the requested number. The
requested number is the full number
such as 4.0.2.8.

#static variable This directive has two meanings
dependent upon the type of variable.
For Instance and Class Variables:
If the specified variable is declared
as dynamically initialized, the #static
directive can be used in the code
body to prevent the check to see if it
is defined every time it is referenced.
When using this directive, the
variable must be looked up at least
once before the directive is in effect.
If it is not, referencing the variable
will result in an undefined error.
For Name Pool Variables: Name
Pools are objects that contain N%
arrays. They can be linked into
hierarchical structures so that
variable nodes in super objects will
be inherited. For performance
purposes, if the #static directive is
used on a Name Pool variable, the
inheritance check will not be made.

#const name value Directs the compiler to create a
variable CN%name=value. That is,
the value is bound to a CN%name
variable. This variable is then
available within the context of the
methods execution context.

The #ifdef and #endif directives are used to compile a section of code only if a compiler
symbol has been defined. Some directives are bounded, which means that the affect of
the directive ends when some form of the #end directive is encountered (for example,
#ifndef). Other directives affect the compilation of all lines that follow the directive in
the method (for example, #define).

The following directives are specific to the underlying M platform.

• #ifdef directive

• #static directive

 Language Concepts 23

• #const directive

Example #ifdef directive

In the following example, the first line contains the #ifdef directive. The #ifdef directive
specifies that the lines that follow are compiled only if the symbol MSM was defined
using #define. The next two code lines contain the OPEN and USE commands and the
#endif directive. The #endif directive ends the section that is compiled conditionally.

#ifdef MSM

OPEN S1:(T%File:"W")

USE S1

#endif

By default, EsiObjects supports the following symbols for the various MUMPS systems:

DSM Digital Standard MUMPS system.

MSM Micronetics Standard MUMPS system.

DTM DataTree MUMPS system.

GTM Greystone Technology MUMPS system.

CACHE InterSystems Cache system.

The #static directive guarantees that a variable reference is static, instead of sparse. A
sparse variable reference runs slower because it must determine whether the variable
exists before returning its value, and inherit and/or calculate the value if it does not. A
static variable can be compiled down to a direct variable reference.

Example #static directive

The following examples illustrate the #static directive for Instance (I%) and Class (C%)
variables as well as Name Pool (N%) variables.

Instance and Class Variables

SET I%Height=100

In the previous example, assume the I%Height variable has been declared to be
dynamically initialized. When the variable is accessed, it will be created and then set
equal to 100.

#static I%Height

Set T%H=I%Height

In this example, the #static directive tells the compiler not too generate the typical
lookup code of a dynamically initialized variable I%Height. The variable is expected to
be present.

The above behavior applies to Class variables as well.

 Language Concepts 24

Name Pool Variables

#static N%Name

Set T%X=N%Name

Name Pools are objects that contain N% arrays. These objects can be linked into
hierarchies. When linked, the sub objects inherit N% variables in the super objects.
Sometimes it is desirable for performance purposes to eliminate that search.

In the example above, the N%Name variable is declared static. The compiler will not
generate inheritance code for it. When reference, it must be defined or it will generate an
undefined error.

Example #const directive

The #const directive sets a constant value. This value is substituted throughout the
remainder of the method whenever the constant is encountered. Note that constant-type
symbols begin with the code CN when used within a method.

The following example illustrates the use of the #const directive to substitute the
uppercase alphabet.

#const UpperCase "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

#const LowerCase "abcdefghijklmnopqrstuvwyxz"

.

.

.

SET L%String=$TRANSLATE(L%String,CN%LowerCase,CN%UpperCase)

Alternative coding using literals for the previous example has the following
disadvantages:

• Accessor variables could be used, but this runs slower because a literal is faster
than a variable access.

• Literals could be used instead of constant references, but this does not change run-
time performance, requires more typing, and is harder to read. Also, the overuse of
literals increases the maintenance burden because if a change must be made, then
all instances of the literals would have to be changed.

Example #ifver and #ifnver directives

These directives are used to direct the compiler to compile a code block based on the
systems internal version number. For example, from version 4.1.0.0 on beyond,
EsiObjects supports Static methods.

Prior to version 4.1, it would have been necessary to create an object and bind it to an an
O% as follows:

Create O%Database=MyLibrary$Database

 Language Concepts 25

Reference to an Initialize method within the Initialization interface would have had to
look like this.

Do O%Database.Initialization::Initialize

However, from version 4.1 and on, static methods can be accessed directly via the
library$classname reference as follows:

Do MyLibrary$Database.Initialization::Initialize

If you want to accomdate installing code in older and new versions, you would use the
directives as follows:

#ifver 4.1.0.0

Do MyLibrary$Database.Initialization::Initialize

#endif

#ifnver 4.1.0.0

Do O%Database.Initialization::Initialize

#endif

Message Syntax
This section describes the EsiObjects messaging syntax. A message is the way you access
a method or a property of an object. In EsiObjects, you can use the message syntax alone
or as an argument to the DO command.

The following is the syntax for methods and properties:

ows ::= oref. {(L keyword)} {*} service

 fullclassname

An object-with-service (ows) reference includes the following:
Oref is an object reference, or the name of a class

preceded by an underscore.
fullclassname Is the full library$class specification. Using the

fullclassname in lieu of an oref forces the
system to message the method of a class as
static. The Static property of the method must
be turned on.

a period (.) is a delimiter
Keyword is a list of optional keywords as described in the

table Method and Delivery Keywords.
* is an asterisk (*) that indicates an ancestor-

method call
Service is the following:
 servicename{methodactualist}

The following is the syntax of a service name (servicename):

 Language Concepts 26

servicename ::= {interface::} method
 @name@

 Language Concepts 27

where:
Interface is an interface that explicitly specifies the

interface containing the method (If an interface
is not specified, the method's primary interface
is used.)

Method is a method or property name
@name@ is class element indirection that evaluates to a

valid service name

The following is the syntax for a method actual list (methodactuallist):
Methodactuallist ::= (methparams)
 @(expratom V methparams)

A method's actual parameter list consists of the following:

• Method parameters (methparams)

• An expression atom in parentheses whose value are method parameters (@(
expratom V methparams))

A method actual list is not allowed in a GOTO command.

Method parameters can be passed positionally as expressions, or by keyword using the
format keyword:expression.

methparams ::= L { keyword : } expr

When passing parameters in a method actual list, all parameters are passed positionally
until the first keyword parameter is encountered, then all remaining parameters must be
passed by keyword. If the first parameter is passed by keyword, then all remaining
parameters must be passed by keyword.

Message Delivery Keywords

The following table describes the message delivery keywords that affect the process of
delivering a message to an object.
Keyword Description
EXISTENCE If the object does not exist, the method

returns NULL ("").
FILTER Unknown parameters are ignored.
KNOWS The method returns NULL ("") if the object

does not implement the method.
PRIVILEGED Calls the method in a privileged mode.

(Privileges are required.)

Reserved $Unknown Method and Interface Name

If a method specified within a message does not exist within the specified interface and
the $Unknown method exists, it will be executed. This is a convenient way to provide
default execution for a service if it does not exist.

 Language Concepts 28

The same concept applies to the interface specified within a message. If the specified
interface does not exist and a $Unknown interface does exist, it will be accessed.

The reserved name must be spelled exactly as $Unknown.

How to Tell Methods and Properties Apart

The only reliable way to tell methods and properties apart is by their names. Methods and
properties can be chained together when they return object references. For example, the
following command refers to the property Elements(T%Loop) of the object T%Object12,
where T%Loop can be thought of as an array subscript value.

SET T%Object12.Elements(T%Loop).Text="EsiObjects Control"

This property's Value accessor returns an object reference, and the Text property of that
object is referred to next. The Assign accessor of this property is activated, with the value
"EsiObjects Control" as a method input parameter.

For more information about using accessors, see the Using Accessors section of the
EsiObjects Programmer's Reference Guide.

Examples

The following example references the GetBaseItem service of $SELF. This service is
probably a method rather than a property because its name implies a procedure rather
than an attribute.

SET T%EntryNumber=$SELF.GetBaseItem

The following example calls the IssueError method in the FMUtil interface of $SELF.
Two parameters are passed positionally to the method.

DO $SELF.FMUtil::IssueError("FM_BADIDX","Bad index in file.")

The following example calls the Assign accessor to copy the contents of array node
T%Field of the instance variable I%RequiredFld into the array node T%Field of the
RequiredFields property in the T%NewObj object's FMUtil interface.

S T%NewObj.FMUtil::RequiredFields(T%Field)=I%RequiredFld(T%Field)

The following example references the Name and Library properties of the class
Collection. Note that the class name is preceded by an underscore. (Normally class
references include the library, as well.)

SET T%Library=_Collection.Library

SET T%Class=_Collection.Name

DO $ENV.Assert("Class: "_T%Library_"$"_T%Class)

Callback Syntax
The $CALLBACK function returns a callback frame identifier used in calling back to a
public label in the current method. This function passes in callback and type information.

 Language Concepts 29

A method uses this function to create such an identifier, which is then passed to an
external object. The external object can then call the label directly without incurring the
overhead of a full-blown method call. The callback runs in the context of the object that
created the callback.

 Language Concepts 30

The syntax of a callback can be one of the following:

D{O} { postcond } SP < expratom > { (L expr)} { postcond }

G{OTO}{ postcond } SP < expratom > { postcond }

$$ < expratom > { (L expr) }

The expression atom enclosed in angle brackets must evaluate to a callback frame
identifier. Inside the callback, the value of $QUIT varies according to the type of
callback that is made.

Callback Types and Options

When a callback is created, certain other information can be specified in addition to the
callback label. The type of callback determines the stack frame where the callback occurs
and the state of its method-related symbols.
Type Description
Original Callback to creator's stack frame.
Capture Callback capturing creator's method-related

symbols.
Initialized Callback that starts with a clean variable context.

Callback Options are true or false flags that can be specified on some types of callback.
They are not mutually exclusive — it is possible to have a callback that is persistent and
additive, as shown in the following table:
Option Description Applicable Types
Persistent Survive for the duration of the

creating object.
Capture, Initialized

 Additive Preserve variable state between
calls.

Capture, Initialized

Original callbacks are the most common. They dispatch directly to the actual EsiObjects
method stack frame that created the callback. (Note that the EsiObjects method stack is
not the same as the underlying M process stack.) The callback is automatically freed
when that stacks frame exits. Therefore, the callback can only be made from methods
called before that stack frame has exited.

Original callbacks are often used for enumeration and searching operations. The method-
related symbols of the method that created the callback are always visible during this
kind of callback. Such callbacks are always additive and are never persistent.

 Language Concepts 31

The following example illustrates a simple enumeration operation.

SET T%CallBack=$CALLBACK(UPDATE,0)

SET T%Result=0

DO T%Object12.CountItems(T%CallBack)

DO $Env.Output("Total items found: "_T%Result)

QUIT

;

UPDATE ;Callback handler

SET T%Result=T%Result+1

QUIT

The method creates an original (type 0) callback to the label UPDATE in the variable
T%CallBack, and sets an accessor variable T%Result to the initial value 0. It then passes
the callback as a parameter of the CountItems method for two separate objects. Whenever
CountItems detects a problem it performs the callback. Each time the callback is made,
the subroutine in UPDATE increments T%Result. When CountItems returns, T%Result
is therefore equal to the number of callbacks made during the two method calls.

Capture callbacks record the callback creator's method-related variables. If the callback is
additive, then changes to those variables are preserved between calls. If it is not additive,
then the variables always are reset to the value at the time the call was made. If the
callback is persistent, then it survives for the lifetime of the creating object, or until it is
explicitly freed with the $FREECB function.

The following example enumerates all items in collection T%Collection. The variable
T%Sum is a cumulative sum of the value properties of each item. As the items are added,
the output window (T%OutWind) is updated with the current sum.

SET T%Callback=$CALLBACK(Sum:1,1)

SET T%Sum=0,T%OutWind=I%

DO T%Collection.Enum(T%Callback)

QUIT

Sum(Obj) ; Sum each object

SET T%Sum=T%Sum+Obj.Value

SET T%OutWind.Text=T%Sum

QUIT

Initialized callbacks are used internally as the backbone of events and watches. The
callback starts with an entirely clean variable context. However, if it is additive then any
changes to those variables are carried over to succeeding callbacks.

Callback Ownership and Lifetime

The creator of a callback is usually considered to be its owner. Only the owner should
free the callback.

The lifetime of a callback never extends beyond the lifetime of the creating object. If the
object dies, the callback is automatically freed. Original callbacks continue to exist until
the creating stack frame terminates, when they are automatically freed. Nonpersistent

 Language Concepts 32

callbacks are freed whenever the incarnation of $ENVIRONMENT changes (in other
words, whenever EsiObjects is shut down or restarted). In general, Capture and
Initialized callbacks should be freed explicitly with $FREECB when their usefulness has
ended.

Documenting Callbacks

All methods that create callbacks or call them should clearly document the callback
interface they assume. This includes the following information:

• The number of parameters, if any

• The purpose and use of each parameter

• Whether the callback is to be made as a subroutine or extrinsic function

• The expectations of callback ownership
Note that the validity of callback parameters is determined only at run time. This adds to
the importance of adequate documentation.

Extrinsic Functions - Introduction

Extrinsic functions are user-written functions, which use a parameter passing mechanism.
The following is the syntax of an extrinsic function:

$$labelref({argument}{,...})

where:
$$ identifies an extrinsic function call
labelref is a line label or entry reference
argument is an actual argument list that can be one of the

following:

 value_expr
 .name_expr
 where:
 value_expr is a valid expression
 .name_expr Unsubscripted local variable

name, or an indirect reference
that evaluates to an unsubscripted
local variable name

Entries in an actual list can be passed by reference or can be passed by value. Pass by
reference occurs when an entry in the actual list has a period before it. Pass by reference
evaluates the argument as a pointer to a local symbol and passes the pointer to the called
subroutine. Pass by value evaluates the argument as a value expression and passes the
value to the called subroutine.

 Language Concepts 33

Note the following:

• An error occurs if a formal list is shorter than the actual list. An actual list can be
shorter than the formal list.

• An actual list can be an empty list. An empty list is defined with open and closed
parentheses and no actual list arguments.

• A formal list can also be an empty list. An empty list is defined with open and
closed parentheses and no formal list arguments

• Indirection is not allowed in the formal list.

• Names in formal lists must be unique.

• Only the length of a line restricts the length of an actual list and a formal list.

• An actual list that is passed by value can be any valid expression and does not
have to be a local variable name.

• An actual list argument that is passed by reference must be a local variable name,
or an indirect expression that evaluates to a local variable name.

• When you use a DO, GOTO, or an extrinsic function with an entry reference
(Label^Routinename), you are leaving the context of the object. This violates the
concept of encapsulation and generally is not recommended.

For more information about using extrinsic functions, see the DO, NEW, and QUIT
command sections.

Extrinsic Function Examples

The following example shows how to find the square root of a number using an extrinsic
function.

SQRT(X) QUIT X**.5

The following example shows an error output function that returns the level of the error
and the text associated with the error.

ERROR(Level,Text) ; Error output function

IF Level<3 QUIT 0

DO $ENV.ReportError(Text)

QUIT 1

Syntax of an Extrinsic Function Callback

The following is the syntax of an extrinsic function callback:

$$<cbref>[(cbactlist)]

 Language Concepts 34

where:
Cbref is an expratom V as a callback frame ID string
Cbactlist is a list of parameters to be passed positionally the

callback by value.

For example:

SET T%Next=$$<T%Srch>

SET T%Key=$$<T%Lkup>(T%Key)

 Language Concepts 35

Using Expressions
Expressions
Arguments of EsiObjects commands are made up of expressions. Expressions, which are
character strings, can contain one or more elements and are connected by operators. An
expression yields a value when it is interpreted. An expression must contain at least one
element, which is called an expression atom.

Expression atoms can be one of the following:

• Literal

• Variable

• Function

• Expression atom preceded by a unary operator

• Messages

There are three types of operators:

• Indirection (only the INDIRECTION operator)

• Binary

• Unary
Expressions can be composed of one expression atom or can be made up of a series of
expression atoms separated by binary operators. Binary operators test the relationship
between two expression atoms or expression and return a result.

Unary operators perform an operation on a single expression atom or expression to the
right of the operator.

For more information about messages, see the Message Syntax section of this guide..

Literals

There are two types of literals:

• Numeric

• String

 Language Concepts 36

Numeric literals are strings that get evaluated as numbers. A numeric literal contains only
the following:

• Digits 0 to 9

• Unary MINUS (–) operator

• Unary PLUS (+) operator

• Period or decimal point character

• Letter E (for exponential notation)
The following is the format of exponential notation:

{–}mantissa{–}exponent

Exponential notation lets you enter very large or very small decimal numeric literals. The
expanded result cannot exceed 31 characters.

String literals are sets of zero or more of the 128 ASCII characters. You must always
enclose strings in quotation marks. String literals can consist of the following:

• Numbers

• Uppercase and lowercase letters

• Punctuation characters (for example, $, !, or &)

• Control characters
The only limitation on the length of a string is on the length of a line (511 bytes).

Evaluating Expressions

In EsiObjects, all binary operators share the same precedence. Statements are evaluated
from left to right in the following sequence:

• All occurrences of indirection

• All unary operators

• All expressions in parentheses

• All expressions with binary operators
You can change the order of evaluation with parentheses. Expressions in parentheses are
evaluated (in a left-to-right order) before the entire argument gets evaluated.

You can also concatenate expressions with the binary CONCATENATE (_) operator

 Language Concepts 37

Variables
Syntax of a Variable Name
A variable is a reference to a storage location. A variable can be unsubscripted or
subscripted. A subscript can contain integers (positive or negative), decimals, numeric
(positive or negative), or string literals.

The syntax of a variable in EsiObjects, which can be used on some or all of the references
to the variable, is as follows:

Code%Name{subscript1, . . . subscriptn}

where:
Code is one of the codes defined in the table Variable Names and

Scoping Codes, which determine explicitly the scope of the
variable

% is a one-character delimiter that separates the code from the
name

Name is the name of the referenced symbol. Symbol names have a
permitted length of 1-31 alphanumeric characters. The first
character must be alphabetic. The are case sensitive, that is,
the symbol ABC is different from AbC.

Subscript is an expression that uniquely identifies a node in an array

Variable Names and Scoping Codes

The following table describes the different kinds of variable names supported by
EsiObjects. Note that the codes in the table are not case sensitive.
Variable Code Scope Description
Parameter P or p Single method

call
A variable whose value is assigned
when it’s associated parameter is
supplied with the message. If the
associated parameter is not
specified, the parameter variable is
undefined. The variable's lifetime
ends when the method terminates
execution.

Temporary T or t Single method
call

A variable whose value is created
and modified as needed throughout
the method's code. The variable's
lifetime ends when the message
terminates execution. If a code is
not specified when setting a
variable, the default is generally an
temporary variable.

Accessor A or a Single method
call

The same as a T% variable. Use
T% in place of A%.

 Language Concepts 38

Instance I or i Object A variable that can be accessed by
any code that is executed inside the
context of its object. When the
object dies, the instance variable's
lifetime also ends.

Constant CN or cn Between
directives

A variable that is a constant value.
It cannot be set directly. It can only
be set through the #const compile
directive.

System S or s Life of the
environment

A variable that is accessible to all
methods. Only privileged code can
alter system variables.

Global G or g All contexts A variable that can be shared by all
users. A global variable exists until
it is specifically killed with the KILL
command.
Note that the circumflex (^) syntax
for globals is supported for
backward compatibility.

Class C or c Class and all
instances of it

A variable whose scope is limited to
the context of a class object and all
instances of that class. It can be
accessed by any code that is
executed inside the context of the
class or one of its instances. Like
its class, a class variable exhibits
persistence. It continues to exist
until it or its class is explicitly
destroyed.

Local L or l Partition or NEW A standard M local variable whose
scope is global within its M
partition. Local variables can be
referenced from anywhere within
the partition in which they exist.
Their lifetime ends when they are
explicitly killed, their job terminates,
or their NEW context expires.
Local variables generally are not
used in EsiObjects.

NamePool N or n Global A symbol table that can contain a
variety of symbols. The symbols
can be created, referenced, and
destroyed in any context.
NamePools objects can exhibit
persistence. Additionally,
NamePool objects can be used as
Domains.

Universal U or u Same as a M
Global with
translations.

A variable that is equivalent to a M
global. Not used that often.

 Language Concepts 39

Domain O or o Global across
processes –
same as a
traditional UCI.

A variable that is available to any
object that resides in a specific
domain. It disappears when the
domain is destroyed or it is
explicitly killed.

The variable reference T%Accum refers to the accessor variable Accum, and the variable
reference I%Height refers to the instance variable Height.

Value of Variables

A variable can evaluate to two types of values in EsiObjects:

• Built-in

• Object identifier (OID)
Built-in values are the standard values supported by M. An OID is a special EsiObjects
handle to an object. Built-in objects are normally treated the same way as M symbols,
although messages can be sent to them if necessary.

The following table describes the different types of built-in classes.
Built-In Class Description
BuiltInString Any M string value. Restrictions of length or the

ASCII characters that can be used usually
depend on the native M system. A built-in string
can contain an OID, but it generally treats the
OID as a string rather than as an object.

BuiltInNumeric An M string that is interpreted numerically. There
is nothing to prevent string values from being
assigned to a BuiltInNumeric symbol, but it
generally is interpreted as a numeric value.

BuiltInBoolean An M string that is interpreted logically. Like
BuiltInNumerics, any value can be assigned to a
BuiltInBoolean symbol, but the value generally is
interpreted logically.

BuiltInArray A standard M array that can contain any number
of nodes. The limitations on BuiltInArray
subscripts and values are imposed by the native
M system. In evaluating these limits, keep in
mind that a BuiltInArray instance variable can
have its own root at an M array node.

In contrast to built-in symbols, an OID is an encoded string that is used as a handle to an
object. Because a built-in string can contain any characters in the ASCII character set, it
is difficult to devise a reliable test between built-ins and OIDs. You can use the $EXIST
function to make this distinction.

 Language Concepts 40

The following table describes the value returned by $EXIST in a variety of cases:
Type of $EXIST Argument Value Returned
Built-in string, numeric or Boolean B
Built-in array B
OID handle of nonexistent object 0
OID handle of existing object 1

Variable Scoping

Variable Scoping - Introduction

The scope of a variable defines the set of messaging contexts in which that variable can
be referenced. In M, the scope of a local variable restricts its accessibility in such a way
that it cannot be referenced outside the context of the partition in which it is contained.

The lifetime of a local variable ends when its job terminates and the partition dies.
Similarly, an instance variable of an object cannot be referenced outside the context of
that object and is destroyed when its object dies. For this reason, instance variables are
hidden inside their objects and cannot be directly accessed by other objects. This process
of hiding is known as encapsulation.

For more information about encapsulation, see the What is an Object? section of the
EsiObjects Programmer's Reference Guide.

Why Is Scoping Important?

Scoping is important for the following reasons:

• Allows you to refer to the instance variable X and always get an instance variable
of the current object, without having to specify the object identifier (OID) of the
object whose instance variable is being referenced. This makes it easier to write
generic code.

• Allows you to call other methods inside the context of a single method call without
having to worry that the scoped variable is going to get overwritten or modified by
a poorly behaved method that gets called. If a bug causes such a variable to
contain the wrong value, scoping of variables makes it much easier to locate that
particular bug.

• Prevents you from accidentally modifying variables that are outside the scope and
explicitly prevents scoped variables from being tampered with externally.

• Allows you to define short, concise, simple names without needing to worry that
those names are already being used outside the scope of a given variable. For
example, it is possible to define a temporary variable Data, scoped inside a single
method call, without having to worry that some other method is using a temporary
variable of the same name.

 Language Concepts 41

Implicit Scoping

Scoping considerations are taken into account whenever a variable is referenced in
EsiObjects. If a variable is referenced by its name without scoping information, then
EsiObjects must determine the scope of the variable.

For example, suppose a method refers to the variable Text. How does EsiObjects know to
which kind of variable the symbol Text refers? EsiObjects uses five criteria to determine
the scope of a symbol, in the following order of precedence:

• If Text is defined as an instance variable by the class, then the symbol Text is an
instance variable.

• If Text is defined as a class variable of the class, then the symbol Text is a class
variable.

• If the symbol Text is defined as a parameter of the method, then the symbol Text is
the associated parameter variable. If Text is defined as some variable into which a
parameter is mapped, then the symbol Text is the mapped variable.

• If the symbol Text has been encountered higher up in the method, then this symbol
Text is the same symbol as the symbol Text encountered nearest the top of the
method.

• If none of the preceding four conditions is satisfied, then the symbol Text is a
universal variable.

In compiling a method, EsiObjects records the default scope of each variable encountered
in a top-to-bottom scan of the method's code. This information is used in number 4 in the
previous list. The first time a variable is encountered in the scan, it defines the default
scope for that variable whenever it is encountered in the method. The scanning process
proceeds in a strict top-to-bottom, left-to-right fashion without regard to order of
evaluation or order of execution.

Because the first reference to a variable encountered in the method determines the default
scope of that variable for the entire method, be aware that reorganizing the code in a
method can occasionally result in changing which reference to the symbol is encountered
nearest the top of the method. As a result, the default scope of the variable can be
changed inadvertently if both explicit and implicit scoping is used in the same method.

These rules for determining the scope of a variable also apply to the arguments of the
NEW command or to the symbols included in a label's formal parameter list, which only
allow local variable names.

Explicit Scoping

EsiObjects provides syntax for explicitly defining the scope of a variable. It is possible to
have two symbols with the same names but different scopes in the same method. In such
cases the first symbol encountered sets the default scope for implicitly scoped symbols of
that name in the entire method.

 Language Concepts 42

For example, if T%Sym is encountered near the top of a method and L%Sym is
encountered later on, followed by a number of different references to the symbol Sym,
then the references to Sym are scoped as T%Sym because it occurred nearest the top of
the method. However, if the reference to L%Sym is moved higher up in the method than
T%Sym, then it defines the scope of the Sym references.

Scope Hierarchy

EsiObjects variables are scoped according to a specific hierarchy. That hierarcy is
illustrated in the diagram below.

Variable Scoping Hierarchy

Variable Inheritance
The following diagram shows the difference between class and instance variables:

 Language Concepts 43

New Instance

I%Type="Nonfiction"

I%Name="Smith"

Older Instance

I%Type="Technical"

I%Name="Williams"

Writer Class

I%Type="Nonfiction"

I%Name="Smith"

C%Instances=2

subclass

instance

instanceinstance

FictionWriter Class
I%Type="Fiction"

C%Instances=1

I%Genre="Mystery"New Instance

I%Type="Fiction"

I%Name="Smith"

I%Genre="Mystery"

In this diagram, the class Writer, which has two instances, is a superclass of
FictionWriter, which has one.

Writer implements a class variable called Instances, which is common to all instances of
that class. (Perhaps this variable would keep track of the total number of currently
existing instances of the class.) In other words, a reference to the variable C%Instances
from within either instance of Writer would return the value 2. Because FictionWriter
is a subclass of Writer, it inherits the definition for Instances (but not its value.) Any
instance of FictionWriter that refers to its Instances class variable will thus get the value
1. Changes to this value will not affect Writer's class variable, and vice versa.

Writer implements two instance variables, called Name and Type. All instances of
Writer and its subclasses will be created with the default values of "Smith" for Name
and "Nonfiction" for Type. (Note that the newly created instance of Writer has those
values.) Since each instance of the class has its own instance variables, those values can
change without affecting other instances. (Note that the older instance of Writer has
acquired different values since it was created.) Subclasses of Writer will generally
inherit the same instance variable definitions (note that the new instance of
FictionWriter also has Name and Type variables.) However, a subclass may override
those variable definitions, by changing the particulars. Note that FictionWriter's Type
variable is defined with a default value of "Fiction", and the new instance is created with
that value.

Subclasses may also extend the superclass variables by defining additional variables that
are not known to the superclass. FictionWriter defines an instance variable called
Genre, which defaults to "Mystery". The newly created instance reflects this, but the
superclass and its instances are unaffected.

Variables are not inherited if they are marked as Private. For example, if the Name
instance variable had been marked as private at the class Writer, then FictionWriter

 Language Concepts 44

would not have inherited it. Most instance variables are Public. A private variable (or
method, property, etc.) is only defined when there is some compelling reason why it
would be inappropriate for subclasses to inherit it.

Example: Class Variable Inheritance

As stated above, class variables are only accessible to the class that implements them.
The definition of a class variable is inherited by subclasses, but any methods compiled at
the level of the subclass will access another copy of the class variable, stored with the
subclass. If a subclass inherits a method from a superclass, then any class variable
references in that method will access the class variable at the superclass, not the class
variable at the inheriting subclass. The following example illustrates the proper use of
class variable inheritance.

In this example, the superclass has a list of errors in a class variable C%Errors. The
subclass has an entirely different copy of C%Errors. Since the subclass cannot access
the contents of the superclass variable, it calls code at the superclass, designed to
accomplish this same task.

The method InitializeError table initially sets up the class variable. It is only run once,
as part of class initialization. The method FindError is called to return a descriptive
string of an error, whenever one is needed.

Superclass method "InitializeErrorTable"

Input: () ; Initialize Error Table

SET C%Errors("NOERR")="No error"

SET C%Errors("GENERAL")="General Error"

SET C%Errors("BADINP")="Bad Input"

Q

Superclass method "FindError"

Input: (T%Err="NOERR") ; Find Error

IF '$data(C%Errors(T%Err)) SET $RETURN="Unknown Error "_T%Error QUIT

SET $RETURN=C%Errors(T%Err)

 Language Concepts 45

Subclass method "InitializeErrorTable"

Input: () ; Initialize Error Table

SET C%Errors("NOERR")="OK"

SET C%Errors("OUTRNG")="Out of Range"

QUIT

Subclass method "FindError"

Input: (P%Err="NOERR") ; Find Error

IF $data(C%Errors(P%Err)) SET $RETURN=C%Errors(P%Err) QUIT

SET $RETURN=$SUPER.FindError(P%Err)

QUIT

When the FindError method is invoked for the subclass, it examines its own class
variable C%Errors to determine if it contains an entry for the error. If so, it returns a
description of the error. However, if it does not know about the error, it calls FindError
for the superclass, in hopes that perhaps the superclass understands the error.

InitClassVars and InitSysVars Methods

InitSysVars

The InitSysVars method is called whenever a new object is created. For example, if
class Patient implements an InitSysVars method in its Factory interface, and a new
instance of the Patient class is created, then the InitSysVars method is invoked to set up
some of the instance variables of that class.

The InitSysVars method is the primary means for defining special-purpose, inheritable
code to set up instance variables. Part of this method is generated automatically
whenever instance variable definitions are added in the variable definition editor. This
part occurs between the EOAUTO START and END lines.

InitClassVars

The InitClassVars method is called whenever a new class is added to the system. For
example, if a brand new class called Argyle is added as a new subclass of Plaid, and the
Plaid class implements the InitClassVars method in its Factory interface, then this
method will be executed to set up the class variables

The InitClassVars method is the primary means that EsiObjects uses to implement class
variable inheritance. Part of this method is generated automatically whenever class
variable definitions are added in the variable definition editor. This part occurs between
the EOAUTO START and END lines.

 Language Concepts 46

General Considerations

You must never insert or modify code between the EOAUTO START and END lines,
because that code is liable to be overwritten by EsiObjects the next time that the method
source is automatically generated from the variable definition, which can occur under a
variety of different circumstances.

The programmer who wishes to add setup code for class variables can use the
InitClassVars method to do so, provided that the setup code does not fall between the
EOAUTO START and END lines. Note that the InitClassVars method contains a
$SUPER call allowing the same method to be executed at the parent class. Code is
usually added after the $SUPER class.

NamePool Variables

NamePool variables reside in an object created from the Base$NewNamePool class. This
object is essentially a symbol table that is sharable by other objects, that is, if an object
owns the name pool objects OID, it can access all name pool variables contained within
the pool object.

An additional feature of name pools is that they can be linked into hierarchies through
methods available in the NewNamePool class. When name pools are linked into
hierarchical structures, the variables are inheritable.

Explicit reference to a variable within a name pool is as follows:

N%(OID)VarName

where OID is the name pool objects OID and VarName is the name of the variable
within the pool. When used in this format, the EsiObjects compiler builds in the required
support needed to produce a value.

An alternative implicit access is available that avoid specifying the (OID) specification
on every variable reference. By setting the $Pool special variable to the OID prior to
using the name pool variable, the (OID) explicit reference to the pool object can be
ignored. For example:

Set $Pool=OID

Set N%VarName="Value"

The value of $Pool is stacked and exists within the execution scope of the current
method. As in the case of the explicit syntax, the compiler resolves the reference to the
proper name pool object.

NamePool variables are very powerful. When a need arises for symbol tables that are
sharable and optionally inheritable, this variable scope should be used.

 Language Concepts 47

Name Pool Inheritance

NamePool variables reside in an object created from the Base$NewNamePool class. This
object is essentially a symbol table that is sharable by other objects, that is, if an object
owns the name pool objects OID, it can access all name pool variables contained within
the pool object.

Name Pool inheritance occurs when name pool objects are linked into hierarchies. In
such cases, the child name pool will inherit those variables in the parent name pool that
are not explicitly overridden. The following method call is used to create a name pool in
the variable T%ChildPool. This new name pool is a child of the I%ParentPool instance
variable.

SET T%ChildPool=I%ParentPool.Factory::CreateDescendant

Note that you can only link two name pools together when creating a new one, and that
the newly-created name pool must be a descendant of the previously-existing one.

Grouping Code into Interfaces

In EsiObjects, program code implemented by any class is generally inherited by its
subclasses. Program code is grouped into interfaces, with the Primary interface being
used for messaging by general users of the object, and all other interfaces being special-
purpose in nature.

Interfaces

Each class implements at least one interface, the Primary interface. This interface is
used for messaging by general users of the object. A large percentage of classes
implement a Factory interface, which is reserved for the details of object creation and
destruction. Many classes also implement other, special-purpose interfaces. Knowing
whether a class requires one or more special-purpose interfaces is by no means an exact
science. However, the following guidelines constitute useful general principles:

• Any methods or properties (such as its CREATE and DESTROY methods) that
are used to define the object's initial state when it is created, or to clean up the
object as it is being destroyed, usually go in the Factory interface.

• (Exception: the Create and Kill accessors of a property, if they exist, are most
often defined in the Primary interface.)

• Any methods or properties that are suitable for use by any external object should
go in the Primary interface. For example, if a Dictionary collection contains a
group of objects arranged by the value of a common property, then that property is
usually contained in the Primary interface.

• Any methods of properties that require a special relationship to the object should
go in a special-purpose interface. Such special relationships are described below.

 Language Concepts 48

Special Relationships

Sometimes, different instances of a same class will have a special-purpose interface, or a
factory object dedicated to producing instances of a specific class might communicate
with those instances using a special-purpose interface. In both these cases, it would be
inappropriate for "the average object" to make this type of communication.

The name of a special-purpose interface should reflect the purpose, and where possible
should not conflict with special-purpose interfaces having different meanings in other
groups of classes.

Sometimes, when special relationships between classes are required, the objects will
implement "challenge code" as part of their special-purpose interfaces. For example, if a
certain method can only be invoked by one particular object, then the program code for
that method might check $CALLER before going ahead with its task. In other cases,
more elaborate challenge code might be appropriate. (This is conceptually similar to a
bank refusing to give out information about an account to someone who is not an account
holder.)

Interfaces and Inheritance

Interfaces are groupings of services, that is, methods, properties, events and relationships
within a class. A number of related services are usually part of the same interface. Every
class implements at least one interface, the Primary interface.

Assume there exists a Person class that implements a Primary interface containing a
Name property. Now assume there is a Physician class that is a sub-class of Person
(meaning that a physician object is a kind of person object.) Physician automatically
inherits the Name property from Person.

The subclasses of a class will always inherit any interfaces that it defines. (Of course, all
the methods and properties in that interface will be part of the inherited interface.) If a
subclass wishes to extend a special-purpose interface, then the entire interface must first
be overridden. The subclasses of a class will always override the Primary and Factory
interfaces.

Within an interface, elements such as methods, properties, and event templates are
individually inherited by subclasses, except when defined as private. Any inherited
element may be overridden at a lower level. If the overriding element is private, then
subclasses will inherit the parent implementation. (For example, if Pediatrician's
Specialty property had been private, then any subclasses of Pediatrician would inherit
the version of Specialty defined by Physician.)

Code Inheritance in Projects

From a language perspective, each EsiObjects project is treated as a subclass of
Base$Application. Thus, all of the Procedures, Command Handlers and Event
Handlers are treated as methods in the project's Application class. They can be
inherited between projects by defining a new project as a subclass of an existing project.

 Language Concepts 49

An alternative is to create a subclass of Base$Application, and to define multiple
projects as children of your new Application subclass. That way, some of the code can
be promoted to the common parent, and shared among multiple projects.

 Language Concepts 50

Properties and Accessors

Properties are inherited by subclasses, and each accessor is inherited separately. When a
subclass overrides a property, it will still inherit all its accessors. It may then explicitly
override one accessor while continuing to inherit another.

Person
Name (value)

Impersonator

Name (assign)

subclass

In this diagram, the class Person implements a Name property with a value accessor,
allowing external objects to obtain the value of the Person's name. However, external
objects cannot assign the value of the Name property (just as no one else can change your
name for you.) Impersonator is a subclass of Person. Let's suppose that an
Impersonator object can assume a different Name. In that case, it might sometimes be
inappropriate for an external object to attempt to assign the Impersonator object's Name
property. Thus it implements an assignment accessor.

In this example, Impersonator has overridden the Name property and implemented an
assignment accessor, while continuing to inherit the value accessor from Person. Any
subclasses of Impersonator would actually inherit both accessors.

Mix-in Classes and Multiple Inheritance

There are two forms of multiple inheritances supported by EsiObjects.

1. Supertyping - a subclass has two fully specified parents, both of which are
intended to represent full-bodied classes in their own right.

2. Mix-ins - one of the superclasses is a special kind of abstract superclass designed
to be used only with multiple inheritance.

Supertyping represents a break with the classic, taxonomic philosophy of building the
class hierarchy. It means that one kind of object (the subclass), is a fusion of its two
superclasses. Supertyping is a controversial approach to use, because it violates the strict
descendant-tree structure of a taxonomy. More practically, it leaves the door open to
multiple inheritance conflicts.

Multiple inheritance conflicts occur when more than one superclass implements an
element of the same name, in the same interface, and this element is not explicitly
overridden by the child class. EsiObjects automatically resolves multiple inheritance
conflicts using proximity: an immediate parent will always take precedence over a less
immediate one. However, if the two competing superclasses are the same distance away

 Language Concepts 51

in the tree, then a conflict will result. In such cases, the child class must override the
conflicting element. It can then use the syntax for explicit vectoring to generate a call to
the appropriate superclass.

Mix-ins are special-purpose classes designed to facilitate strategies for avoiding multiple
inheritance. Mix-in classes are always abstract, never concrete, and they generally deal
with one specific aspect of an object's state or behavior. Multiple inheritance conflicts
can also occur with mix-ins, but they are less likely because of the general design
strategies generally associated with this type of class.

The difference between these two types is more philosophical than structural. While
EsiObjects has a special mix-in class type, the biggest difference between the mix-in and
supertyping forms of multiple inheritances is in the class design process, rather than in
any specific feature of the classes themselves. In other words, it is largely the
connotations that the two class types have in the minds of programmers (similar to the
difference between club soda and sparkling water).

 Commands 52

Commands
A command is a name for an action that is performed. Most commands take arguments.
An argument can encompass a variety of syntactic elements (such as numeric
expressions, variable names, SET arguments) that define and control the action of the
command. Some commands are argumentless and some commands take arguments only
in certain circumstances.

Each command is labeled as to its ANSI Standard status as described in the following
table:

Status Description
Standard Indicates that the language element is part of the M

ANSI Standard.
Proposed Indicates that the language element is being

proposed as an addition to the M ANSI Standard.
Extended Indicates that the Standard language element has

been modified for use in EsiObjects.
EsiObjects Indicates that the language element is not part of the

Standard and is an extension of EsiObjects.
Vendor Indicates that the language element is M vendor-

specific.

 Commands 53

BREAK
The BREAK command interrupts the normal flow of execution, invoking the EsiObjects
interactive debugger.
Format
B{REAK} postcond

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.
Explanation
The debugger is an important tool and can be used frequently during the debugging
process. EsiObjects programmers can use this interactive approach to spot problems
quickly and verify that code is working as intended.
Comments
To use the interactive debugger, the following must be accomplished:

The debugger must be activated.

BREAK commands must be inserted in the code to activate the interactive debugger at
execution time.

A debug version of the code must be compiled.

 Commands 54

CLOSE
The CLOSE command releases ownership of one or more devices owned by the current
process. In some cases, certain device-dependent operations can be performed as part of
this process.
Format
C{LOSE} postcond SP L closeargument

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

closeargument

Can be one of the following:

expr { : deviceparameters }
@ expratom V L closeargument

where:
Expr is any expression whose value is a device identifier of

a device owned by the current process

Deviceparameters ::= deviceparam
(deviceparam {:deviceparam }...)

Deviceparam ::= expr
devicekeyword
deviceattribute = expr

Explanation
The CLOSE command gives up ownership of the devices specified in its arguments,
making them available to other processes. The format of a valid device specifier, the
range of available devices, and the valid device parameters are all M platform-dependent.

After a CLOSE operation closes the current device, $IO becomes some other device
identifier, usually the principal device $PRINCIPAL.

 Commands 55

Comments
Keep the following points in mind when you use the CLOSE command:

• The kinds of device parameters specified with CLOSE are generally related to
terminating use of the device.

• Multiple device parameters are enclosed in parentheses, separated by commas.

• Closing an unowned device has no effect.

• There is no argumentless form of the CLOSE command.

• HALT automatically closes all devices.
Related
OPEN command

READ command

USE command

WRITE command

$IO special variable

$PRINCIPAL special variable
DSM and MSM Examples
The following example relinquishes ownership of the device whose identifier is in the
symbol T%InputDevice.

CLOSE T%InputDevice

The following DSM example reads lines of text from a file whose identifier is in the
variable T%File and echoes these lines to the principal device ($PRINCIPAL) until a
blank line is encountered, when the file is closed.

OPEN T%File::10

ELSE DO $Env.Output("Device "_T%File_" is unavailable.") QUIT

FOR DO QUIT:T%Line=""

. USE T%File

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%File

QUIT

 Commands 56

The following MSM example reads lines of text from a file whose identifier is in the
variable T%File and echoes these lines to the principal device ($PRINCIPAL) until a
blank line is encountered, when the file is closed.

SET T%Dev=51

OPEN T%Dev:(T%File,"R")::10

ELSE DO $Env.Output("Unable to access HFS") QUIT

FOR DO QUIT:T%Line=""

. USE T%Dev

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%Dev

QUIT

DSM Examples
In the following example, the same device T%InputFile is closed and the device attribute
RENAME is specified with its value in the variable T%NewFileName.

CLOSE T%InputFile:RENAME=T%NewFileName

The following example specifies a list of device parameters, enclosed in parentheses and
separated by colons.

CLOSE I%Printer:(FORMFEED:SPOOL)

 Commands 57

CREATE
The CREATE command creates a new object of a given class or nested class. Various
kinds of information about the object can be specified when it is created.
Format
CR{EATE} postcond SP L createargument

postcond ::= { : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.

createargument

Can be one of the following:

crarg
@ expratom V L createargument

where crarg is defined as follows:

glvn ={library$}class{(methodactlist)}{:{keywords}{: (L propname=expr}) }

The following additional definitions also apply:

class ::= libraryname$classname
classname
classname>classname>…
@expr@ V classname

keywords ::= crkey
(L crkey)

crkey ::=

Base
Child
Class
Fixed
Share
Name
Domain

= expr

 Commands 58

Explanation
The CREATE command is used to create an object. A three-step process is used to
create the object:

1. A primitive instance of the class is stamped out.

2. If the class implements a CREATE method, it is invoked.

3. Instance variable values are applied to the object as though with the ZAPPLY
command.

In addition to the required class name, the following information optionally can be speci-
fied:

• A method parameter list to be used when the CREATE method is called

• A list of special object creation keywords and their values, as appropriate

• A list of property names and their values
When property values are assigned with the CREATE command, each property value
assignment can have one of three outcomes:

• If a Create accessor exists for the property, then it is invoked.

• Otherwise, if an Assign accessor exists for the property, then it is invoked.

• Otherwise, a warning is generated.

This procedure is important, because for some properties the Create accessor and Assign
accessor do not both exist. The implications are as follows:

• Create accessor only

• Assign accessor only

• The property's value can never change, once the object has been created.
The same accessor is used by the SET and CREATE commands.

Note: When creating an instance of a nested class, the classname must be extended to
provide the path to the nested class. This is done by using the > character between the
class names. For example, Base$List>Iterator specifies the path to a nested class
Iterator within the class List which is in the Base Library.

The following table describes the keywords that you can use to create an object.

Keyword Description

Share A true or false value that determines whether the object is private or
shareable. If not specified, the object's shareability is the same as
that of the creating object. Child objects are not affected by this
keyword.

 Commands 59

Child If true or not specified, the new object is a child of the object that
created it. The object uses the parent's location to determine its own
location. If false, it is an independent, freestanding object.
Specifying a Domain can override this keyword. If Share is used,
this keyword must be false.

Base Allows objects to be created at an explicit base location. The Base
keyword value is an expression that evaluates to a glvn. When Base
is specified, EsiObjects will generate an internal number and create
an OID from it and the Base values supplied. For example: If
Base=“^ESIBR(“”Data””)”, EsiObjects will create an OID for an
object by adding a generated number as the next level subscript
producing “^ESIBR(“”Data””,3)”.

Fixed Allows objects to be created at a fixed location. This value must be
a glvn. Where the keyword Base provides a base glvn for
EsiObjects to create a unique OID from, the Fixed keyword lets you
specify a glvn that represents the absolute value used for the OID. It
is the OID and the created object is mapped to that location. . For
example: If Base=“^ESIBR(“”Data””)”, EsiObjects will create an
OID for an object without any alterations being made. You are
responsible for its uniqueness.

Stack This keyword instructs EsiObjects to place the object within the
current call frame. This keyword overrides all other keywords when
used. Placing an object on the current call frame insures the
automatic destruction of the object when the call frame is popped
from the stack

Class Insures that the variable is class persistent. This is used when
creating objects within the context of a class (class variables).

Domain Not Implemented Yet
Comments
Keep the following points in mind when you use the CREATE command:

• The use of the ZAPPLY command is legal only in the CREATE method, enabling
that method to validate or modify instance variable values before the CREATE
command has finished executing.

• Two INDIRECTION operators (@Name@) are used for class name indirection,
which prevents ambiguity with other forms of indirection. For more information
about class name indirection, see the INDIRECTION operator.

• When a method parameter list is specified, there are two kinds of parameters:

− keyword (keyword:expression)

− positional (expression)

 Commands 60

• After the first keyword parameter is specified, all remaining parameters must be
keyword parameters.

• When the object is created, its internal reference count is initialized to 1 (one). If
the DESTROY command is applied immediately after the object is created, the
object will be destroyed. However, if the PRESERVE command is applied n
times after the object is created, incrementing the internal reference count, the
DESTROY command must be applied an equivalent number of times to
decrement the counter. Only after that will another destroy action actually delete
the object from the system.

 Commands 61

Related
DESTROY command

PRESERVE command

ZAPPLY command
Examples
In the following example, a child object (to the creating context) of class Address is
created. Its CREATE method is passed the positional parameters "Boston" and "MA". A
handle to the new object is stored in the temporary variable T%CustAddr.

CREATE T%CustAddr=Framework$Address("Boston","MA"):Child=1

The results of the following example are the same as those of the first example. The only
difference is that class name indirection is used to specify the name of the class.

SET T%ClassName="Framework$Address"

CREATE T%CustAddr=@T%ClassName@("Boston","MA")

In the following example, a shared (persistent) List object is created. The object will be
stored under the ^UTILITY($J) node.

CREATE I%Set=Base$List:(Base="^UTILITY($J)",Share=1)

The following example illustrates how to create a nested class object.

CREATE I%AdmitDate=HIS$Patient>AdmitDate

The HIS$Patient>AdmitDate syntax provides a path to the Patient classes nested class
AdmitDate.

 Commands 62

DESTROY
The DESTROY command attempts to destroy an object, setting the value of $TEST
based on the success of the attempt.
Format
DE{STROY} postcond SP L destroyargument

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.
destroyargument ::= expr V oref

@ expr V destroyargument

The argument of DESTROY is an object reference.
Explanation
The DESTROY command does the following:

• Before proceeding, checks to see if the OID of the object has been protected (See
the $Protect function). If it has, the object cannot be destroyed.

• Decrements the internal reference-count by one. This command works in concert
with the PRESERVE command which increments the count. Only when the count
goes below 1 will the destroy action continue.

• If the argument is not an oref, or references an object that does not exist, no action
occurs and $TEST is set to 1.

• If the argument contains an oref of an existing object, that object's DESTROY
method is invoked and its return value is interpreted as true or false.

− If the DESTROY method returned a false value ($RETURN=0), the
object is not destroyed. The DESTROY command sets $TEST to 0.

− Otherwise, the DESTROY method returned a true value ($RETURN=1);
the object is automatically destroyed and $TEST is set to 1.

Comments
Keep the following points in mind when you use the DESTROY command:

• The very first action of the DESTROY command is to decrement the internal
reference counter and check if the counter went below 1. If it did, the destroy
action will proceed, calling the DESTROY method is it exists. If it did not, the
destroy action quits at this point, leaving the object alive.

• An object's DESTROY method does not need to remove instance variables if it
determines that the object can be destroyed. This is automatically done by the
DESTROY command.

 Commands 63

• The default return value of the DESTROY method is 1. It returns 1 if it does not
explicitly define another return value. (Other functions return NULL ("") by
default.)

Please note that the DESTROY object has no effect on a virtual object, because virtual
objects have no symbol table to be removed. (Of course, the virtual object can
implement a DESTROY method that will destroy its target data.) The only way to
remove a virtual object is to KILL the variable containing the handle to the virtual
object.

However, it may be inappropriate for one object to make assumptions about whether
another is actual or virtual. For example, a certain class that is declared virtual today may
become an actual class in the future. So a reasonable precaution, when eliminating an
object, is to both DESTROY it and KILL the variable containing the handle to the
object. If you want to eliminate the handle but have no intention of destroying object's
encapsulated data, then simply KILL the variable containing the handle to the object.

Finally, note that if a variable containing the handle to an object is scoped within the
current method (i.e. A%, T% or P% variables), then the variable will be destroyed
automatically when the method terminates. However, this may not result in the
automatic destruction of any actual object being referenced by it.
Related
CREATE command

KILL command

$REFERENCE special variable

$RETURN special variable

$TEST special variable

$PROTECT function
Examples
The following example destroys the Window object referenced by the symbol
T%Window, causing the window to disappear from the display and all of its instance
variables to be removed.

DESTROY T%Window

ELSE DO $Env.Assert("DESTROY failed!")

 Commands 64

DO Command - Introduction
The DO command calls a subroutine or block. When the called code terminates, control
reverts to the point immediately following the DO command.
Format
D{O} postcond SP {L doargument}

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

doargument

Can be one of the following:

doarg
@expratom V L doargument

where:
doarg ::= dlabel {+offset} {^routineref}

^routineref
label {^rname} (L actualparam)
^rname (L actualparam)
& package.externalrtn{(L actualparam)}
ows {(methodactuallist)}< expratom > (L expr)
*publiclabel

postcond

Explanation
The DO command calls some body of code as a subroutine. Its behavior is distinct from
GOTO in that DO execution subsequently returns to the point immediately following the
DO argument from which the subroutine was called. In the case of GOTO, execution
never returns to that point.

Like GOTO, XECUTE and DO commands allow a postconditional to be applied to the
command or to any of its arguments. The following table summarizes the results when
the postconditional in either location is true or false:
Result Postconditional on Command Postconditional on Argument
True Execute the command and its

arguments.
Execute that argument before
going on to the next argument or
command.

False Skip the command and all its
arguments.

Skip that argument and go on to
the next argument or command.

 Commands 65

DO supports a variety of different forms:

• The argumentless form calls a block beginning on the line following the line where
the argumentless DO command occurs. This form places $TEST on the process
stack, which causes its value to be restored when the block is exited.

• The entry reference form (label+offset^routine without parameters) calls a
subroutine without an actual parameter list. This form allows an INDIRECTION
operator (@) before the label name and/or the routine name. This form does not
place $TEST on the process stack.

• The label reference form (label^routine with parameters) allows an actual
parameter list, providing for a certain level of independence between the calling
code and the subroutine. It does not support label name or routine name indirec-
tion. This form does not place $TEST on the process stack.

• The external reference form (&package.externalroutine) allows routines external to
M and EsiObjects to be called. This form does not modify $TEST.

• The object-with-service form (object.service) accepts references to object
methods and properties. This form guarantees that $TEST is restored when the
service is exited. If the asterisk (*) is present, the method is called at the ancestor
class. The syntax is as follows:

ows ::= Oref.{(L keyword)} {*} {interface::} service

− An object-with-service reference includes an object reference, a period,
and a service. Optionally you can add a list of delivery keywords, an
asterisk (*) for an ancestor-method call, and an interface to explicitly
specify the interface containing the method. If no interface is specified, the
method's primary interface is used. For more information, see the Message
Syntax section in this guide.

− The label inheritance form (*publiclabel) accepts a reference to a public
label inside the current method. The implementation of this method at the
ancestor class is called, rather than the implementation at the current class.
In this way, functionality can be overridden and inherited by storing it in
public subroutines implemented within a method.

Comments
Keep the following points in mind when you use the DO command:

• Any form of DO that specifies a label and/or routine name does not place $TEST
on the process stack. When execution returns from the subroutine, any changes to
$TEST are still in effect.

• The following lines of code are hard to evaluate. Without looking at the subroutine
MODIFY it is impossible to determine under what circumstances the ELSE
command on the second line will be executed.

IF I%Height'>I%Width DO MODIFY

ELSE DO $Env.Output("Greater")

 Commands 66

The following are possibilities:

• I%Height is greater than I%Width. The IF on the first line sets $TEST to 0, and
execution drops down to the second line. Because $TEST is 0, the ELSE send
'Greater' to the output window..

• I%Height is not greater than I%Width. The IF on the first line sets $TEST to 1
and executes the DO. Inside the subroutine, three things might happen:

• The subroutine MODIFY does not modify $TEST. When execution returns,
$TEST still equals 1 from the IF on the first line and the ELSE does nothing.

• The subroutine MODIFY does modify $TEST, and when it exits $TEST equals 1.
The ELSE on the second line does nothing, based on the most recent $TEST
operation.

• The subroutine MODIFY does modify $TEST, and when it exits $TEST equals 0.
The ELSE on the second line sends 'Greater' to the output window, based on the
most recent $TEST operation.

• Clearly this situation contains the potential for unexpected results. The examples
in this section present a specific solution to this problem based on argumentless
DO.

• In EsiObjects, GOTO is primarily useful for delegation; otherwise, the use of
GOTO is discouraged. Inside a block, the GOTO command is illegal unless it
accesses another line in the same body of code and that line's level is the same as
the current execution level. The line accessed by GOTO need not be connected to
the current block. The examples in this section show how to avoid GOTO in
blocks.

Keep the following points in mind when you use argumentless DO blocks:

• Execution skips past any lines of code that are at too high a level. If EsiObjects
encounters lines at a higher level than the current execution level, it skips past
those lines. Accidental failure to place an argumentless DO on the line before a
block or subblock causes the block of code to be skipped.

• Execution quits when a line is encountered at too low a level. Therefore, an
implied QUIT occurs automatically at the end of a block and it is not necessary to
place an explicit QUIT on the last line of the block. A comment line inside a block
must begin with the appropriate number of periods, or it causes an implied QUIT
to occur and the rest of the block is ignored. If a deeper block does not begin on
the line immediately following an argumentless DO, then an implied QUIT
immediately occurs.

 Commands 67

Keep the following points in mind when passing parameters with the DO command (DO
LABEL^ROUTINE(...)):

• With pass by value, only a single value is sent along to the formal variable. Its
$DATA value is therefore guaranteed to equal 1. If an attempt is made to specify
an undefined variable in the actual parameter list, then an error occurs.

• With pass by reference, the formal variable becomes an alias for the actual
variable. Both symbols must be local variables. If the actual variable is not
defined, the formal variable is also undefined and its $DATA value is 0. If the
actual variable is a local array, the formal variable is an identical array having the
$DATA value 10 or 11.

• If the formal parameter list is longer than the actual parameter list, the omitted
formal parameters are undefined, and has $DATA values of 0. If the actual
parameter list is longer than the formal list, then an error occurs.

When passing parameters with DO object.service(...)and a method parameter list is
specified, there are two kinds of parameters: keyword (having the format
keyword:expression) and positional (having the format expression). After the first
keyword parameter is specified, all remaining parameters must be keyword parameters.
Related
Message Syntax

Method structure

GOTO command

QUIT command

$TEST special variable
Examples
Note that in some cases DO does not stack $TEST and that $TEST is likely to change
between the IF and the ELSE. The following example illustrates a typical programming
error.

 IF I%Height'>I%Width DO TEST

ELSE DO $Env.Output("Greater")

.

.

.

QUIT

;

TEST ; Subroutine containing IF and ELSE

IF I%Height=I%Width DO $Env.Output("Equal")

ELSE DO $Env.Output("Not Greater")

QUIT

 Commands 68

Assuming that I%Height=5 and I%Width=10, the IF command on the first line sets
$TEST to 1 and the DO calls TEST. Inside TEST, the IF sets $TEST to 0, and the
ELSE executes the environments Output method. The QUIT then exits TEST. The
ELSE on the second line checks $TEST (which is now 0) and executes the environments
Output method. The first line of output is "Not Greater" and the second line is "Greater".
This is probably not what the programmer intended.

A number of language elements (for example, object-with-service references, extrinsic
functions, and the argumentless DO) place $TEST on the process stack. The following
example solves the problem shown in the previous example with the argumentless DO:

IF I%Height'>I%Width DO

. IF I%Height=I%Width DO $Env.Output("Equal") QUIT

. DO $Env.Output("Not Greater")

ELSE DO $Env.Output("Greater")

QUIT

When passing parameters by value with the syntax DO LABEL^ROUTINE(...),
remember that only a single value can be passed in. The symbol in the formal parameter
list takes on the value specified by the expression in the actual parameter list.

DO MODIFY(T%Child,T%ChildHeight+25,T%ChildWidth+50,200,300)

DO MODIFY(T%Parent,T%ParentHeight,T%ParentWidth)

.

.

.

QUIT

;

MODIFY(L%Object,L%Height,L%Width,L%X,L%Y) ; Modify size/position

IF $GET(L%X)'="" SET L%Object.X=L%X

IF $GET(L%Y)'="" SET L%Object.Y=L%Y

SET L%Object.Height=L%Height

SET L%Object.Width=L%Width

QUIT

In pass by reference, the formal variable becomes an alias for the actual variable until the
subroutine exits, when the formal variable is restored to its previous state. In the
following example, a subroutine SWAP is called three times to exchange the values of
three pairs of local variables. Note that the variables L%Temp and L%First in the calling
code are never confused with L%First and L%Temp in the subroutine.

DO SWAP(.L%Third,.L%First)

DO SWAP(.L%X,.L%Temp)

DO SWAP(.L%Width,.L%Height)

QUIT

SWAP(L%First,L%Second) ;Exchange values of two local variables

NEW L%Temp

SET L%Temp=L%First,L%First=L%Second,L%Second=L%Temp

QUIT

 Commands 69

The following two statements are equivalent. Both access the method Update,
implemented within the same method at the superclass.

DO $SUPER.Update

DO $SELF.*Update

DO Command - Parameters
A DO label^routine reference with parameters accepts two forms of parameter passing
(pass by reference and pass by value).

The following terms are useful when discussing parameter passing:

Term Description
Actual parameter list The parameter list specified on a DO command (or extrinsic

function call), specifying the actual values to be associated with
each parameter variable.

Formal parameter list The parameter list specified on a subroutine or function's initial
label line, formally specifying the local variable names to be used
for each parameter.

Pass by value The parameter is any expression. Its value is assigned to the local
variable named in the formal parameter list. Nothing that happens
to the formal variable in the parameter list has any effect on the
actual parameter.

Pass by reference The actual parameter is a local variable name preceded by a
period. In the subroutine, the formal variable temporarily becomes
an alias for this local variable. Therefore, changes to the formal
variable are immediately reflected in the actual variable.

DO Command - Argumentless
When the argumentless DO is encountered, EsiObjects does the following:

• Adds a new frame to the process stack and records the current execution location,
execution level, and $TEST value.

• Adds 1 to the current execution level (the number of periods it expects to find after
the line start indicator on each line of code it encounters).

• Transfers control to the next line of code.

The execution level (EL) initially begins at 0. Only the argumentless DO command
increases the execution level. Other code calls (XECUTE, object-with-service
references, the other forms of DO, and extrinsic functions) place the EL on the stack but
set it to 0 internally. Each line of code has its own level (the line level (LL)), which refers
to the number of periods following the line-start indicator.

 Commands 70

Whenever EsiObjects encounters a line of code, its behavior is based on a comparison of
these two values as follows:

• If LL>EL, skip this line and go on to the next line of code.

• If LL=EL, execute this line of code before going on.

• If LL<EL, issue a QUIT, remove the top frame from the process stack, and restore
the state recorded on that frame.

The practical implications of these rules are summarized in the Comments discussion.

DO Command - Callbacks
The format for a callback is as follows:

DO <cbref>[(cbactlist)]

where:

cbref

Is an expratom V as a callback frame ID string

cbactlist

Is a list of parameters to be passed positionally through the callback by value.

The $CALLBACK function returns a callback frame identifier used in calling back to a
label or public label in the current method. A method uses this function to create such an
identifier, which is then passed to an external object. The external object can then call the
label directly without incurring the overhead of a full-blown method call. The callback
runs in the context to the object that created the callback.

Original callbacks are the most common callbacks used. They dispatch directly to the
actual EsiObjects method stack frame that created the callback. (Note that the EsiObjects
method stack is not the same as the underlying M process stack.) The callback is
automatically freed when the stack frame exits, so the callback can only be made from
methods called before that stack frame has exited.

Capture callbacks record the callback creator's method-related variables. If the callback
is additive, then changes to those variables are preserved between calls. If it is not
additive, then the variables are always reset to their values at the time the call was made.
If the callback is persistent, then it survives for the lifetime of the creating object, or until
it is explicitly freed with the $FREECB function.

Initialized callbacks are used internally as the backbone of events and watches. The
callback starts with an entirely clean variable context. However, if it is additive, then any
changes to those variables are carried over to succeeding callbacks.

The creator of a callback is usually considered to be its owner. Only the owner should
free the callback. The lifetime of a callback never extends beyond the lifetime of the

 Commands 71

creating object. If the object dies, the callback is automatically freed. Original callbacks
continue to exist until the creating stack frame terminates, when they are automatically
freed. Nonpersistent callbacks are freed whenever the incarnation of $ENVIRONMENT
changes (in other words, whenever EsiObjects is shut down or restarted). In general,
Capture and Initialized callbacks should be explicitly freed with $FREECB when their
usefulness has ended.

 Commands 72

All methods that create callbacks or call them should clearly document the callback
interface they assume. The documentation includes the following information:

• The number of parameters, if any

• The purpose and use of each parameter

• Whether the callback is to be made as a subroutine or extrinsic function

• The expectations of callback ownership

Note that the validity of callback parameters is determined only at run time. This adds to
the importance of adequate documentation.

 Commands 73

ELSE
The ELSE command causes the remaining statements on the line to be executed if
$TEST is 0, or to be ignored if $TEST is 1.
Format
E{LSE} SP
Explanation
The ELSE command, like IF and FOR, has a line scope. This means that it
conditionalizes the execution of all the remaining commands on the line.

• If the value of $TEST is 1 when ELSE is encountered, then all the remaining
commands on the line are ignored and execution proceeds to the next line of code.

• If the value of $TEST is 0 when ELSE is encountered, then execution continues
on to the remaining commands on the line.

The $TEST special variable is affected by the IF and DESTROY commands and any
time a timeout is encountered. Other conditional operations, such as postconditionals and
$SELECT, do not affect $TEST. The ELSE command does not modify the value of
$TEST.
Comments
Keep the following points in mind when you use the ELSE command:

• Because ELSE is always argumentless, at least two spaces must separate it from
anything else on the same line.

• ELSE does not allow a postconditional. The two other commands with line scope,
IF and FOR, also do not allow postconditionals.

• Because all commands conditionalized by ELSE must fit on a single line,
argumentless DO is sometimes used in the scope of ELSE to extend its reach
beyond a single line.

Related
IF command

DO command

$SELECT function

$TEST special variable
Examples
It is extremely rare to have an ELSE command on the same line as an IF. This is because
IF sets $TEST to 1 if it executes the rest of the line, and ELSE prevents execution unless
$TEST is 0. The following example is clearly a mistake:

IF I%Height>I%Width DO $Env.Output("Greater") ELSE DO $Env.Output("Not

Greater")

 Commands 74

If I%Height is not greater than I%Width, the IF sets $TEST to 0 and transfer execution
to the next line. Nothing after the ELSE command is ever encountered. By contrast, the
following example works properly:

IF I%Height>I%Width DO $Env.Output("Greater")

ELSE DO $Env.Output("Not Greater")

It can be valid to put ELSE on the same line as IF in those rare cases where something
happens between IF and ELSE to change $TEST, such as a timeout or a DESTROY
command.

IF T%Remove DESTROY T%Object12 ELSE DO $Env.Output("Object not destroyed.")

QUIT

In the previous example, if the service variable T%Remove does not contain a true value,
the entire rest of the line is ignored. But if T%Remove is true, the DESTROY command
is invoked to remove the object whose object reference is in T%Object12. If the object is
destroyed successfully, then $TEST is 1 and everything after the ELSE is ignored. But if
DESTROY fails to destroy the object, $TEST is set to 1 and the ELSE lets execution
pass on to the environments output window and QUIT.

 Commands 75

EVENT
The EVENT command triggers an event that can be handled by any concerned objects.
Format
EV{ENT} postcond SP L earg

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

earg ::=

eventname {(L expr)}
$PROPERTIES
propertyname {(L expr)}
@ expratom V L earg

Explanation
The following expression values are to be used for property events:
Value Meaning
"PRESET" The property is about to be set.
"SET" The property's value has just been assigned (interested objects

can query the property for its current value).
"SETREJECT" The assignment has been rejected by setting $Return to zero

(false).
"PREKILL" The property is about to be killed.
"KILL" The property has just been killed.
"KILLREJECT
"

The kill has been rejected by setting $Return to zero (false).

"DEAD" The object implementing the property has just died (interested
objects can no longer refer to the property.)

See the examples section below for more details.

If a single event or property name is specified, parameters can be sent with the event. The
$PROPERTIES special name contains a list of all properties of the triggering object.
Event delivery is asynchronous. The order in which events are delivered to a given object
is guaranteed, but the timing of events is not.
Comments
Keep the following points in mind when you use the EVENT command:

• If a concerned object is interested in watching for all properties to change, the only
way to trigger an event for that object is with EVENT $PROPERTIES.
Individually triggering events for each property does not have this effect.

• If a concerned object is watching $PROPERTIES and a single property, it is
informed twice when an event for that property is triggered.

 Commands 76

• The label used to handle an event must be public. It must be able to handle at least
two parameters:

− OBJECT - An object reference to the watched object.

− MESSAGE - The name of the event or property that was triggered by the
EVENT command.

• However, many events send additional parameters, and the handler's formal
parameter list must not declare fewer parameters than are sent with the event.

• Properties generally initiate an event when they are assigned or killed. This is the
main case when property events occur.

Related
Method structure

IGNORE command

WATCH command
Examples
The following example triggers the Renamed event for any concerned objects.

EVENT Renamed(T%OldName,T%NewName)

The following example triggers a property event, indicating that the Name property has
been set.

EVENT Name("SET")

The following example triggers an event for concerned objects watching all properties of
the current object and triggers a separate event for the individual properties being
watched by concerned objects.

EVENT $PROPERTIES

 Commands 77

FOR
The FOR command causes the remaining statements on the line to be executed
repeatedly.
Format
F{OR} SP {lvn = L forparameter}
Forparameter ::= expr

numexpr1 : numexpr1 {: numexpr1}

where:
Expr is an explicit string or numeric value for the variable during

a single iteration of the loop
numexpr1 is the numeric starting value of the variable during the first

loop iteration
numexpr2 is the numeric incremental value to be added to the

variable before each loop iteration other than the first
numexpr3 is the numeric boundary value that must not be crossed

by the variable

Explanation
The FOR command, like IF and ELSE, has a line scope. This means that it iterates the
execution of all the remaining commands on the line. Note the following:

• For each forparameter, the variable's value is either incremented through a range
of values or set to the single explicit value of that forparameter.

• Execution of a FOR loop terminates when the variable's value is already beyond
the boundary value (in the direction indicated by the sign of the incremental
value), or when adding the increment to the variable would cause it to cross that
boundary.

• If more than one forparameter is specified, they are processed in order from left to
right.

• Execution of a QUIT command terminates the innermost FOR loop, causing all
remaining forparameters in that loop to be skipped.

• Execution of a GOTO command in the scope of a FOR loop terminates all the
loops on that line, from the innermost to the outermost.

• Once the FOR loop has started executing, changes to the looping variable can
have an impact on the number of iterations. However, changes to any variables
originally used to specify the starting, incrementing, and ending values cannot
affect the number of iterations.

The argumentless FOR command does not specify any variable to iterate. This is the
most flexible type of FOR loop, and possibly the most common. Two spaces must
separate the argumentless FOR command from anything else on the line. Iteration

 Commands 78

continues until a QUIT or GOTO in the scope of the FOR command terminates the
loop. If no QUIT or GOTO is executed, an infinite loop results.

The FOR command does not allow argument indirection. The following is illegal:

SET T%Illegal="X=1:1:10"

FOR @T%Illegal DO $Env.Output(T%X)

However, you can use the XECUTE command to achieve the desired results as follows:

SET T%Loop="X=1:1:10"

XECUTE "FOR "_T%Loop_" DO $Env.Output(T%X)"

Comments
Keep the following points in mind when you use the FOR command:

• If FOR is argumentless, at least two spaces must separate it from anything else on
the same line.

• FOR does not allow a postconditional. The two other commands with line scope,
IF and ELSE, also do not allow postconditionals.

• Because all the commands iterated by FOR must fit on a single line, argumentless
DO is sometimes used in the scope of FOR to extend its reach beyond a single
line.

Related
DO command

GOTO command

QUIT command
Examples
The following example shows a simple FOR loop:

SET T%String=""

FOR T%Loop=1:1:10 SET T%String=T%String_T%Loop_" "

Results: 1 2 3 4 5 6 7 8 9 10

The following example illustrates multiple forparameters. Note that the QUIT command
terminates during the third forparameter, causing the fourth forparameter to be skipped:

SET T%String=""

FOR T%Loop="Hello",50:-7:20,444,100:222 QUIT:T%Loop>300 DO

. S T%String=T%String_T%Loop_" "

Results: Hello 50 43 36 29 22 444

 Commands 79

The following example illustrates the repeated use of incremental lock with a timeout to
provide feedback to the user that an attempt to lock the node is in progress. After 30
seconds, the FOR loop gives up and the process is abandoned.

DO $Env.Output("Locking")

FOR T%Loop=1:1:10 DO $Env.Output(".") LOCK +^XYZ(0):3 IF QUIT

ELSE DO $Env.Output("Node is busy. Aborting.") QUIT

SET (T%EntryNumber,^XYZ(0))=^XYZ(0)+1

LOCK -I%List(0)

SET ^XYZ(T%EntryNumber)=T%EntryValue

The following example attempts to open a device for up to 30 seconds before it gives up.
If the operation is successful, the following occurs:

• An argumentless FOR loop reads lines of text from a file whose identifier is in the
variable T%File.

• The lines that are read are echoed to the principal device ($PRINCIPAL) until a
blank line is encountered.

• The file is closed.
DO $Env.Output("Opening Device "_T%File)

FOR T%Loop=1:1:10 DO $Env.Output(".") OPEN T%File::3 IF QUIT

ELSE DO $Env.Output("Device ",T%File," is unavailable.") QUIT

FOR DO QUIT:T%Line=""

. USE T%File

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%File

QUIT

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the environment output
window. It uses a FOR loop with $ORDER to traverse the nodes, $DATA to determine
whether a given node contains data, and $NAME to convert a subnode into a name value.
This name value is then used in name indirection, as the argument of $DATA, and is
passed as a parameter.

WALK(Node) ; Recursive traversal

NEW Sub,DataVal,NodeName

IF $DATA(@Node)#10 DO $Env.Output(Node_" =<”_@Node_">")

SET Sub=""

FOR SET Sub=$ORDER(@Node@(Sub)) QUIT:Sub="" DO

. SET NodeName=$NAME(@Node@(Sub))

. SET DataVal=$DATA(@NodeName)

. IF DataVal'[0 DO $Env.Output(NodeName_" =<”_@Node_">")

. IF DataVal>9 DO WALK(NodeName)

QUIT

 Commands 80

The following example provides an alternative implementation of WALK. It uses
$DATA to display the root node if necessary, uses $LENGTH and $EXTRACT to build
an array root, a FOR loop with $QUERY to traverse the array, and $EXTRACT to
determine the exiting condition. Inside the FOR loop there is only a single instance of
indirection with no recursive call.

WALK(Node) ; Nonrecursive traversal

NEW Root,Len

IF 11[$DATA(@Node) DO $Env.Output(Node_" =<”_@Node_">")

SET Len=$LENGTH(Node),Root=Node

IF $EXTRACT(Root,Len)=")" SET $EXTRACT(Root,Len)=","

ELSE SET Root=Root_"(",Len=Len+1

FOR S Node=$QUERY(@Node) Q:$EXTRACT(Node,1,Len)'=Root DO

. DO $Env.Output(Node_" =<”_@Node_">")

QUIT

 Commands 81

GOTO
The GOTO command transfers control to the specified execution location without
adding a frame to the process stack. Execution does not return to the point following the
GOTO.
Format
G{OTO} postcond SP L gotoargument

postcond ::= { : tvexpr }

txexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.

gotoargument

Can be one of the following:
dlabel {+offset} {^routineref}
^routineref
object.service
@ expratom V L gotoargument

postcond

Explanation
The primary use of GOTO in EsiObjects is for delegation to another object and/or
service. In delegation, the current method uses GOTO to make an object-with-service
call that does not return to the current execution context. The return value of the
delegated service is treated as the return value of the calling code body.

GOTO can be used in other contexts such as subroutines and extrinsic functions, but its
general-purpose use is not recommended. GOTO is illegal inside a block unless it
accesses another line in the same code body and that line's execution level is the same as
the execution level of the line containing the GOTO.

GOTO has a special function inside the scope of the FOR command. It transfers control
at the current stack level, terminating execution of the FOR loop. An alternative is to
terminate the loop with QUIT, transferring control externally.

Like DO and XECUTE, GOTO allows a postconditional to be applied to the command,
or to any of its arguments. The following table summarizes the results when the
postconditional in either location is true or false.
Result Postconditional on

Command
Postconditional on
Argument

True Execute the command and
its arguments.

Execute that argument, never
returning to process any
additional arguments.

False Skip the command and all
its arguments.

Skip that argument and go on
to the next argument or
command.

 Commands 82

Callbacks
The format for a callback is as follows:

GOTO <cbref>

where:

cbref evaluates to an expratom V as a callback frame ID string.

For example:

GOTO <T%Revector>

GOTO <T%Error>

Control is transferred to the callback. The callback must not require any parameters.
Comments
Keep the following points in mind when you use the GOTO command:

• In EsiObjects the GOTO command, though legal, is not recommended for general
use except in cases of delegation. There is no task in EsiObjects that requires the
use of GOTO.

• Some programmers are reluctant to use GOTO in any context, but in EsiObjects it
is an important tool when explicit delegation is called for.

Related
Message Syntax

Method structure

DO command

FOR command

XECUTE commandExamples
In the following example, the object delegates the current task to its parent object, whose
handle is in the instance variable I%Parent. The return value of the called service
Shutdown becomes the return value of the current method doing the delegation.

GOTO I%Parent.Shutdown(T%Status)

 Commands 83

HALT
The HALT command ends the M session.
Format
H{ALT} postcond
Parameters
postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.
Explanation
An unconditional HALT exits from the M session. It unlocks all local and global nodes
that were locked and closes all devices that you own. A process is deleted if it was started
with the JOB command. Otherwise, the process remains active. All unshared objects
cease to exist.

The HALT command has no effect when executed within the EsiObjects Xecute Shell.
Related
CLOSE command

HANG command

LOCK command

QUIT command

 Commands 84

HANG
The HANG command suspends execution for the specified number of seconds.
Format
H{ANG} postcond SP L hangargument
Parameters
postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

hangargument

Can be one of the following:

numexpr
@ expratom V L hangargument

where:
numexpr is the number of seconds for which execution is

suspended (This expression's numeric interpretation is
used.)

Explanation
The HANG command suspends execution for the specified number of seconds. If the
hang value is 0 or less, execution is not suspended.
Comments
Keep the following points in mind when you use the HANG command:

• The abbreviation H also applies to the HALT command, which is always
argumentless. Therefore, the following statement is interpreted as HANG 5:

H 5

• Some underlying platforms round fractional values down to the nearest integer.
Decimal precision can vary on these platforms that do support fractional amounts.

• The pause between HANG operations can be slightly longer than the number of
seconds specified.

Related
HALT command
Examples
The following example illustrates the conventional use of the HANG command to pause
execution for an integer number of seconds (one second in this case).

FOR T%Loop=1:1:10 DO $Env.Output(T%Loop) HANG 1

 Commands 85

In the following example, execution pauses for 0.25 seconds between WRITE
operations. Some underlying M platforms round fractional amounts down to the nearest
integer (0 in this case). If the underlying M platform does not support fractional
arguments, no suspension occurs.

FOR T%Loop=1:1:10 DO $Env.Output(T%Loop) HANG 0.25

 Commands 86

IF
The IF command executes or ignores the remaining statements on the line based on the
true or false value of some conditions.
Format
I{F} SP {L ifargument}

ifargument

Can be one of the following:

tvexpr
@ expratom V L argument

where:
Tvexpr is an expression whose value is interpreted as either true

or false

Explanation
The IF command with defined with no arguments is the opposite of the ELSE command.
Argumentless IF lets execution pass to the rest of the commands on the line only if
$TEST is 1. This form is most commonly used after language elements (other than IF)
that modify $TEST, such as timeouts or the DESTROY command.

With one or more arguments, IF begins to evaluate each of its arguments from left to
right as true or false. If a true argument is encountered, IF sets $TEST to 1 and execution
continues with the rest of the line (including any remaining IF arguments). If a false
argument is encountered, $TEST is set to 0 and the rest of the line (including any
remaining IF arguments) is skipped.
Comments
Keep the following points in mind when you use the IF command:

• IF does not allow a postconditional. The two other commands with line scope,
ELSE and FOR, also do not allow postconditionals.

• Because all the commands conditionalized by IF must fit on a single line,
argumentless DO is sometimes used in the scope of IF to extend its reach beyond
a single line.

• The $TEST special variable is affected by the IF and DESTROY commands and
any time a timeout is encountered. Other conditional operations, such as
postconditionals and $SELECT, do not affect $TEST.

Related
DO command

ELSE command

 Commands 87

$SELECT function

$TEST special variable
Examples
In the following example, the WRITE and QUIT commands are performed only if
DESTROY set $TEST to 1 (in other words, the object was successfully destroyed).

DESTROY T%Object12

IF DO $Env.Output("Object was destroyed.") QUIT

In the following example, the single-argument IF command can be used with the AND
(&) operator to perform some commands only if one or more conditions are true:

IF X>Y&(X>Z) DO $Env.Output("X is higher than Y or Z.")

The multiple-argument IF command is usually equivalent to the use of AND. For
example, the following line of code is equivalent to the preceding example.

IF X>Y,X>Z DO $Env.Output("X is higher than Y or Z.")

The multiple-argument IF does not examine any arguments after the first false one. In
some cases it runs faster than the and (&) form shown previously, and in some cases its
behavior is distinct (in other words, the ignored arguments have side-effects such as
changing the naked indicator, calling extrinsic functions, invoking object methods,
properties, accessors, and so on).

For example, the following line of code always invokes the $Order accessor of the
property Element(T%Loop) of object T%Window, which could have functional side
effects, even if the first part of the condition T%Window.Size>300 is false:

IF T%Window.Size>300&($ORDER(T%Window.Element(T%Loop))'="") DO

$Env.Output("Not finished.")

The previous code is not functionally equivalent to the following line of code because the
second IF argument is not encountered if the first argument is not true:

IF T%Window.Size>300,$ORDER(T%Window.Element(T%Loop))'="" DO $Env.Output("Not

finished.")

 Commands 88

IGNORE
The IGNORE command specifies that one or more events are to be ignored for one or
more objects.
Format
IG{NORE} postcond SP {L iarg}

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.
iarg ::= target {.eleref}

@ expratom V L iarg
eleref ::= Ielem

(L ielem)
ielem ::= Rielem

@ expratom V rielem
rielem ::= $PROPERTIES

$EVENTS
event
property

Explanation
The argumentless form specifies that the object in whose context it executes is no longer
concerned about any events or properties for any objects.

The target, if specified, indicates an object for which events are to be ignored. If only the
target is specified, then all events and properties are ignored for that object.

It is possible to ignore specific events or properties by naming them, to ignore all events
by specifying the special name (not a special variable) $EVENTS, or to ignore all
properties by specifying the special name $PROPERTIES.
Comments
Keep the following points in mind when you use the IGNORE command:

• If a concerned object wants to watch all events except for one about the watched
object, it is not possible to use WATCH $EVENTS and then use IGNORE to
ignore the specific event. Instead, it is necessary to specifically watch those events
about which the object is concerned.

• The concerned object detaches itself from the watched object using the IGNORE
command. There is no detachment mechanism for the watched object to disassoci-
ate itself with one or more concerned objects, but the watched object can choose
not to generate some or all events.

• If the ignored object has used the $WATCHDETECT function, it can be
informed of the fact that it is being ignored.

 Commands 89

Related
EVENT command

WATCH command

$WATCHDETECT function
Examples
The following example causes the current object to ignore all events and properties.

IGNORE

The following example causes the current object to ignore all events and properties for
the object T%Object12.

IGNORE T%Object12

The following example causes the current object to ignore all events for the object
T%Object12.

IGNORE T%Object12.$EVENTS

The following example causes the current object to ignore all properties for the object
T%Object12.

IGNORE T%Object12.$PROPERTIES

The following example causes the current object to ignore the Renamed event for the
object T%Object12.

IGNORE T%Object12.Renamed

The following example causes the current object to ignore the Renamed and
ObjectDeleted events for the object T%Object12.

IGNORE T%Object12.(Renamed,ObjectDeleted)

 Commands 90

JOB
The JOB command calls a body of code to be executed in the context of a separate,
newly created process.
Format
J{OB} postcond SP L jobargument

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

jobargument ::=

dlabel {+offset} {^routineref}
^routineref
label {^rname} (L expr)
^rname (L expr)
@expratom V L jobargument

{: jobparameters}

Explanation
Execution of the current process continues in parallel. When the called code terminates,
the new process is also terminated.

At some point, a final QUIT command occurs in the called code, removing the last
remaining frame from the process stack. When the called code terminates, the new
process also terminates.

An actual parameter list can be specified with the JOB command. The rules are the same
as for parameter passing on the DO command, except that the new process has its own
local variable table and pass by reference is not allowed. Parameters can only be passed
by value.

Special job parameters, determined by the underlying M platform, optionally can be
specified. These affect the creation of the new process. Examples might include setting
the priority of the job or setting the total amount of local variable memory.

In some cases, the system may not have enough slots or memory available to create a
new process. The calling process suspends execution until the new process can be
created. It is possible to specify a timeout on the JOB command, in which case the
attempt to create a new job aborts after the specified number of seconds. Whenever a
timeout is specified, $TEST is always equal to 1 if the operation succeeded, or 0 if it
times out.

 Commands 91

Comments
Keep the following points in mind when passing parameters with the JOB command
(JOB LABEL^ROUTINE(...)):

• Only pass by value can be used when passing parameters. Only a single value is
sent to the formal variable. Therefore, its $DATA value is guaranteed to be 1. If an
attempt is made to specify an undefined variable in the actual parameter list, then
an error occurs.

• There is no way to pass in a local array. The only way to provide an array is to use
subscript indirection to pass a pointer to a global array to be accessed by the job.

• If the formal parameter list is longer than the actual parameter list, the omitted
formal parameters are undefined and have $DATA values of 0. If the actual
parameter list is longer than the formal list, then an error occurs.

Related
DO command

QUIT command

$JOB special variable

$TEST special variable
Examples
The following example creates a new job with a call to the label START in the routine
PQUEUE.

JOB START^PQUEUE

The following example shows how to use JOB with a parameter list to specify important
values for the newly created process.

JOB START^PQUEUE(T%File,I%Printer)

 Commands 92

KILL
The KILL command destroys a variable or an array node and all its descendants.
Format
K{ILL} postcond SP {L killargument}

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

killargument

Can be one of the following:

glvn
(L local)
object . property
@ expratom V L argument

where:
glvn is a global or local variable name or array node included in

the kill
local is a local variable name to be excluded from the kill
object is the object reference of an object
property is the name of a property to be killed for that object

Explanation
There are three forms of the KILL command:

• Inclusive - Removes the specified variable names, array nodes, or both. If the
target has descendant array nodes, these are also removed. This is the most
common form and the one most consistent with the paradigm of EsiObjects.

• Exclusive - Removes all local (L%) variables except those enclosed in
parentheses. Use of the exclusive form is discouraged.

• Argumentless - Removes all local (L%) variables. Not currently supported in
EsiObjects.

When a variable or array node is killed, all descendant array nodes are also removed, for
example:

KILL ^MYGLO(22,1)

When the argument of KILL is of the form object.property, the Kill accessor for that
property is automatically invoked in an attempt to kill the property. This is a method in
whose context the $RETURN special variable's value equals 1 by default. If the method

 Commands 93

returns 1 or any other true value, an event is triggered by the dispatch mechanism. If the
method returns a 0, it means that the property was not killed and no event is triggered.

Handlers of the event automatically triggered by a successful return of the Kill accessor
must accept four parameters in their formal parameter list. These parameters are
described in the following table.
Parameter Description
Object The object reference of the object containing

the property.
Property The full property name, of the form

interface::name.
Callframe Object An object that can optionally be used to inquire

into the parameters that were passed in.
Operation SET or KILL commands.

Comments
Keep the following points in mind when you use the KILL command:

• Killing a handle to an object does not destroy the object. Use the DESTROY
command instead.

• Only local variable names are allowed inside the parentheses of an exclusive
KILL command. Local array nodes are not allowed.

• There is never a need to use the exclusive and argumentless forms of KILL in
EsiObjects. Local (L%) variables can be made temporary by using the NEW
command. They automatically are destroyed when a QUIT occurs at the same
stack frame level. Accessor (T%) variables can be used in place of local variables,
causing them to be scoped within a single code body.

• Any time a variable or array node is killed, all descendant array nodes are also
removed. If the target did not exist in the first place, KILL has no effect.
Therefore, using the $DATA function on a symbol immediately after a KILL
command has been applied to it always yields the return value 0.

Related
DESTROY command

NEW command
Examples
The following example uses the KILL command to explicitly destroy the instance
variables I%Height and I%Width.

KILL I%Title,I%Name

The following example kills the symbol T%Customer, a handle to a window object. It has
no effect on the object referenced by that handle.

KILL T%Customer

 Commands 94

The following example uses DESTROY, instead of KILL, which attempts to kill the
symbol T%Employee and destroy the object it references. Afterwards, argumentless IF is
used to test the results of the DESTROY operation. If $TEST is true, it means that the
object was destroyed and T%Employee was killed. Note that unlike KILL, the
DESTROY command does not kill any descendant array nodes of T%Employee.

DESTROY T%Employee

ELSE DO $Env.Output("Warning: "_T%Employee.Name_" not destroyed.") Q

.

.

.

Killing a property invokes the Kill accessor. For example, the following code invokes the
Kill accessor for the Visit property of the object T%Object12.

KILL T%Object12.Visit($HOROLOG,T%Txnum)

Assuming that this method is able to successfully accomplish its task, it returns some true
value such as 1. In that case, an event is triggered. This event includes the following
parameters:

• Object

• Full property name

• Callframe object

• Operation

The following code can be used to handle this event. If the $HOROLOG value specified
in the first parameter indicates today's date, the handler exits. Otherwise, it gets the
remaining parameters and calls the LOG subroutine to make note of the event.

HANDLE(T%Object,T%Property,T%CFO,T%Oper) ; Handle assign/kill

IF +(T%CFO.Parameter(1))=+$HOROLOG QUIT ; Exit if it is today

SET T%Value=T%CFO.Parameter(2)

DO LOG(T%Value,T%Oper)

QUIT

 Commands 95

LOCK
The LOCK command provides a convention whereby concurrent processes can avoid
conflicts caused by simultaneous attempts to update the same variable.
Format
L{OCK} postcond SP {L lockargument}

postcond ::= { : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth of this expression.

lockargument ::=

+
-

nref
(L nref)

{: timeout}

@ expratom V L lockargument

The syntax element nref is a name reference, frequently the name of a global array node.
Name indirection is allowed.
Explanation
The LOCK command is a tool for establishing conventions where concurrently
executing processes can avoid coming into conflict when they attempt to modify the
same data. LOCK makes an entry in a system lock table, preventing other processes from
locking the same data until it is unlocked. LOCK does not prevent other processes from
modifying or destroying data; it only prevents them from locking the same data. As such,
it provides no guarantee that other processes are not coming into conflict with the locked
data.

When a name is locked, an entry for that name is made in the lock table. This entry
prevents other processes from locking the same name or any ancestor or descendant of
that name.

There are several different forms of the LOCK command. Use only the incremental and
decremental forms in EsiObjects. The older forms of LOCK can violate object
encapsulation by affecting locks made internally by other objects.

• Incremental - Incremental LOCK prefixes the name (or list of names in
parentheses) with the plus (+) sign. It adds a lock to each specified name without
removing any locks. If the locked name is not already in the lock table for the
current process, it attempts to lock that name. If the current process already locks
the name, it adds 1 to the number of locks of that name.

• Decremental - Decremental LOCK prefixes the name (or list of names in
parentheses) with the minus (-) sign. If a locked name is in the lock table for the
current process, it decrements the number of locks for that name without affecting
other locks. When the number of locks of a name reaches 0, that name is unlocked.

• Argumentless - Argumentless LOCK removes all lock table entries for the current
process. It is not recommended for use in EsiObjects.

 Commands 96

• Single-name - Single-name LOCK removes all lock table entries for the current
process before attempting to lock the specified name. It is not recommended for
use in EsiObjects.

• Multiple-name - Multiple-name LOCK is expressed as a list of names enclosed in
parentheses to lock. It removes all lock table entries for the current process before
attempting to lock these names, one after another, from left to right. It is not
recommended for use in EsiObjects.

Comments
Keep the following points in mind when you use the LOCK command:

• Only the incremental and decremental forms of LOCK are recommended for use
in EsiObjects.

• LOCK can optionally include a timeout. When present, the timeout causes LOCK
to abort after waiting at least the specified number of seconds for the names to
become available. $TEST is set to 1 if all the specified names were successfully
locked, or to 0 if not all the locks were successfully completed. ELSE or
argumentless IF can be used to check whether the timeout period expired.

• There is never any reason to use a timeout on a decremental lock.

• Note that the following form of LOCK is dangerous. If the timeout period expires,
it is impossible to tell which globals were locked and which were not. For
example, it is possible that ^X and ^Y were locked, but not ^Z. Alternatively, none
of the globals may have been locked. This makes it impossible to know which
globals to decrementally unlock.

LOCK +(^X,^Y,^Z):3

• If each code body is responsible for incrementally locking and then decrementally
unlocking the names with which it is concerned, then it is easy to isolate locking
responsibility. A dangerous situation arises when subroutines, functions, and
especially object services begin to create a web of lock dependencies.

Related
ELSE command

IF command
Examples
The following example illustrates the use of incremental and decremental lock to add a
new entry to a list in global ^XYZ. The list's last-entry pointer is located at array node
^XYZ(0). The programmer who wrote this code has decided that this node is the only
place where processes come into conflict. For this reason the array node
^XYZ(T%EntryNumber) is not locked, though it would not be incorrect to do so.

The question of when to lock versus when not to lock is an important programming issue.
Also note that the incremental and decremental locks have been placed as close together
as possible to minimize the length of time that other processes have to wait for ^XYZ(0)
to become available.

 Commands 97

LOCK +^XYZ(0)

SET (T%EntryNumber,^XYZ(0))=^XYZ(0)+1

LOCK -I%List(0)

SET ^XYZ(T%EntryNumber)=T%EntryValue

The following example is a modification of the previous example. It illustrates the
repeated use of incremental lock with a timeout to provide feedback to the user that an
attempt to lock the node is in progress. After 30 seconds, the process is abandoned.

DO $Env.Output("Locking")

FOR T%Loop=1:1:10 DO $Env.Output(".") LOCK +^XYZ(0):3 IF QUIT

ELSE DO $Env.Output("Node is busy. Aborting.") QUIT

SET (T%EntryNumber,^XYZ(0))=^XYZ(0)+1

LOCK -I%List(0)

SET ^XYZ(T%EntryNumber)=T%EntryValue

 Commands 98

MERGE
The MERGE command performs a nondestructive array-copy operation, copying an
array node and all its descendants to a new location.
Format
M{ERGE} postcond SP L mergeargument

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

mergeargument

Can be one of the following:

glvndest = glvnsource

@ expratom V L argument

where:
glvndest is the destination array node (The contents of the

source array node are copied into this location without
automatically destroying any information that may be
contained there or in descendant array nodes.)

glvnsource is the source array node (The contents of this array
node are copied to the destination array subtree.)

Explanation
If array nodes already exist in the destination location, then those not explicitly
overwritten by source nodes are not affected. If the source location's $DATA value is 0,
then MERGE has no effect. If its $DATA value is 1, then MERGE is identical to SET.

An error results if the destination array is a subtree of the source array.

In the following example, note the starting state of the two arrays I%Elements and
T%Temp. In the following diagrams, filled circles represent array nodes containing
values (have $DATA values of 1 or 11) and open circles do not contain values (have
$DATA values of 10).

MERGE T%Temp=I%Elements(22)

Following the MERGE command, I%Elements remains unchanged.
Comments
Keep the following points in mind when you use the MERGE command:

• The MERGE command can copy a large number of array nodes. However, it can
be expensive to execute and should not be used gratuitously. Note that MERGE is

 Commands 99

much faster than copying all descendant array nodes with a FOR loop and
repeated SET commands.

• Some features of EsiObjects and the underlying M platform have not been
implemented fully. When certain SSVNs or logical object structures are copied
with MERGE, the destination array can contain only those nodes physically
present in the source structure at the moment the MERGE operation occurs. Some
sparsely allocated information cannot show up in the destination array (this
behavior is likely to change in the future).

Related
KILL command

SET command
Examples
In the following example, the contents of the array T%SRC(22,17) are merged into
T%DEST. Therefore, if the node T%SRC(22,17,0) exists, it is copied into T%DEST(0),
and so on.

MERGE T%DEST=T%SRC(22,17)

The following example guarantees that the destination array T%DEST("Name") is an
exact copy of the source array T%SRC("Info") by first killing the destination array.

KILL T%DEST("Name")

MERGE T%DEST("Name")=T%SRC("Info")

 Commands 100

NEW
The NEW command preserves the states of certain local variables to be restored when a
QUIT pops the current stack frame level.
Format
N{EW} postcond SP {L newargument}

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth of
this expression.

newargument

Can be one of the following:

local
(L local)
@ expratom V L newargument

where:
local is a local (L%) variable name (array nodes are not

allowed) whose current state is to be copied onto the
process stack

Explanation
There are three forms of the NEW command:

• Inclusive - The most common form and the one most consistent with the paradigm
of EsiObjects.

• Exclusive - A rare form of the NEW command whose use is discouraged. The
purpose of this form is to remove all local (L%) variables except those enclosed in
parentheses. The only time to use this form is when calling volatile external M
code that is likely to use the exclusive KILL command, or to otherwise
accidentally interfere with internal symbols required by EsiObjects.

• Argumentless - Not currently supported in EsiObjects, the purpose of the
argumentless NEW is to remove all local (L%) variables.

 Commands 101

The NEW command preserves the state of one or more local variables by copying them
onto the stack so they can be restored later. When the NEW command acts on a local
variable, it is as though the following actions were performed:

• 1. An entry was made on the top frame of the process stack, recording the
name of the local variable.

• 2. If the variable exists, its current value (and the values of all descendant
array nodes) is copied onto the top frame of the process stack.

• 3. The variable is killed.
For all local variables to be restored, when QUIT terminates execution at the current
stack frame level before returning to the calling code context, it checks the top stack
frame to see if their values (and the values of any descendant array nodes) are recorded
there. If the values are recorded, then these values are restored.

If the NEW command operates on an undefined variable, that variable's value is
undefined again after the QUIT, regardless of any operations that have been performed
on it in between.
Comments
Keep the following points in mind when you use the NEW command:

• When a NEW command is encountered, some underlying M platforms physically
copy the entire contents of the affected local variables onto the stack, while other
platforms do not. Some platforms temporarily experience an increase in local
variable memory, while other platforms see a decrease. In either case, the result is
a net loss of space. Overuse of the NEW command can cause an error by
overstepping the limits of available memory.

• Some implementations of error processing clear the stack, thereby restoring the
states of any local variables stacked with NEW. The 1995 ANSI M Standard error
processing constructs do not have this effect.

Related
KILL command

QUIT command
Examples
The following example uses the NEW command to preserve the states of the local
variables X, Y, and Z.

NEW L%X,L%Y,L%Z

 Commands 102

OPEN
The OPEN command gains exclusive ownership of a device, allowing the current
process to send output to, and/or to read input from that device.
Format
O{PEN} postcond SP L openargument

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth of
this expression.

openargument

Can be one of the following:

expr {: {deviceparameters} {: {timeout} {: mnemonicspec}}}
@ expratom V L argument

where:
deviceparameters ::= deviceparam

(deviceparam {:deviceparam }...)
deviceparam ::= expr

devicekeyword
deviceattribute = expr

Timeout is the number of seconds to wait before giving up if
the device does not become available (Whenever a
timeout expires, $TEST is set to 1 if the operation was
successful, or to 0 if it failed.)

Mnemonicspec ::= mnemonicname
(L mnemonicname)

Explanation
No other process can open the same device until ownership is relinquished with the
CLOSE command. If an attempt is made to open a device owned by another process, the
current process hangs until the device is released, or until a specified timeout period
expires. Whenever a timeout expires, $TEST is set to 1 if the operation is successful, or
to 0 if it fails.

A variety of device parameters and mnemonic specifiers can be specified. These depend
on the capabilities of the device in question and on the underlying M platform.
Comments
Keep the following points in mind when you use the OPEN command:

 Commands 103

Device names and their meaning are highly dependent on the specific M platform.
Consult your Programmers Reference Guide for further details.

• Mnemonic names (mnemonicname) are specific to the underlying M platform.

• When attempting to open a device that may be owned by another user, it is often a
good idea to use a timeout in case the device is unavailable for an extended period
of time. In some cases, the user may be asked whether to give up the process or to
wait until the device becomes unavailable.

• After ownership of a device has been established with OPEN, it is still necessary
to make the device current before attempting any input/output (I/O) operations on
that device. The USE command sets the current device.

• Multiple device parameters are enclosed in parentheses, separated by colons.
Multiple mnemonic specifiers are enclosed in parentheses, separated by commas.

Related
CLOSE command

READ command

USE command

WRITE command

$TEST special variable
Examples
The following DSM example attempts to open a device for up to 30 seconds before
giving up. If the operation is successful, the following occurs:

• Lines of text are read from a file whose identifier is in the variable T%File.

• The lines are echoed to the principal device ($PRINCIPAL) until a blank line is
encountered.

• The file is closed.
DO $Env.Output("Opening Device "_T%File)

FOR T%Loop=1:1:10 DO $Env.Output(".")OPEN T%File::30 IF QUIT

ELSE DO $Env.Output("Device "_%File_ is unavailable.") QUIT

FOR DO QUIT:T%Line=""

. USE T%File

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%File

QUIT

 Commands 104

The following MSM example attempts to open the HFS file server device for up to 30
seconds before giving up. If the operation is successful, the following occurs:

• Lines of text are read from a file whose identifier is in the variable T%File.

• The lines are echoed to the principal device ($PRINCIPAL) until a blank line is
encountered.

• The file is closed.
SET T%Dev=51

OPEN T%Dev:(T%File,"R")::30

ELSE DO $Env.Output("Unable to access HFS") QUIT

FOR DO QUIT:T%Line=""

. USE T%Dev

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%Dev

QUIT

 Commands 105

PRESERVE
The PRESERVE command increments the internal reference count of an object
reserving it from destruction by the DESTROY command.
Format
PRE{SERVE} postcond SP L preserveargument

postcond ::= { : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.
preserveargument ::= expr V oref

@ expr V preserveargument

The argument of PRESERVE is an object reference.
Explanation
The PRESERVE command does the following:

• If the argument is not an oref, or references an object that does not exist, no action
occurs.

• If the argument contains an oref of an existing object, that object's internal
reference count is incremented by one.

Within the context of an object, the objects internal reference count can be incremented
or retrieved using the $REFERENCE special variable.
Comments
Keep the following points in mind when you use the PRESERVE command:

• When using the DESTROY command to destroy an object, the following occurs:

− First the object’s internal reference count is decremented.

− Next, the destroy action quits if the reference count is one or greater. No
further action is taken.

− If the reference count goes to zero, the destruction of the object proceeds
normally and the DESTROY method will be called if it exists.

• The PRESERVE command simply increments the objects internal counter and
has no other side effects.

• For every application of the PRESERVE command to increment an object’s
internal reference count, a cooresponding DESTROY command must be applied
to decrement that count. Only on the destroy action that decrements the count to
less than one will the actual destroy take place.

• When the CREATE command creates an object, the internal reference count is set
to one. You do not have to apply the PRESERVE command at object creation.

 Commands 106

Please note that the PRESERVE command has no effect on a virtual object, because
virtual objects have no state.
Related
CREATE command

KILL command

$REFERENCE special variable

DESTROY command

$TEST special variable
Examples
The following example increments the internal reference count of the object referenced
by the symbol T%SharedObject.

PRESERVE T%SharedObject

 Commands 107

QUIT
The QUIT command terminates the stack level, recording the execution context as
recorded on the top process stack frame.
Format
Q{UIT} postcond SP {quitargument}

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth of
this expression.

quitargument

Can be one of the following:

expr
@ expratom V expr

where:
expr Is an expression (The expression's value determines

the return value of the current extrinsic function.)

Explanation
The QUIT command terminates execution of the current subroutine or extrinsic function.
Inside the scope of the FOR command, QUIT terminates iteration and exits the FOR
loop. Inside a block, QUIT exits the current dot indent level, returning control to the
calling argumentless DO level.

The argument of a QUIT command that terminates an EsiObjects method, property
accessor or event handler is automatically assigned to the special variable $RETURN. If
no argument is specified, then $RETURN is used as the return value.

When QUIT terminates a stack frame created by DO or XECUTE, execution resumes
immediately to the right of the DO or XECUTE argument that created the stack frame. If
the DO was argumentless, execution resumes with the next command following the DO.
In the case of an extrinsic function or value-returning object-with-service call, a value is
returned into the context of an expression, and the evaluation of that expression is
resumed. When QUIT is encountered in the scope of (on the same line and to the right
of) FOR, execution of the innermost FOR loop is terminated.

If the current process is an application-mode process or a background process created by
the JOB command, execution of the final QUIT, removing the last frame from the
process stack, terminates the process.

 Commands 108

The QUIT command does not allow the conventional form of argument indirection. Note
that the syntax is @expr, not @quitargument. The implication is that the following
example, which intends to return the value 2, is legal:

SET Result="Y-2",Y=4

QUIT @Result

But the following example, which intends to return the value 5, may not be legal for some
underlying M platforms:

SET Result="Y_Z",Y="X+2",Z="-1",X=4

QUIT @@Result

Comments
Keep the following points in mind when you use the QUIT command:

• In the case of an extrinsic function or value-returning object-with-service call, a
value is returned into the context of an expression, and the evaluation of that
expression is resumed. One difference between the two cases is that QUIT has an
argument in an extrinsic function, and is argumentless in the code body that
implements an object service.

• The argumentless QUIT must be followed by two spaces before a comment or
other command that follows it on the same line. Do not confuse a postconditional
with the argument of the QUIT command.

Related
Extrinsic functions

DO command

FOR command

XECUTE command
Examples
The argument of a QUIT command that terminates an EsiObjects method, property
accessor or event handler is automatically assigned to the special variable $RETURN. If
no argument is specified, then $RETURN is used as the return value. Thus the example
below…

SET $RETURN=T%Value

QUIT

…could be expressed more succinctly by the following example…

QUIT T%Value

The following example illustrates the use of QUIT in a recursive extrinsic function (in
other words, one that calls itself). This example implements the mathematical factorial
operation. For example, 5 factorial (written 5!) equals 5*4*3*2*1. It is generally true that
n! equals n*(n-1)!, and that 0! equals 1.

 Commands 109

FACT(T%N) ; Return L%N factorial

IF T%N<0!(T%N\1'=T%N) QUIT ""

IF T%N=0 QUIT 1

QUIT T%N*$$FACT(T%N-1)

The factorial operation only applies to nonnegative integers, so the first IF command
causes NULL ("") to be returned when T%N is not a nonnegative integer. The second IF
command handles the special case where T%N equals 0. The QUIT on the third line
handles the general case where T%N! equals T%N*(L%N-1)!.

 Commands 110

READ
The READ command reads input from the current device and can send simple output.
Traditionally, the READ command has been used with dumb terminal devices.
EsiObjects does not support these devices. When the READ command is used, it is
usually used to read from an external device other than a dumb terminal.
Format
R{EAD} postcond SP L readargument

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.
Readargument ::= strlit

 format
 glvn {# intexpr} {: timeout}
* glvn {: timeout}
@ expratom V L readargument

Explanation
There are a variety of different forms of the READ command.
String literal A string or numeric value to be sent as output. Note that, in

contrast to WRITE, an expression cannot be specified in a
READ argument.

Format control A format control parameter, whose exact behavior can be
device dependent, and can have any one of the following
formats:

 # Issues a form feed.
 ! Issues a return (CR+LF

combination).
 ?integer Attempts to move the input position

forward on the current device by
writing spaces until $X equals the
specified integer. If $X is not less
than this value, no action occurs.

 /controlmnemonic Performs a special device operation
defined by the specified control
mnemonic.

Variable name A variable name. The input value is stored in the specified
variable. The read operation can optionally be modified by the
following constructs:

 Commands 111

 # intexpr The maximum number of characters
to read. The read process
terminates when this many
characters are read, guaranteeing
that the variable does not contain
more characters. If a timeout occurs
or a return is encountered, the
variable contains fewer characters.

 :timeout The maximum number of seconds
to pause between characters.
$TEST is 1 if no timeout occurred, 0
if a timeout occurs.

 * A single character is read from the
current device. The variable
contains the ASCII value of that
character, or 1 if a timeout occurs.

Comments
If specified, the maximum number of characters to read must be an integer greater than 0.
Negative values can cause errors. Noninteger values are interpreted as integers. For
example, the following two lines are equivalent:

READ T%X:"5.6Hello"

READ T%X:5

Related
WRITE command

$IO special variable

$X special variable
Examples
If a READ argument is a string or format control parameter, it is used for output
purposes. If the argument is a variable name, it is used as a place to store input. These
two forms are used in combination in the following example, which asks the user for an
entry, storing the result in the variable T%EntryNumber and issuing a return after the
user has typed a response:

READ "Entry: ",T%EntryNumber,!

Entry: Sockets

 Commands 112

The following code reads lines of text from a file whose identifier is in the variable
T%File and echoes those lines to the principal device ($PRINCIPAL) until a blank line
is encountered. Then the file is closed.

OPEN T%File::10

ELSE DO $Env.Output("Device "_T%File_" is unavailable.") QUIT

FOR DO QUIT:T%Line=""

. USE T%File

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%File

QUIT

 Commands 113

SET
The SET command assigns the value of a variable (or some other SET destination).
Format
S{ET} postcond SP L setargument

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.
setargument ::= setleft

(L setleft)
= expr

 @ expratom V L setargument

where:
setleft ::= glvn

$D{EVICE}
$EC{ODE}
$ET{RAP}
$K{EY}
$X
$Y
$E{XTRACT} (glvn{,intexpr1{,intexpr2}})
$P{IECE} (glvn,expr1{,intexpr1{,intexpr2}})
object.property

Explanation
The following is the most common form of SET:

SET variable=value

In this format, the variable (or array node) is dynamically created if it did not exist yet. If
it already existed, its old value is overwritten. Existing array descendants are not affected.

The first line in the following example assigns the value of variable T%Done and the
second line assigns the value of the subscript named by the variable T%Loop inside the
array I%Elements.

SET T%Done=1

SET I%Elements(T%Loop)=""

It is also possible to set the values of certain special variables. For example, the
constructs SET $Y and SET $X are used to modify EsiObjects' notion of the current row
and column positions, respectively.

DO PLOT(T%Row,T%Column) ; Set actual cursor position

SET $X=T%Column,$Y=T%Row

SET $EXTRACT is used to replace one or more character positions of a variable's
contents without affecting the rest of the string. If the variable does not yet exist, it is

 Commands 114

given a starting value of NULL (""). If the number of characters in the existing string is
less then the starting character position, extra space characters are added as necessary.

SET T%String="ABCDEFG"

SET $EXTRACT(T%String,3,5)="*"

DO $Env.Output(T%String)

Results: AB*FG

SET $PIECE is used to replace one or more delimited pieces of a variable's contents
without affecting the rest of the string. If the variable does not yet exist, it is given a
starting value of NULL (""). If the number of pieces in the existing string is less then the
starting piece position, extra delimiters are added as necessary.

SET T%String="one/two/three/four/five/six/seven"

SET $PIECE(T%String,"/",3,5)="*"

DO $Env.Output(T%String)

Results: one/two/*/six/seven

Entire SET arguments are evaluated one after another in left-to-right order. Within one
SET argument, the following order of evaluation applies:

1. If array subscripts or indirect references are found to the left of the equals sign
(except in SET $PIECE and SET $EXTRACT arguments other than the first
argument), those array subscripts and indirect references are evaluated.

2. The expression to the right of the equals sign is evaluated.

3. The resulting value is assigned to the destinations on the left side of the equals
sign. If there is more than one destination, they are assigned in left-to-right
order.

When the SET destination on the left side of the equals sign is of the form
object.property, the Assign accessor for that object is invoked. This is a method in whose
context $RETURN defaults to 1. If the method returns 1 or some other true value, it
means that the assignment operation was successful; an event is then triggered. If the
method returns 0 or some other false value, it means that the assignment operation was
not successful; no event is triggered.

Handlers of the event automatically triggered by a successful return of the Assign
accessor must accept four parameters in their formal parameter list as follows:

• Object - The object reference of the object containing the property.

• Property - The full property name, of the form interface::name.

• Callframe object - An object that can optionally be used to inquire into the
parameters that were passed in.

• Operation - SET or KILL commands.

 Commands 115

Comments
In assigning values to variables, the variable need not be defined prior to setting it. The
process of assignment dynamically creates the variable if necessary, or overwrites any
existing value. This is also true when using the SET $PIECE and SET $EXTRACT
constructs, which both assume a starting value of NULL ("") if the variable did not exist.
Related
$EXTRACT function

$PIECE function

$DEVICE special variable

$ECODE special variable

$ETRAP special variable

$KEY special variable

$X special variable

$Y special variable
Examples
The first line in the following example assigns the value 1 to the variable T%Done.

SET T%Done=1

The multiple-destination SET command can be used to assign the same value to more
than one destination in a single operation. A list of destinations on the left side of the
equals sign is enclosed in parentheses. The following example sets the instance variables
I%Height and I%Width to 0.

SET (I%Height,I%Width)=0

In the following example, the construct SET $ETRAP is used to specify a line of code to
be invoked in the event of an error.

SET $ETRAP="DO ERRHNDL^MYRTN(""READFILE"")"

SET $EXTRACT is used to replace one or more character positions of a variable's
contents without affecting the rest of the string. In this example, characters 3 through 5 of
the string in T%String are replaced with an asterisk (*).

SET T%String="ABCDEFG"

SET $EXTRACT(T%String,3,5)="*"

DO $Env.Output(T%String)

Results:AB*FG

If the variable does not yet exist, it is given a starting value of NULL (""). If the number
of characters in the existing string is less then the starting character position, extra space
characters are added as necessary. In the following example, the variable T%String is

 Commands 116

undefined, and character position 5 is replaced with the string "Text". To achieve this,
four spaces are automatically placed at the start of the string.

KILL T%String

SET $EXTRACT(T%String,5)="Text"

DO $Env.Output(T%String)

Results: Text

SET $PIECE is used to replace one or more delimited pieces of a variable's contents
without affecting the rest of the string. In this example, pieces 3 through 5 of the string in
T%String are replaced with an asterisk (*).

SET T%String="one/two/three/four/five/six/seven"

SET $PIECE(T%String,"/",3,5)="*"

DO $Env.Output(T%String)

Results: one/two/*/six/seven

If the variable does not exist yet, it is given a starting value of NULL (""). If the number
of pieces in the existing string is less then the starting piece position, extra delimiters are
added as necessary. In this example, the variable T%String is undefined, and "." piece 5
is replaced with the string Text. To achieve this, four periods are automatically placed at
the start of the string.

KILL T%String

SET $PIECE(T%String,".",5)="Text"

DO $Env.Output(T%String)

Results:Text

The following example uses a FOR loop with the one-argument $LENGTH, SET
$PIECE, and $EXTRACT to produce a string in which the individual characters of the
string EsiObjects become comma-delimited pieces in the variable T%String. After these
lines have been executed, T%Result should contain the string "E,s,i,O,b,j,e,c,t,s".

SET T%Result="",T%String="EsiObjects"

FOR T%Loop=1:1:$LENGTH(T%String) DO

. SET $PIECE(T%Result,",",T%Loop)=$EXTRACT(T%String,T%Loop)

The following extrinsic function performs a search-and-replace operation on a string,
sending back the transformed string as its return value. It uses the two-argument
$LENGTH to measure the number of pieces in the source string, and uses $PIECE and
SET $PIECE to do the replacement operation.

REPL(L%String,L%From,L%To) ; Replace L%From with L%To in L%String

NEW L%Iter,L%Result,L%Length

IF L%From="" QUIT ""

SET L%Length=$LENGTH(L%String,L%From)

IF L%To="" SET L%Result="" FOR L%Iter=1:1:L%Length DO

. SET L%Result=L%Result_$PIECE(L%String,L%From,L%Iter)

ELSE FOR L%Iter=L%Length:-1:1 DO

. S $P(L%Result,L%To,L%Iter)=$P(L%String,L%From,L%Iter)

QUIT L%Result

 Commands 117

The following expression should return the string EsiObjects Language for EsiObjects
Programming:

$$REPL("M Language for M Programming","M","EsiObjects")

Setting a property's value invokes the Assign accessor method. For example, the
following code invokes the Assign accessor method for the Visit property of the object
T%Object12:

SET T%Object12.Visit($HOROLOG,T%Txnum)=10

Assuming that the Assign accessor method is able to successfully assign the value 10, it
returns some true value such as 1. In this case, an event is triggered. The event includes
the following parameters:

• Object

• Full property name

• Callframe object

• Operation
The following code might be used to handle this event. If the $HOROLOG value
specified in the first parameter indicates today's date, the handler exits. Otherwise, it gets
the remaining parameters and calls the LOG subroutine to make note of the event.

HANDLE(T%Object,T%Property,T%CFO,L%Oper) ; Handle assign/kill

IF +(T%CFO.Parameter(1))=+$H Q ; Exit if it is today

SET T%Value=CFO.Parameter(2)

DO LOG(T%Value,T%Oper)

QUIT

 Commands 118

USE
The USE command is used to set the current input device to some owned device.
Format
U{SE} postcond SP L useargument

postcond ::= { : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.

useargument

Can be one of the following:

expr {: {deviceparameters} {: mnemonicname}}
@ expratom V L argument

where:
deviceparameters ::= Deviceparam

(deviceparam{:deviceparam}...)
deviceparam ::= Expr

Devicekeyword
Deviceattribute = expr

Explanation
The USE command is used to set the current input device $IO to some owned device.
The argument of the USE command must be a device that is owned by the current
process, optionally followed by device parameters and/or a mnemonic name appropriate
to that device. If this optional information is not specified, default values are assigned by
the underlying M platform.
Comments
Keep the following points in mind when you use the USE command:

• Only a device already owned by the current process can be specified in the
argument of USE. The OPEN command is used to gain ownership of a device.
The principal device ($PRINCIPAL) is automatically owned at login (except in
the case of certain background processes not tied to any device).

• Multiple device parameters are enclosed in parentheses, separated by colons.

• Device 0 is synonymous with $PRINCIPAL. Therefore, note the following
command:

• USE 0

 Commands 119

The previous command is equivalent to the following:

• USE $PRINCIPAL

• The USE command affects the special variables $IO, $KEY, $X, $Y, and
$DEVICE, whose values are all determined by the current device.

Related
CLOSE command

OPEN command

READ command

WRITE command

$DEVICE special variable

$IO special variable

$KEY special variable

$PRINCIPAL special variable

$X special variable

$Y special variable
Examples
The following DSM example reads lines of text from a file whose identifier is in the
variable T%File. It echoes these lines to the principal device ($PRINCIPAL) until a
blank line is encountered. Then the file is closed. The USE command is invoked
repeatedly to set the current device so that line after line can be read first from the file
and then can be displayed on the principal device.

OPEN T%File::30

ELSE DO $Env.Output("Device "_T%File_" is unavailable.") QUIT

FOR DO QUIT:T%Line=""

. USE T%File

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%File

QUIT

 Commands 120

The following MSM example attempts to use the HFS file server device for up to 30
seconds before giving up. If the operation is successful, the following occurs:

• Lines of text are read from a file whose identifier is in the variable T%File.

• The lines are echoed to the principal device ($PRINCIPAL) until a blank line is
encountered.

• The file is closed.
SET T%Dev=51

OPEN T%Dev:(T%File,"R")::30

ELSE DO $Env.Output("Unable to access HFS")

FOR DO QUIT:T%Line=""

. USE T%Dev

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%Dev

QUIT

 Commands 121

WATCH
The WATCH command specifies that one or more events are to be watched for one or
more objects.
Format
WA{TCH} postcond SP {L warg}

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.
warg ::= target.weleref@expratom V L warg
weleref ::= ielem:vector

(L ielem:vector)
ielem ::= Rielem

@expratom V rielem
rielem ::= $PROPERTIES

$EVENTS
event
property

vector ::= label{^{interface::}method}

Explanation
It is possible for the WATCH command to watch specific events or properties by naming
them, to watch all events by specifying the special name (not a special variable)
$EVENTS, or to watch all properties by specifying the special name $PROPERTIES.
The target argument indicates an object for which events and properties are to be
watched.

Each time a watch is specified, a callback vector must be named. This vector must be a
public label in the specified method (or the current method if none is specified). The
method is assumed to be in the primary interface for the current class, unless another
interface is specified.
Property Watches
When watching $PROPERTY or a specific property, the format for the associated label
within the specified method is as follows:

(Public)LABEL(Object,Property,CallFrame,Action,Value) ;

 Commands 122

The following table describes the valid parameters. These values are passed into the
method when the event is fired.
Parameter Description
Object The object reference of the object containing

the property.
Property The full property name in the form

interface::propertyname.
Callframe An object that can optionally be used to inquire

into the parameters that were passed in. This
object is the callframe object. It is always null
when the DEAD event type is specified.

Action "PRESET", "SET", "SETREJECT",
"PREKILL", "KILL", "KILLREJECT" or
"DEAD" identifies the event type.

Value When a property value is actually changed
through a SET command, the value it is set
to will be passed back. This applies to the
PRESET and SET actions.

One useful property of the Callframe object is CancelAction. If this property is set to 1
(Set obj.CancelAction=1) for the Action types PRESET and PREKILL, the setting or
killing of the property will be aborted.
Event Watches
When watching $EVENTS or a specific event, the format for the associated label within
the specified method is as follows:

(Public)LABEL(Object,Event,…) ;

The first two parameters always present by default and are described below.
Parameter Description
Object The object reference of the object firing the

event.
Event The full name of the event in the form

interface::eventname.

Any additional parameters passed into the handler are those specified on the EVENT
command.

When a watched object is destroyed via the DESTROY command, the system will
automatically generate a ObjectDead event. This is useful in cases where it is important
to know when objects are destroyed so that some action can be taken. This event can be
watched in the normal fashion using the WATCH command.
Comments
Keep the following points in mind when you use the WATCH command:

 Commands 123

• If a concerned object wants to watch all events except for one about the watched
object, it is not possible to use WATCH $EVENTS and then use the IGNORE
command to the specific event. Instead, it is necessary to specifically watch those
events about which the object is concerned.

• If a concerned object is watching $PROPERTIES and a single property, it is
informed twice when an event for that property is triggered.

• If the watched object has used the $WATCHDETECT function, it can be
informed that it is being watched.

• The label used to handle an event must be public. It must be able to handle at least
two parameters:

• OBJECT - An object reference to the watched object.

• MESSAGE - The name of the event or property that was triggered by the EVENT
command.

• An example of a public label would be:

(PUBLIC)BEVENT(OBJ,MSG) ;

• However, many events send additional parameters, and the handler's formal
parameter list must not declare fewer parameters then are sent with the event.

Related
Method structure

EVENT command

IGNORE command

$WATCHDETECT function
Examples
The following example causes the current object to watch all events for the object
T%Object12. The handler for an event from this object is the label MODIFY in the
method Update that is part of the primary (default) interface.

WATCH T%Object12.$EVENTS:MODIFY^Update

The following example causes the current object to watch all properties for the object
T%Object12. The handler for a property from this object is the label MODIFY in the
method Update.

WATCH T%Object12.$PROPERTIES:MODIFY^Update

The following example causes the current object to watch the Renamed event for the
object T%Object12. The handler for this property is the label MODIFY in the method
Update.

WATCH T%Object12.Renamed:MODIFY^Update

 Commands 124

The following example causes the current object to watch the Renamed and
ObjectDeleted events for the object T%Object12. The handlers for these methods are the
public labels MODIFY and DELETE, respectively, in the method Update.

WATCH T%Object12.(Renamed:MODIFY^Update,ObjectDeleted:DELETE^Update)

 Commands 125

WRITE
The WRITE command is used to write to the current device. Traditionally, the WRITE
command has been used with dumb terminals. EsiObjects does not support dumb
terminals, however, the Output Window of the EsiObjects Visual Development
Environment serves as an output device for the WRITE command. The WRITE
command can be used for all devices supported by the underlying M implementation.
Format
W{RITE} postcond SP L writeargument

postcond ::= { : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.
writeargument ::= expr
 format
 * intexpr
 @ expratom V L readargument

Explanation
There are several different forms of the WRITE command.

Expression An expression whose value is sent to the current device as output.
Format Control A format control parameter, whose exact behavior can be device

dependent and can have any one of the following formats:
issues a form feed.
! issues a return. (CR+LF)
? integer writes spaces while $X is less than the specified integer. If

$X is not less than this value, nothing happens.
/controlmnemonic performs a special device operation defined by the

specified control mnemonic.
Integer Expression A number denoting an ASCII character code value. The

corresponding ASCII character is sent as output to the current
device. This is useful in generating escape sequences and control
characters. The $CHAR function is an alternative approach.

Comments
Keep the following points when you use the WRITE command:

• ASCII character codes can be specified with the WRITE *integer syntax or with
the $CHAR function. For example, the following examples are the same:

WRITE *27,*96,*65

WRITE $CHAR(27,96,65)

 Commands 126

• The argument of a WRITE command can be any expression. For example, you
can call an extrinsic function in an expression. This extrinsic function can issue a
USE command, which changes the current device. When the function returns, the
WRITE command's argument are directed to the new current device instead of the
device that was current when the WRITE command began to evaluate its
argument.

Related
$IO special variable

$X special variable
Examples
The WRITE command can specify format control parameters that modify the output
position on the current device. These parameters can be combined in any way in a single
WRITE argument, as long as the ? parameter is the last parameter specified. In the
following example, the WRITE command issues a form feed and two returns, moves the
cursor to the 10th column position, and displays the height in variable H. It then issues
another return, moves the cursor to the 11th column position, and displays the width in
variable W.

WRITE #!!?10,"Height: ",H,!?11,"Width: ",W

The following example reads lines of text from a file whose identifier is in the variable
T%File, echoing those lines to the principal device ($PRINCIPAL) until a blank line is
encountered. Then the file is closed.

OPEN T%File::10

ELSE DO $Env.Output("Device "_T%File_" is unavailable.") QUIT

FOR DO QUIT:T%Line=""

. USE T%File

. READ T%Line

. IF T%Line="" QUIT

. USE $PRINCIPAL

. WRITE T%Line,!

CLOSE T%File

QUIT

Many M programmers are used to using the WRITE command to write information out to
the principle device while programming and in particular, while debugging. You can use
the WRITE command in the same manner in EsiObjects. When executing the WRITE
command in an execute shell, the output will be directed to the Output tab sheet of the
Output Window. For example:

W "Test" ;Create a line in the Output Window with the text "Test"

W !,"Test" ;Create an empty Line, followed by "Test"

W # ;Clear the Output tab sheet of the Output Window

W ?10,"Test” ;Create a line, 10 spaces, then another line with "Test"

W !! ;This is not supported and will generate an error.

 Commands 127

W !,! ;Adds two lines to the output window.

 Commands 128

XECUTE
The XECUTE command's argument is a string of EsiObjects code to be executed as
though it were called as a subroutine from within the current code body. The Xecute
command violates encapsulation and should not be used unless necessary.
Format
X{ECUTE} postcond SP L xargument

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

xargument

Can be one of the following:

expr postcond

@ expratom V L xecuteargument

where:
expr is an expression whose value is a single line of M code

Explanation
In general, the following example:

XECUTE T%CodeToExecute

Is equivalent to the following:

DO SUBRTN99

...

SUBRTN99 ; Imaginary Subroutine

(Contents of T%CodeToExecute)

QUIT

Note that neither a label nor a line-start indicator should be present at the beginning of the
xecute string, nor should a return be present at the end.

It is useful to keep this analogy in mind when thinking about the effect of certain
language elements, such as QUIT and $TEST, inside the scope of the XECUTE
command. XECUTE does not place $TEST on the stack, and a QUIT inside its context
exits the XECUTE, not the calling line of code. Because the contents of the expression
are confined to a single line of code, it is not possible to place any commands after the
scope of a FOR, IF or ELSE.

Nearly all EsiObjects language elements can be used inside the xecute string, as long as
they are appropriate in a subroutine called from the current code body. The xecute string
can contain extrinsic function calls, subroutines invoked by DO, and recursive calls to the

 Commands 129

XECUTE command. Because it is confined to a single line, there is no reason to place
the argumentless DO inside an xecute string.

Like GOTO and DO, XECUTE allows a postconditional to be applied to the command,
or to any of its arguments. The following table summarizes the results when the
postconditional in either location is true or false.
Result Postconditional on

Command
Postconditional on Argument

True Execute the command
and its arguments.

Execute that argument before
going on to the next argument
or command.

False Skip the command and all
its arguments.

Skip that argument and go on
to the next argument or
command.

Comments
Keep the following points in mind when you use the XECUTE command:

• XECUTE creates a process stack frame to remember the execution location where
it was called just like a subroutine call invoked with DO. The value of the $TEST
special variable is not recorded on this stack frame. As a result, the value of
$TEST can be changed by operations inside the xecute string, or by code invoked
from DO or XECUTE commands in the xecute string.

• A new stack frame is created to run the code in the XECUTE string. A QUIT
command inside the xecute string removes this stack frame, exiting the xecute
string and returning to the immediate right of the calling XECUTE argument.
(This does not apply to a QUIT command that is inside the scope of a FOR loop
in the xecute string, which only terminates the loop as usual.)

Related
DO command

QUIT command
Examples
Sometimes, when using the XECUTE command, it is necessary to specify quotation
marks inside a string literal. In such cases, two quotation marks are used for every
quotation mark desired in the target string. This is applied recursively for strings inside
strings. For example, consider the following line of code:

DO $Env.Output("Hello")

This line of code uses quotation marks to delimit the string literal Hello. It can be
embedded inside an XECUTE command as follows:

XECUTE "DO $Env.Output(""Hello"")"

 Commands 130

ZAPPLY
The ZAPPLY command applies some or all of the object's instance variables in the
context of an object's CREATE method. This allows access to these instance variables
inside the context of the CREATE method.
Format
ZAP{PLY} postcond SP {L zapargument}

postcond ::= { : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

zapargument

Can be one of the following:

property

@ expratom V L zapargument

where:
property is the name of a property to be

applied

Explanation
The ZAPPLY command applies the values of instance variables to an object inside the
CREATE method. The CREATE method, if defined, is called by the CREATE
command when creating a new instance of a class. The instance variable values are not
normally applied until after the CREATE method has finished executing. Therefore,
ZAPPLY allows instance variable values to be accessed inside the context of the -
CREATE method.

For a full description about creating an object, see the CREATE command.
Comments
Keep the following points in mind when you use the ZAPPLY command:

• Argumentless ZAPPLY applies all instance variable values to the object.

• The argument of the ZAPPLY command is a property name, not an instance
variable name.

• Use of the ZAPPLY command is valid only inside the CREATE method and in no
other context.

Related
CREATE command

 Commands 131

Examples
The following example applies all instance variables to the object being created. This is
currently the most common use of the ZAPPLY command.

ZAPPLY

In the following example, only the Height and Width properties are applied.

ZAPPLY Height,Width

 Special Variables 132

Special Variables
Special variables are system defined and maintained variables that contain information
about various values or processes in the operating environment. If you need to know or
use the information stored in the special variable, you can access the information by
using the special variable name.

Each special variable is labeled as to its ANSI Standard status as described in the
following table:
Status Description
Standard Indicates that the language element is part of the

M ANSI Standard.
Proposed Indicates that the language element is being

proposed as an addition to the M ANSI Standard.
Extended Indicates that the Standard language element has

been modified for use in EsiObjects.
EsiObjects Indicates that the language element is not part of

the Standard and is an extension of EsiObjects.
Vendor Indicates that the language element is M vendor-

specific.

 Special Variables 133

$CALLER
The $CALLER special variable returns an object reference to the object that sent the cur-
rent message.
Format
$CALLER
Explanation
The $CALLER return value is an object reference (oref) or NULL ("") if no object sent
the message. This special variable generally is used to send messages back to the calling
object as part of a dialog, or to interact with properties of the calling object.
Comments
Callbacks are an alternative to using the $CALLER special variable. For more
information about using callbacks see Callback Syntax and the Using Events in the
EsiObjects Programmer's Reference Guide.
Related
Message Syntax
Examples
The following example assigns the Text property of $CALLER.

SET $CALLER.Text=T%Text

 Special Variables 134

$CALLFRAME
The $CALLFRAME special variable returns the OID of the current call frame.
Format
$CALLFRAME
Explanation
$CALLFRAME returns the OID of the current call frame context. The OID can be used
to provide object-oriented access to that objects interface. It is typically used in
conjunction with the $DELEGATE function. $DELEGATE is used to delegate the call
frame to another method. $CALLFRAME is used to access that call frame object as an
object through its services.
Related
Message Syntax

$DELEGATE Function

$UNKOWN special method.
Examples
The following example saves the value of $CALLMETH to a temporary variable.

SET T%Name=$CALLMETH

 Special Variables 135

$CHILDCNT
The $CHILDCNT special variable returns the number of children an object has. It is the
cardinality of children collection pointed to by $PEERS.
Format
$CHILDCNT
Explanation
The $CHILDCNT special variable returns the number of children objects that exist
within the context of the current object. The children are stored in a collection and the
count is the cardinality of that collection. Child objects are created throught the Child=1
keyword on the CREATE command.
Comments
The $CHILDREN special variable holds the pointer to the collection of child objects. The
$CHILDCNT special variable returns the cardinality of that collection. Typically, these
special variables are used to find leaks in an application, that is, objects that are not
acconted for. Typically, it is used as a debugging tool.

The EsiObjects Object Browser makes use of these special variables. A special tool bar
exists that permits the display of child objects.
Related
$CHILDREN special variable

$LASTCHILDID special variable

$PEERS special variable

$SELF special variable

CREATE command

 Special Variables 136

$CHILDREN
The $CHILDREN special variable provides a browsing context for finding the children
of the current object.
Format
$CHILDREN
Explanation
The $CHILDREN special variable contains a pointer to the collection that holds the
children of the current object created by specifying the Child=1 on the CREATE
command. Access to the collection is typically used by the programmer to determine
memory leaks. That is, are there objects that exist that are not accounted for by the
application.
Comments
$CHILDREN is used primarily as a debugging tool to determine orphaned child objects.

The EsiObjects Object Browser uses this variable to access the child objects if the Child
tool bar button is pressed.
Related
$CHILDCNT special variable

$LASTCHILDID special variable

$PEERS special variable

$SELF special variable

CREATE command

 Special Variables 137

$CLASS
The $CLASS special variable contains the class of the current object.
Format
$CLASS
Explanation
The $CLASS special variable contains an object reference (oref) to the class of the
current object.
Comments
The name of the class can be obtained by examining its Name property. The class name
is not always known because method implementations are often inherited by subclasses.
Related
Message Syntax

$CALLMETH
Example
The following example gets the name of the object's class.

SET T%ClassName=$CLASS.Name

 Special Variables 138

$DEVICE
The $DEVICE special variable returns the status of the current device
Format
$D{EVICE}
Explanation
The $DEVICE special variable returns the status of the current device in the following
format:

status {,info {,text}}

where:
status is normally 0, but can be nonzero in case of an error
Info contains other device information
Text is a text message explaining the current status

Only text can contain commas.
Comments
Keep the following points in mind when you use the $DEVICE special variable:

• $DEVICE evaluates to a true value if a device error has occurred. Therefore, it is
convenient to use $DEVICE as an argument of the IF command.

• $DEVICE is sensitive to the current device. Therefore, whenever the USE
command is issued, the value of $DEVICE is likely to change as a result.

• The text portion of $DEVICE can contain commas. Therefore, when using
$PIECE to obtain this portion, it is not sufficient to get only the third comma-
piece.

Related
IF command

USE command

$IO special variable

 Special Variables 139

Examples
The following example uses the truth value of $DEVICE to determine whether an error
has occurred on the current device. If an error occurs, it uses $IO to determine the device
identifier, $PIECE to obtain the three components of $DEVICE and displays them in the
output window.

IF $DEVICE DO ; Display error text

. SET T%Code=$PIECE($DEVICE,",")

. SET T%=Status$PIECE($DEVICE,",",2)

. SET T%=Text$PIECE($DEVICE,",",3,999)

. DO $ENV.Output("Error on device "_T%Device)

. DO $ENV.Output("Error code="_T%Code_", Status="_T%Status)

. DO $ENV.Output("Error text="_T%Text)

 Special Variables 140

$DOMAIN
The $DOMAIN special variable produces the current domain name.
Format
$DOMAIN
Explanation
Domains are objects for creating a common naming structure and storage structure.
Comments
O% variables reside in domains.

$Domain can be set to the name of a valid domain name or a NewNamePool object.

The domain must exist.
Related
CREATE Command
Examples

Set $Domain=”Test” ;Switch to the Test domain.

 Special Variables 141

$ECODE
The $ECODE special variable contains the current error condition.
Format
$EC{ODE}
Explanation
The $ECODE special variable contains the current error condition in the following
format:

, ecode {, ecode ...} ,

Each ecode cannot contain any commas. Values of ecode beginning with M are part of
the ANSI M Standard, values beginning with U are user-defined, and values beginning
with Z are implementation-specific. If no error occurs, $ECODE equals NULL ("").
Comments
The error codes in $ECODE are surrounded by commas (they are not comma-delimited).
Therefore, the number of comma-pieces in the string is always two greater than the
number of error codes.

EsiObjects adds the following special codes to those generated by ANSI Standard M, and
by the underlying M implementation.

ZOREJECT
ZOCALL
ZOUNDEL
ZODEAD
ZOSUBSCR
ZOPOOL

All codes are in the form of

<Code-EsiObjectsCode>
Related
$ESTACK special variable

$ETRAP special variable

 Special Variables 142

Examples
The following example displays the current error trap, error stack level, and each of the
error codes in $ECODE. Note that because the argumentless DO creates an additional
stack level, it is necessary to record some of the values before entering the block.

IF $ECODE'="" SET T%ECode=$ECODE,T%EStack=$ESTACK DO

. SET T%ETrap=$ETRAP

. DO $ENV.Output("Error Trap: "_T%ETrap)

. DO $ENV.Output("Error Stack level: "_T%EStack)

. DO $ENV.Output("Error Codes:")

. FOR T%Loop=2:1:$LENGTH(T%ECode,",")-1 DO

. . SET T%ThisECode=$PIECE(T%ECode,T%Loop)

. . DO $ENV.Output(" "_T%ThisEcode_" "_$$ERRLKUP(T%ThisECode))

QUIT

A special extrinsic function at the ERRLKUP label is not shown.

 Special Variables 143

$ENVIRONMENT
The $ENVIRONMENT special variable contains an object reference to the EsiObjects
environment.
Format
$ENV{IRONMENT}
Explanation
The environment can handle a variety of useful general messages. Error reporting is one
of many applications of this feature.
Comments
The environment always exists when EsiObjects is running. Every time the system is
restarted, a new incarnation of the environment is created. Therefore, object references to
the environment are no longer valid during the next EsiObjects session. Checking
whether the incarnation has changed is a useful way of determining whether a new
session has been started.
Examples
The following example displays a warning message. Note the use of $ENVIRONMENT
to produce the error message.

DO $ENVIRONMENT.Error(Text:"Invalid input sent to ")

The following example uses $ENVIRONMENT to find the value of the WindowHeight
preference.

SET T%Height=$ENVIRONMENT.FindPreference(Name:"WindowHeight")

 Special Variables 144

$ESTACK
The $ESTACK special variable contains the number of stack levels since the stack frame
that last contained an error condition.
Format
$ES{TACK}
Explanation
The $ESTACK special variable contains the number of stack levels since the stack frame
that last contained an error condition. If no error condition has occurred, $ESTACK is
empty.
Comments
Every subroutine call, argumentless DO, and so on, creates a new stack frame entry. If an
error occurs, then this adds 1 to the value of $ESTACK.
Related
$ECODE special variable

$ETRAP special variable
Examples
The following example displays the current error trap, error stack level, and each of the
error codes in $ECODE. Note that because the argumentless DO creates an additional
stack level, it is necessary to record some of the values before entering the block.

IF $ECODE'="" SET T%ECode=$ECODE,T%EStack=$ESTACK DO

. SET T%ETrap=$ETRAP

. DO $ENV.Output("Error Trap: "_T%ETrap)

. DO $ENV.Output("Error Stack level: "_T%EStack)

. DO $ENV.Output("Error Codes:")

. FOR T%Loop=2:1:$LENGTH(T%ECode,",")-1 DO

. . SET T%ThisECode=$PIECE(T%ECode,T%Loop)

. . DO $ENV.Output(" "_T%ThisECode_" "_$$ERRLKUP(T%ThisECode))

QUIT

 Special Variables 145

$ETRAP
The $ETRAP special variable equals a string of code to be invoked at the current M
process stack level if an error occurs.
Format
$ET{RAP}
Explanation
The $ETRAP special variable equals a string of code to be invoked at the current M
process stack level if an error occurs.
Comments
The M process stack is not equivalent to the EsiObjects method process stack.
Related
$ECODE special variable

$ESTACK special variable
Examples
The following example displays the current error trap, error stack level, and each of the
error codes in $ECODE. Note that because the argumentless DO creates an additional
stack level, it is necessary to record some of the values before entering the block.

IF $ECODE'="" SET T%ECode=$ECODE,T%EStack=$ESTACK DO

. SET T%ETrap=$ETRAP

. DO $ENV.Output("Error Trap: "_T%ETrap)

. DO $ENV.Output("Error Stack level: "_T%EStack)

. DO $ENV.Output("Error Codes:")

. FOR T%Loop=2:1:$LENGTH(T%ECode,",")-1 DO

. . SET T%ThisECode=$PIECE(T%ECode,T%Loop)

. . DO $ENV.Output(" "_T%ThisECode_" "_$$ERRLKUP(T%ThisECode))

QUIT

 Special Variables 146

$HOROLOG
The $HOROLOG special variable contains an internal numeric representation of the
current date and time.
Format
$H{OROLOG}
Explanation
The $HOROLOG special variable contains an internal numeric representation of the
current date and time. This special variable contains two numeric values, separated by a
comma. The first value is the number of days since December 31, 1840. The second
value is the number of seconds since midnight.
Comments
Keep the following points in mind when you use the $HOROLOG special variable:

• The first comma-piece contains the number of days since December 31, 1840.
Remember that there is a leap year every four years. Also, every 100 years there is
a centennial (no leap year).

• MODULO division and integer division are important tools to keep in mind when
calculating the time based on the second comma-piece of $HOROLOG.

Examples
The following example produces a string containing the approximate year, based on the
first comma-piece of $HOROLOG.

SET T%Year=$HOROLOG\365.25+1841

The following extrinsic variable returns a string containing the approximate time, based
on the second comma-piece of $HOROLOG. Note the use of $SELECT, $JUSTIFY,
and $TRANSLATE in this function.

TIME() ; TIME extrinsic variable

NEW L%Time,L%Hour,L%Minute,L%Meridian

SET L%Time=$PIECE($HOROLOG,",",2)

IF L%Time#43200=0 QUIT "12:00"_$SELECT(L%Time:"pm",1:"am")

SET L%Hour=L%Time\3600

SET L%Meridian=$SELECT(L%Hour>11:"pm",1:"am")

SET L%Hour=$JUSTIFY(L%Hour#12,2)

IF L%Hour=" 0" SET L%Hour=12

SET L%Minute=$JUSTIFY(L%Time\60#60,2)

SET L%Time=$TR(L%Hour_":"_L%Minute_L%Meridian," ",0)

QUIT L%Time

 Special Variables 147

$INTERFACE
The $INTERFACE special variable contains the name of the current default interface which is
normally Primary.
Format
$IN{TERFACE}
Explanation
Within the execution context of a method, the current interface is always available within the
$INTERFACE special variable. Its scope is the currently executing method.
Related
Message Syntax
Example
The following line sets a temporary variable to the name of the interface the execution context.
Set T%Name=$INTERFACE

 Special Variables 148

$IO
The $IO special variable returns the device identifier of the current device.
Format
$I{O}
Explanation
The $IO special variable returns the device identifier of the current device.
Comments
Keep the following points in mind when you use the $IO special variable:

• The value of $IO can change whenever the USE command is issued.

• The values of the $DEVICE, $KEY, $X, and $Y special variables are also
sensitive to the current device.

Related
USE command

$DEVICE special variable

$KEY special variable

$X special variable

$Y special variable
Examples
The following example uses the truth-value of $DEVICE to determine whether an error
has occurred on the current device. If so, it uses $IO to determine the device identifier,
$PIECE to obtain the three components of $DEVICE, and displays them on the
principal login device $PRINCIPAL.

IF $DEVICE DO ; Display error text

. SET T%Device=$IO

. SET T%Code=$PIECE($DEVICE,",")

. SET T%=Status$PIECE($DEVICE,",",2)

. SET T%=Text$PIECE($DEVICE,",",3,999)

. USE $PRINCIPAL

. DO $ENV.Output("Error on device "_T%Device)

. DO $ENV.Output("Error code="_T%Code_", Status="_T%Status)

. DO $ENV.Output("Error text="_T%Text)

 Special Variables 149

$JOB
The $JOB special variable contains the job number of the current process.
Format
$J{OB}
Explanation
The job number of the current process is a positive integer that is unique to a single
process. This number is useful for operations that may need to be executed
simultaneously by more than one M process.
Comments
It is common to use $JOB as an array subscript when it is necessary to maintain separate
information for a variety of different processes. Because there is sometimes a possibility
that $JOB values can be reused later by processes not related to the current process, it is
useful to initialize process-related subtrees after startup.
Related
JOB command
Examples
The following example uses $JOB as an array subscript to prevent information from
other process from coming into conflict with information from the current process.

SET ^GLO($JOB,T%Entry)=T%Value

The following example uses $JOB as an array subscript in initializing a subtree, to
prevent information from former processes that shared the same job number from coming
into conflict with information from the current process.

KILL ^GLO($JOB)

 Special Variables 150

$KEY
The $KEY special variable contains the control sequence that terminated the last READ
operation on the current device.
Format
$K{EY}
Explanation
If the last READ was not terminated by a control sequence, $KEY is NULL ("").
Examples of read operations that cannot terminate with a control sequence are fixed-
width reads, ASCII code reads, and reads with a timeout.
Comments
Keep the following points in mind when you use the $KEY special variable:

• In some forms of the READ command, information is lost whenever the user
presses the return key or uses some other control string to terminate the READ
operation. The $KEY special variable allows this information to be retained.

• The value of $KEY varies according to the current device. Therefore, it is likely to
change whenever a USE command is executed. If you want to change devices
before using the value in $KEY (such as for error reporting), record this value in a
temporary variable before issuing the USE command.

Related
USE command

$IO special variable
Examples
The following example uses $KEY to determine whether or not the last READ was
terminated by a control string. Note that the values of $KEY and $IO are recorded before
the USE command is issued because the USE command changes the current device.
$ASCII is used to convert control characters back into numeric codes.

IF $KEY'="" DO

. SET T%List="(no terminator)"

. FOR T%Loop=1:1:$LENGTH($KEY) SET

$PIECE(T%List,"+",T%Loop)=$ASCII($KEY,T%Loop))

. DO $ENV.Output("The last read on device "_$IO_" was terminated by:

"_T%List)

QUIT

 Special Variables 151

$LASTCHILDID
The $LASTCHILD special variable returns the internal number of the last child in the
current objects child collection.
Format
$LASTCHILD
Explanation
The $LASTCHILDID is used to get the last child of a collection.
Comments
This is used primarily as a debugging aid to determine orphan children of an object.
Related
$CHILDREN special variable

$CHILDCNT special variable

$PEERS special variable

$SELF special variable

CREATE command

 Special Variables 152

Examples $LIBRARY
The $LIBRARY special variable contains an object reference to the current library.
Format
$LIB{RARY}
Explanation
This current library is the one used for naked lookups and is always used unless another
library is specified explicitly. $LIBRARY is useful in sending messages to the current
library.

$LIBRARY can be set to another library OID or name. The scope of the set is the
duration of the current method execution context.
Comments
In many cases, the Main library is the default library. However, it is possible to change
libraries from EsiObjects, which changes the value of $LIBRARY.
Related
Message Syntax

$Library function

The following code sends a message to the library object OID bound to $LIBRARY to
get an object reference to a class Writer if one is implemented in the current library. If
not, the current code context is exited by QUIT.

SET T%WriterClass=$LIBRARY.FindClass(Name:"Writer")

QUIT:T%WriterClass=""

The following code sets the Special Variable $LIBRARY to the "TestLibrary" name.

SET $LIBRARY="TestLibrary"

 Special Variables 153

$LOCALOBJECTS
The $LOCALOBJECTS special variable returns a pointer to a collection that contains
session specific objects stored as semi-persistent, that is, stored in globals that should be
killed by system.
Format
$LOCALOBJECTS
Explanation
$LOCALOBJECTS is provides access to those objects that should be destroyed by the
system.
Comments
$LOCALOBJECTS is used for debugging purposes.

It is used by the EsiObjects Object Browser to expose local objects.
Related

 Special Variables 154

$MAXNUM
The $MAXNUM special variable contains the highest numeric value that can be
represented safely by the underlying M platform.
Format
$MAXNUM
Explanation
Attempts to handle numeric values greater than the highest numeric value supported on
the underlying M platform are likely to result in an error.
Comments
Generally the underlying platform represents the number contained in $MAXNUM using
exponential notation. Any number of significant digits can therefore be lost in the
process. Adding or subtracting 1 to $MAXNUM can simply return $MAXNUM.
Related
$MINNUM special variable
Examples
The following example creates a numeric integer T%Middle that is directly between 0
and $MAXNUM.

SET T%Middle=$MAXNUM/2

 Special Variables 155

$MEMORYOBJECTS
The $MEMORYOBJECTS special variable produces an object pointer that provides a
root context for all top-level objects stored within local memory for a session.
Format
$MEMORYOBJECTS
Explanation
Comments
These objects are created when the share=0,child=0 keywords are used on the CREATE
command.

The objects reside in the local store.

Used by the EsiObjects Object Browser to display the objects.
Related
CREATE command

 Special Variables 156

$MAXSTR
The $MAXSTR special variable returns the maximum length of a string that can be
stored at a global node for the underlying M platform currently connected to.
Format
$MAXSTR
Explanation
Attempts to create strings that exceed the value of $MAXSTR will result in an error.
Examples
The following example checks to see if a string created by concatenating the contents of
two variables exceed the maximu allowed length.

IF $Length(T%Part1)+$Length(T%Part2)>$MAXSTR

 Special Variables 157

$MESSAGE
The $MESSAGE special variable contains a string naming the current method that was
specified when the message was sent.
Format
$MESSAGE
Explanation
The $MESSAGE special variable contains a string naming the current method, as
specified when the message was sent. This is the same as the name of the current method
unless an alias was used or interception has occurred. This special variable can be useful
in the context of intercepting code, code referenced by an alias, or code executed with the
XECUTE command that needs to behave differently for different methods.
Comments
The value of $MESSAGE is not guaranteed to be the same as the name of the current
method. For example, it is possible for a method to be known by an alias.
Examples
The following example sends the FindAll message to $SELF if the current method was
referenced as Find by the caller.

IF $MESSAGE="Find" DO $SELF.FindAll QUIT

 Special Variables 158

$MINNUM
The $MINNUM special variable contains the highest numeric value that can be
represented safely by the underlying M platform.
Format
$MINNUM
Explanation
The $MINNUM special variable contains the lowest numeric value that can be
represented by the underlying M platform without equaling 0. Attempts to handle
numeric values between this amount and 0 are likely to be rounded down to 0.
Comments
Generally the underlying platform represents the number contained in $MINNUM using
exponential notation. Therefore, any number of significant digits can be lost in the
process. Multiplying $MINNUM by a positive number between 1 and 2 can simply
return $MAXNUM.
Related
$MAXNUM special variable
Examples
The following example creates a numeric integer T%Middle that is equal to the product
of $MAXNUM and $MINNUM.

SET T%Middle=$MINNUM*$MAXNUM

 Special Variables 159

$PARAMETERS
The $PARAMETERS special variable contains the compiled parameter list for the
current method call.
Format
$PARAM{ETERS}
Explanation
The compiled parameter list cannot be displayed because it might contain control
characters. The $PARAMETERS special variable is primarily useful in parameter list
indirection.
Related
Indirection

$PARAMETERLIST special variable
Examples
In the following example, the parameter list sent to this method is sent along on a call to
the Revoke method and represents delegation.

GOTO T%Object22.Revoke@$PARAMETERS

 Special Variables 160

$PARAMETERLIST
The $PARAMETERLIST special variable returns a string containing the parameter list
as specified when the current method was called.
Format
$PARAMETERLIST

$PARALIS

$PRMLIS
Explanation
In contrast with the string returned in the $PARAMETERS special variable, this string is
returned in programmer-readable form.
Comments
This variable contains a programmer-readable string copy of the parameter list used to
invoke the current method. It is useful in testing and debugging only and is not to be used
for parameter list indirection.
Related
$PARAMETERS special variable
Examples
The following example displays the parameter list used to invoke the current method.

DO Assert.$ENVIRONMENT("Param. list: "_$PARAMETERLIST)

 Special Variables 161

$PEERS
The $PEERS special variable produces a pointer to the collection of peer (sibling)
objects of the current objects execution context.
Format
$PEERS
Explanation
The $PEERS collection contains all the peers or siblings to the current objects context the
special variable is executed within.
Comments
The $PEERS variable is used to access the peers objects.

It is used by the EsiObjects Object Browser to display all peers of the current object
context.
Related
$CHILDREN special variable

$CHILDCNT special variable

$LASTCHILDID special variable

$SELF special variable

CREATE command
Examples

 Special Variables 162

$POINTER
The $POINTER special variable contains a pointer to the location of the current object.
Format
$POINTER
Explanation
The $POINTER special variable returns a namevalue appropriate to use in variable name
indirection or to use with the $QLENGTH and $QSUBSCRIPT functions. Special
privileges are required to compile code that contains this special variable.
Comments
Keep the following points in mind when using the $POINTER special variable.

• Directly accessing the global structure of an object is a serious violation of its
encapsulation.

• You must have the proper privileges to use the $POINTER special variable.

• This special variable is not recommended for general use in EsiObjects.
Related
$NAME function

$OIDPTR function

$PTROID function

$QLENGTH function

$QSUBSCRIPT function
Examples
The following code uses $POINTER and the LOCK command to lock an object.

LOCK +@$POINTER

 Special Variables 163

$POOL
The $POOL special variable contains the name of the default name pool.
Format
$POOL
Explanation
The value contained in $POOL is used in a NamePool reference where no name pool is
explicitly defined. The construct SET $POOL is used to change the default NamePool.
Comments
A name pool reference that does not explicitly specify the pool is identical to one that
specified $POOL. One purpose of $POOL is to compare it to some known pool to see if
that pool is the default.
Related
$SYSPOOL special variable
Examples
The following example references a value ESI$MainDirectory in the default name pool
$POOL.

SET T%File=N%($POOL)ESI$MainDirectory_"OUTPUT.TXT"

 Special Variables 164

$PRINCIPAL
The $PRINCIPAL special variable returns the device identifier of the principal (or
login) device.
Format
$P{RINCIPAL}
Explanation
If the current process is a background process not tied to any device, $PRINCIPAL
returns NULL ("").
Comments
The special device identifier (0) can also be used to refer to the principal device.
However, $PRINCIPAL is more informative.
Related
$DEVICE special variable

$IO special variable
Examples
The following example uses the truth-value of $DEVICE to determine whether an error
has occurred on the current device. If so, it uses $IO to determine the device identifier,
uses $PIECE to get the three components of $DEVICE, and displays these values on the
principal login device $PRINCIPAL.

IF $DEVICE DO ; Display error text

. SET T%Code=$PIECE($DEVICE,",")

. SET T%=Status$PIECE($DEVICE,",",2)

. SET T%=Text$PIECE($DEVICE,",",3,999)

. DO $ENV.Output("Error on device "_$IO)

. DO $ENV.Output("Error code="_T%Code_", Status="_T%Status)

. DO $ENV.Output("Error text="_T%Text)

 Special Variables 165

$PRIVILEGED
The $PRIVILEGED special variable returns 1 if the current message is privileged.
Format
$PRIV{ILEGED}
Explanation
Compilation of the method determines this value. It can be changed locally by requesting
privileges from the environment. If privileges are granted, the value of $PRIVILEGED
is 1 (true). Privileged methods can use various lower-level internal functions.
Comments
Keep the following points in mind when you use the $PRIVILEGED special variable:

• Privileges are not required to use this special variable.

• Privileged methods are allowed to perform certain lower-level operations that are
unavailable to nonprivileged functions. However, many of these operations are not
recommended for general used by EsiObjects programmers.

Examples
The following example executes a subroutine and exits if the current method does not
have any privileges.

IF '$PRIVILEGED DO NoPriv QUIT

 Special Variables 166

$QUIT
The $QUIT special variable returns 1 if the current code context is a subroutine, or 0 if
the current code context is an extrinsic function.
Format
$Q{UIT}
Explanation
The $QUIT special variable is useful for testing and debugging, or for creating a body of
code that can be accessed either as an extrinsic function or as a return value.
Comments
Keep the following points in mind when you use the $QUIT special variable:

• In general, it is not recommended to create a single body of code that can be called
either as a subroutine or as an extrinsic function. Create two bodies of code that
share their common functionality in one or more common subroutines.

• In some programming contexts such as error trapping, it may be necessary to use
$QUIT.

Related
QUIT command
Examples
The following example uses $QUIT to exit with a return value if the context is an
extrinsic function, or to exit without a return value if the context is an extrinsic function.

IF $QUIT QUIT T%ReturnValue

ELSE QUIT

 Special Variables 167

$REFERENCE
The $REFERENCE special variable exposes the internal reference count on an object.
Format
$REFERENCE
Explanation
Occasionally an object may collaborate with one or more other objects, providing a
service for as long as it is needed. Each user of the service may try to destroy the service
object after it has finished with it. Under these circumstances, if an object succeeded in
destroying the object, subsequent objects making reference to it would fail if they did not
constantly check for its existence. To make sure that an object remains alive until the last
destroy action is applied; EsiObjects implements an internal reference counter. When the
object is created by the CREATE command, the reference count is initialized to one (1).
When a DESTROY command is applied, it will decrement the counter. When the count
goes below 1, the object will be destroyed. To make sure the object stays around, each
using object would apply the PRESERVE command to the object. This command
increments the count by one. Once it has finished with the object, it would apply the
DESTROY command which will decrement the count by one. This preserves the object
so that it is available to all other objects and makes it available to the creating object for
destruction.
Comments
Keep the following points in mind when you use the $REFERENCE special variable:

• The value of $REFERENCE should always be greater and or equal to one.

• Within an objects method or property, the $REFERENCE can be set to another
value.

Related
CREATE command

DESTROY command

PRESERVE command
Examples
The following example show how the $REFERENCE can be used.

Do $Env.Assert(“Object “_T%Object.Name_” has “_$Reference_” references to

it.”)

This example show how the $REFERENCE can be set

Set $Reference=$Reference+1

 Special Variables 168

$RETURN
The $RETURN special variable contains the value that the current method returns on
exit.
Format
$RET{URN}
Explanation
Initially when a method is called, the value of $RETURN is generally set to NULL ("").
The SET $RETURN construct is used to change the return value from its default value.
Its value is scoped inside the current method call.
Comments
Keep the following points in mind when you use the $RETURN special variable:

• The value of $RETURN always defaults to NULL (""), except in an object's
special Destroy method, when it defaults to 1.

• In a value-returning method, the construct SET $RETURN is used to specify a
different return value.

Related
Method structure

DESTROY command

Message Syntax
Examples
The following example sets the value of $RETURN to 1. The current method returns 1
unless the value of $RETURN is changed inside this method before its final QUIT
occurs.

SET $RETURN=1

 Special Variables 169

$ROOTOBJECTS
The $ROOTOBJECTS special variable points to a collection of objects that are outside
the context of the session.
Format
$ROOTOBJECTS
Explanation
The $ROOTOBJECTS collection contains objects that are created outside of the sessions
context.
Comments
Most root objects are protected and to see the objects you must have the proper
privileges. Privileges are determined by the EsiObjects startup command qualifier used
(/ESI, /ADMIN or /DEBUG) or the Security levels assigned to you logon username.
Related
CREATE command
Examples

 Special Variables 170

$SELF
The $SELF special variable returns an object reference to the current object.
Format
$SELF
Explanation
Primary use of the $SELF special variable is for an object to send a message to itself or
to refer to its own property. It can also give other objects a handle to themselves, which
can be used in future messaging dialog.
Comments
Keep the following points in mind when you use the $SELF special variable:

• It is possible for an object to destroy itself using the DESTROY command.
However, any subsequent references to $SELF or instance variables before the
method exits with QUIT causes an error.

• The syntax DO $SUPER.Label is equivalent to DO $SELF.*Label.
Related
Message Syntax

$SUPER special variable
Examples
The following example creates a new object of class Button whose Owner equals $SELF.

CREATE T%Button=Button(Text:"OK",Owner:$SELF)

 Special Variables 171

$SHAREDOBJECTS
The $SHAREDOBJECTS special variable that points to a collection of all shared objects.
Format
$SHAREDOBJECTS
Explanation
Shared objects that are created with the CREATE command keyword Share=1 (as
opposed to Base, Fixed or Domain).
Comments
Shared objects reside in the ^VESoshob global.

The EsiObjects Object Browser uses this variable to access the shared objects.
Related
CREATE command
Examples

 Special Variables 172

$STACK
The $STACK special variable returns the number of stack frames currently on the M
process stack.
Format
$ST{ACK}
Explanation
The $STACK special variable always contains an integer value of 0 or greater.
Comments
Keep the following points in mind when you use the $STACK special variable:

• It is equivalent to the function call $STACK(-1).

• $STACK function calls return information about the current M process stack level
if the $STACK special variable is the first argument of $STACK.

Related
$STACK function
Examples
The following example displays information about the current error condition for every
stack frame in $STACK that contains error codes. Note the use of the $STACK special
variable on the third line to determine the total number of stack frames.

DO $ENV.Output("Process Type: "_$STACK(0))

DO $ENV.Output("Frames on Stack: "_$STACK)

FOR T%Loop=1:1:$STACK IF $STACK(T%Loop,"ECODE")'="" DO

. DO $ENV.Output("")

. SET T%Code=$STACK(T%Loop,"ECODE")

. SET T%Line=$STACK(T%Loop,"PLACE")

. SET T%Text=$STACK(T%Loop,"MCODE")

. DO $ENV.Output(" Errors at Frame "_T%Loop_": "_T%Code)

. DO $ENV.Output(" Execution Location: "_T%Line)

. IF T%Text'="" DO $ENV.Output(" "_T%Text)

QUIT

 Special Variables 173

$STORAGE
The $STORAGE special variable contains the number of free characters available for
use in the partition of the current process.
Format
$S{TORAGE}
Explanation
The method of calculating this value depends on the underlying M platform. Its behavior
is even less clear in EsiObjects because some transient objects are stored in the partition.
However, many transient objects are not stored in the partition.
Comments
Keep the following points in mind when you use the $STORAGE special variable:

• Its behavioral characteristics vary depending on the underlying M platform.

• EsiObjects stores some nonpersistent objects globally and stores others in the
partition.

Related
KILL command

SET command
Examples
The following example calls the LOADARR subroutine if the value of $STORAGE is
greater than 10240.

IF $STORAGE>10240 DO LOADARR

 Special Variables 174

$SUPER
The $SUPER special variable contains an object reference to the superclass method and
property implementations of the current object.
Format
$SUPER
Explanation
The $SUPER special variable is used generally as a messaging target to inherit the
superclass implementation of the current method or public label.
Comments
The syntax DO $SUPER.Method is equivalent to DO $SELF.*Method.
Related
Message Syntax

$SELF special variable

Labels in EsiObjects

Label Inheritance
Examples
The following example delegates to the method ThisMethod as implemented by the
superclass.

GOTO $SUPER.ThisMethod

The following example delegates to the public label ThisLab as implemented by the
superclass implementation of the current method.

GOTO *ThisLab^$SUPER

 Special Variables 175

$SYSPOOL
The $SYSPOOL special variable contains an object reference to the system name pool.
Format
$SYSPOOL
Explanation
The $SYSPOOL special variable is used in name pool references to names in the system
name pool where various system objects are shared.
Comments
The $SYSPOOL special variable returns the system name pool and the $POOL special
variable returns the current default name pool. The two are not always identical.
Related
$POOL special variable
Examples
The following example references a value ESI$MainDirectory in the system name pool
$SYSPOOL.

SET T%File=N%($SYSPOOL)ESI$MainDirectory_"OUTPUT.TXT"

 Special Variables 176

$SYSTEM
The $SYSTEM special variable returns a value that uniquely represents the system.
Format
$SY{STEM}
Explanation
The $SYSTEM special variable returns a value that uniquely reprents the underlying M
system, which represents the domain of concurrent processes for which $JOB is unique.
Comments
$SYSTEM is of the form

V,S

where V is a vendor Id (48 = ESI Technology Corp), and S is a globally unique system
ID.
Related

$JOB special variable

 Special Variables 177

$TEST
The $TEST special variable returns the value of the test flag.
Format
$T{EST}
Explanation
The $TEST special variable returns the value of the test flag. The test flag is set by an IF
command, a timeout, or by the DESTROY command.
Comments
Keep the following points in mind when you use the $TEST special variable:

• The argumentless DO command places $TEST on the process stack before
invoking a block, causing its value to be restored when the block is exited.

• The IF and DESTROY commands affect the $TEST special variable, and any
time a timeout is encountered in the JOB, LOCK, OPEN, or READ commands.
Other conditional operations, such as postconditionals and $SELECT, do not
affect $TEST.

• $TEST is scoped inside a method context. Calls to other objects or methods never
modify $TEST. However, subroutine calls and the XECUTE command can
modify $TEST.

• Any form of DO that specifies a label and/or routine name does not place $TEST
on the process stack. When execution returns from the subroutine, any changes to
$TEST are still in effect.
IF I%Height'>I%Width DO MODIFY

ELSE DO $ENV.Output("Greater")

The previous example is extremely risky, and hard to evaluate. Without looking at the
subroutine MODIFY, it is impossible to determine under what circumstances the ELSE
command on the second line will be executed. Note the following:

• I%Height is greater than I%Width. The IF on the first line sets $TEST to 0, and
execution drops down to the second line. Because $TEST is 0, the ELSE executes
the $ENV.Output.

• I%Height is not greater than I%Width. The IF on the first line sets $TEST to 1
and executes the DO. The following can occur inside the subroutine:

• The subroutine MODIFY does not modify $TEST. When execution returns,
$TEST still equals 1 from the IF on the first line, and the ELSE does nothing.

• The subroutine MODIFY does modify $TEST, and when it exits $TEST equals 1.
The ELSE on the second line does nothing, based on the most recent $TEST
operation.

 Special Variables 178

• The subroutine MODIFY does modify $TEST, and when it exits $TEST equals 0.
The ELSE on the second line executes the $ENV.Output, based on the most
recent $TEST operation.

Clearly this situation can lead to unexpected results. The examples section presents a
specific solution to this problem using an argumentless DO.
Related
DESTROY command

DO command

ELSE command

IF command

JOB command

LOCK command

OPEN command

READ command

$SELECT function
Examples
The following example illustrates a typical programming error because $TEST is likely
to change between the IF and the ELSE. Note that in some cases DO does not stack
$TEST.

IF I%Height'>I%Width DO TEST

ELSE DO $ENV.Output("Greater")

. . .

QUIT

;

TEST ; Subroutine containing IF and ELSE

IF I%Height=I%Width DO $ENV.Output("Equal")

ELSE DO $ENV.Output("Not Greater")

QUIT

In the previous example, assume that I%Height=5 and I%Width=10, the IF command on
the first line sets $TEST to 1 and the DO calls TEST. Inside TEST, the IF sets $TEST to
0, and the ELSE executes the $ENV.Output. The QUIT then exits TEST. The ELSE on
the second line checks $TEST (which is now 0) and executes the $ENV.Output. The
first line of output is Not Greater and the second line is Greater. This is probably not what
the programmer intended.

A number of language elements (for example, object-with-service references, extrinsic
functions, and the argumentless DO) place $TEST on the process stack. The following
example solves the problem shown in the previous example with the argumentless DO:

 Special Variables 179

IF I%Height'>I%Width DO

. IF I%Height=I%Width DO $ENV.Output("Equal") QUIT

. DO $ENV.Output("Not Greater")

ELSE DO $ENV.Output("Greater")

QUIT

The following example uses $SELECT and is functionally equivalent to the previous
example, except that it does not modify $TEST.

DO

$ENV.Output($SELECT(I%Height>I%Width:"Greater",I%Height=I%Width:"Equal",1:"No

t Greater"))

The following example uses the DESTROY command to destroy the Window object
referenced by the symbol T%Window, causing the window to disappear from the display
and all of its instance variables to be removed. The ELSE command references $TEST
to determine whether the attempt was successful.

DESTROY T%Window

ELSE DO $ENV.Assert("DESTROY Failed!")

The IF command with no arguments is the opposite of ELSE because it lets execution
pass to the rest of the commands on the line only if $TEST is 1. This form is most
commonly used after language elements (other than IF) that modify $TEST (for
example, timeouts or DESTROY).

DESTROY T%Object12

IF DO $ENV.Output("Object was destroyed.") QUIT

In the previous example, the $ENV.Output and QUIT commands are performed only if
DESTROY set $TEST to 1 (in other words, the object was successfully destroyed).

The following example illustrates the repeated use of incremental LOCK with a timeout
to provide feedback to the user that an attempt to lock the node is in progress. If the lock
does not complete normally within 30 seconds, the process is abandoned.

DO $ENV.Output("Locking...")

FOR T%Loop=1:1:10 LOCK +^XYZ(0):3 IF QUIT

ELSE DO $ENV.Output("Node is busy. Aborting.") QUIT

SET (T%EntryNumber,^XYZ(0))=^XYZ(0)+1

LOCK -I%List(0)

SET ^XYZ(T%EntryNumber)=T%EntryValue

 Special Variables 180

$X
The $X special variable returns the output column position of the current device.
Format
$X
Explanation
The $X special variable returns the output column position of the current device. Control
sequences that affect the output position cannot accurately update $X. However, you can
use the construct SET $X to correct such problems.
Comments
Keep the following points in mind when you use the $X special variable:

• Control sequences that affect the output position cannot accurately update $X.
Therefore, it is advisable to use caution when interpreting the contents of this
special variable. However, you can use the construct SET $X to correct such
problems.

• $X is sensitive to the current device. Therefore, its value is likely to change
whenever the USE command is issued.

Related
USE command

$Y special variable
Examples
The following example sets the value of $X to reflect the current column position and $Y
to reflect the current row position.

SET $X=T%Column,$Y=T%Row

 Special Variables 181

$Y
The $Y special variable returns the output row position of the current device.
Format
$Y
Explanation
The $Y special variable returns the output row position of the current device. Control
sequences that affect the output position cannot accurately update $Y. However, you can
use the construct SET $Y to correct such problems.
Comments
Keep the following points in mind when you use the $Y special variable:

• Control sequences that affect the output position cannot accurately update $Y.
Therefore, it is advisable to use caution when interpreting the contents of this
special variable. However, you can use the construct SET $Y to correct such
problems.

• $Y is sensitive to the current device. Therefore, its value is likely to change
whenever the USE command is issued.

Related
USE command

$X special variable
Examples
The following example sets the value of $X to reflect the current column position and $Y
to reflect the current row position.

SET $X=T%Column,$Y=T%Row

 Special Variables 182

$ZVIRDATA
The $ZVIRDATA special variable contains the substantive data represented by a virtual
object, which must consist of a single string value.
Format
$ZVIRDATA
Explanation
The $ZVIRDATA special variable is used to establish a basic object context. The
CREATE method can set $ZVIRDATA to establish specific context information.
$ZVIRDATA cannot be set outside the context of the CREATE command.
Comments
Although it is possible to send messages to virtual objects, they are not really objects as
such and do not have instance variables. They are exceptionally lightweight, however,
and useful for representing external data as objects.
Related
CREATE command

DESTROY command
Examples
The following example sets the object's data portion to 1.

SET $ZVIRDATA=1

 Functions 183

Functions

 Functions 184

$ASCII
The $ASCII function returns the ASCII code number of a single character inside a string.
Format
$A{SCII} (expr {,intexpr})
Arguments
expr - a string expression containing the character whose ASCII code is to be returned.

intexpr - an integer defining the position of the target character in the string.
Explanation
The $ASCII function returns the ASCII code value of a single character inside a string. If
no character position is specified, the ASCII code of the first character in the string is
returned. The character position is always interpreted as an integer. Decimal values are
truncated.

By convention in EsiObjects, the special value –1 is used as the ASCII code of an empty
string. If a position beyond the string's length or a number less than 1 is specified for the
character position, then –1 is also returned.
Comments
Keep the following points in mind when you use the $ASCII function:

• $ASCII is the opposite of $CHAR. For any integer T%Integer in the range –1 to
255, the following expression should always return the value of T%Integer:

$ASCII($CHAR(T%Integer))

• $ASCII is related to $EXTRACT. Note the following:
$ASCII(T%String,T%Integer)

• The previous example is functionally equivalent to the following example:
$ASCII($EXTRACT(T%String,T%Integer))

• $ASCII is often useful with the $KEY special variable because it contains control
characters that may need to be converted back to their ASCII code values.

Related
$CHAR function

$EXTRACT function

$KEY special variable

 Functions 185

Examples
The following example displays the code of the first character in the string T%String to
the Output window:

SET T%String="EsiObjects"

DO $Env.Output($ASCII(T%String))

Results: 69

The following example displays the code of the fifth character in the string T%String to
the Output window:

SET T%String="EsiObjects"

DO $Env.Output($ASCII(T%String,5))

Results: 98

The following example displays the code of the 12th character in T%String to the Output
window, but because there are only 11 characters the return value is –1:

SET T%String="EsiObjects"

DO $Env.Output($ASCII(T%String,12))

Results: -1

The following example uses $ASCII, $LENGTH, and SET $PIECE to create an
indirectible string to generate the contents of T%String:

SET T%Result

FOR T%Loop=1:1:$LENGTH(T%String) DO

. SET $PIECE(T%Result,T%Loop)=$ASCII(T%String,T%Loop)

SET T%Result="$CHAR("_T%Result_")"

Note: The following comments and code examples assume IO to traditional M Input/Output
devices. It is assumed that a command window is present for this exercise since
traditional M I/O commands are being used.

 Functions 186

The following example uses $KEY to determine whether or not the last READ was
terminated by a control string. Note that the values of $KEY and $IO are recorded before
the USE command is issued because this command changes the current device. $ASCII is
used to convert control characters back into numeric codes.

IF $KEY'="" DO

. SET T%ControlString=$KEY

. SET T%Device=$IO

. USE $PRINCIPAL

. WRITE "The last read on ",T%Device," was terminated by ASCII"

. FOR T%Loop=1:1:$LENGTH(T%ControlString) DO

. . IF T%Loop>1 WRITE "+"

. . WRITE $ASCII(T%ControlString,T%Loop)

. USE T%Device

QUIT

 Functions 187

$ASNVECTOR
The $ASNVECTOR function returns the assignment vector of a variable.
Format
$ASN{VECTOR} (namexpr {,subexpr {,typexpr}})
Arguments
namexpr ::= expr V name

The first argument is a string containing the name of the variable whose assignment
vector is to be returned.

subexpr ::= expr V subscriptlist

The second argument is either the null string ("") or a string containing a complete
subscript list, including the surrounding parentheses.
 A Accessor
 C Class
 CN Constant
 G Global
 I Instance
typexpr ::= expr V L Local
 N NamePool
 O Object Name
 P Parameter
 R Relative/Region
 S System
 U Universal

The third argument is a special code indicating the type of the variable whose assignment
vector is to be returned.
Explanation
Note: The $ASNVECTOR function is a privileged function and is not recommended for
general use.

The assignment vector is an indirectible string that can be used to directly access a
symbol. The behavior of lookup and assignment operations performed on assignment
vectors vary according to object internals. Special privileges are required to compile code
that uses $ASNVECTOR.

 Functions 188

Comments
Keep the following points in mind when you use the $ASNVECTOR function:

• Privileges are required to compile EsiObjects code that contains $ASNVECTOR.

• Many operations on assignment vectors yield different results than the same
operations performed on the actual symbols. For example, a SET command
performed on an instance variable can invoke the target object's Assign accessor,
while a SET command performed with name indirection on that instance variable's
assignment vector does not.

Related
$LOOKUP function

$OIDPTR function

$PTROID function

$WALK function
Examples
The following example gets the assignments vector to the instance variable I%Height and
sets its value to 0 using indirection. The preferred method for doing this is to instead set
the instance variable's value directly.

SET T%Handle=$ASNVECTOR("Height","","I")

SET @T%Handle=0

 Functions 189

$ASSOCIATE
The $ASSOCIATE function establishes the current object context.
Format
$AS{SSOCIATE} (oref)
Arguments
oref - an object reference to the object to be tested for class membership.
Explanation
The $ASSOCIATE function is used to associate an object context when none exists.
This allows access to the instance variables of the object.

You can use the $ASSOCIATE function with the $GETENTRYREF function to allow
nonobject code to invoke object methods.
Comments
Keep the following points in mind when you use the $ASSOCIATE function:

• Can only be used when no context exists.

• Must be used in a method of the target object.
Related
Method structure

Message Syntax

$GETENTRYREF function
Examples
The following example shows a callback function that translates an ID number to an
object associated to that object and fires a click event.

CLICK(ID) ;

SET T%Object.A=^Reg(ID)

IF '$ASSOCIATE(ID) DO $Env.Output("Error")

Event CLICK

 Functions 190

$CALLBACK
The $CALLBACK function returns a callback frame identifier used to call back to a
label within the current method and object.
Format
$CALL{BACK} (label {,typecode {,optionscode}})
Arguments
label - a label or public label as it would be referenced from within the current code
context.

typecode - a numeric code value interpreted as follows:
Type Description Code
Original Callback to creator's stack frame. 0

Capture Callback capturing creator's method-
related symbols.

1

Initialized Callback that starts with a clean
variable context.

2

optionscode - an integer interpreted according to bit value
Type Description Bit Types
Persistent Survive for the duration of

the creating object.
0 1,2

Additive Preserve variable state
between calls.

1 1,2

Explanation
Objects can create callbacks to specific labels inside the current method. This allows
external objects to directly invoke a specific label in a specific method. The code being
invoked runs in the context of the object that created the object. Callbacks can be invoked
as DO or GOTO arguments or as extrinsic functions.

For more information about callbacks, see Callback Syntax section of this guide.
Comments
Keep the following points in mind when you use the $CALLBACK function:

• The callback frame identifier can be used to call externally into the specified
context.

• Use the DO form of a callback for output, looping, and update functions.

• Use the GOTO form for delegation and error handling.

• Use the extrinsic function form of a callback for searches and property lookup.
Related
Message Syntax

$EXTCALLBACK function

 Functions 191

$FREECB function
Examples
The following example returns a callback to MODIFY.

SET T%CallBack=$CALLBACK(MODIFY)

The following example returns a callback to DELETE. The callback starts with a clean
variable context and is persistent and additive.

SET T%CallBack=$CALLBACK(DELETE,2,3)

 Functions 192

$CHAR
The $CHAR function returns a string containing the characters specified by its argu-
ments.
Format
$C{HAR} (L code)
Arguments
code

An expression interpreted as an integer whose value ranges between –1 and 255, used to
specify the value of a single character in the string.
Explanation
The $CHAR function returns a string containing the characters specified by a series of
numeric ASCII codes. The value –1 represents the null string (""), which contains no
characters.
Comments
Keep the following points in mind when you use the $CHAR function:

• It is not legal to store control characters directly in the text of EsiObjects code. In
many cases, you can use the $CHAR function to overcome this limitation.

• $CHAR is the opposite of $ASCII. If the string in T%Char is 0 or 1 characters,
the following expression always returns the value of T%Char:

$CHAR($ASCII(T%Char))

Note: The following comments and code examples assume IO to traditional M Input/Output
devices.

• The syntax WRITE *code is sometimes an alternative to using $CHAR. The
following two lines of code are functionally equivalent:

WRITE $CHAR(13,10)

WRITE *13,*10

• In some cases, using the WRITE command to send control strings with $CHAR
can result in changes to the current output position that can render the values of $X
and $Y inaccurate. Control mnemonics and format control parameters do not have
this limitation. For example, the following WRITE command is equivalent to the
two previous examples except for its effect on $X and $Y.

WRITE !

• The READ * variable form of the READ command produces an ASCII code
number that can be converted back into an ASCII character with $CHAR.

Related
WRITE command

 Functions 193

$ASCII function

$X special variable

$Y special variable
Examples
The following example generates the string ABC by specifying the ASCII codes 65, 66,
and 67.

DO $Env.Output($CHAR(65,66,67))

Result: ABC

The following example sets the value of the service variable T%Code to the ASCII Tab
character (ASCII code 9).

SET T%Code=$CHAR(9)

Note: The following comments and code examples assume IO to traditional M Input/Output
devices.

The following example accepts input from the current device as an ASCII code and
converts it to a character value. Both values are used when calling the subroutine
HANDLE.

READ *T%Code

SET T%Char=$CHAR(T%Code)

DO HANDLE(T%Code,T%Char)

 Functions 194

$CLASSOID
The $CLASSOID function returns the full object reference of a class, given its name as
input.
Format
$CLASSOID(expr)
Arguments
expr ::= expr V FullClassName – An expression whose value is the full library$class
name.
Explanation
This function is useful whenever it is necessary to transform a string containing the name
of a class into an object reference. The function will always return a valid OID even if the
class does not exist. The return value is not validated. It is up to the programmer to
validate the existence of the class.
Related
$OIDPTR

$PTROID
Examples
The following chained example first transforms a full class reference into the class object
reference. The OID is then used to get the classes parent OID. The parent OID is used to
retrieve the parent classes name.

SET T%Parent=$ClassOID("Base$Set").Parent.Name

 Functions 195

$COPY
The $COPY function copies the current objects instance table of the current object into
the destination array specified by its argument.
Format
$COPY (glvn)
Arguments
glvn - the array into which the current object's instance table is to be copied.
Explanation
Note: Because special privileges are required to compile code containing the $COPY
function, it is not recommended for general use.

The $COPY function initializes the destination array prior to copying. Sparse lookups
are not performed as part of this process.

Because $COPY initializes the destination array prior to copying the object's instance
table, its effect can be viewed as a combination of the KILL and MERGE commands
(except that the Kill accessor and Assign accessor methods are never invoked).

The $COPY function returns 1 if the copying operation was successful, 0 if it was not.
Comments
Keep the following points in mind when you use the $COPY function:

• Copying an object's instance table into an array is risky, and the results are not
guaranteed to be consistent. For example, object references to internal objects
cannot be updated to point into the destination array.

• Sparse lookups are not performed by $COPY. This means that instance variables
that theoretically exist but have not been specifically created in the object's
instance table cannot be found in the destination array following $COPY.

Related
KILL command

MERGE command
Examples
The following example copies the current object's instance table into T%Result, exiting
from the current context if the operation was not successful.

IF '$COPY(T%Result) QUIT

 Functions 196

$DATA
The $DATA function checks the structural existence of a variable name or array node.
Format
$D{ATA} (glvn)
Arguments
glvn - a variable name or array node whose structural existence is to be checked.
Explanation
The $DATA function checks the structural existence of a variable name or array node. It
answers two questions at once:

• Does the symbol contain a value (is it safe to reference the symbol without
$GET)?

• Does the symbol have array children below it?
The argument of $DATA is a variable name or array node. It always produces one of
four return values:
0 The symbol is undefined. It has no value and no array

descendants.
1 The symbol contains a value, but has no array descendants.
10 The symbol contains no value, but has array descendants.
11 The symbol contains a value, and has array descendants.

 Functions 197

Comments
Keep the following points in mind when you use the $DATA function:

• The $DATA function determines the structural existence of a symbol or array
node. It does not determine whether a variable contains a handle to an object that
currently exists. However, the $EXIST function does have this capability.

• Often the $DATA function is used to ask a more specific question about the
structural existence of an object. Using the example variable L%X, the following
questions can be asked in the following different ways:

General Question Examples
Is L%X defined in any way? IF $DATA(L%X)
Is L%X completely undefined? IF '$DATA(L%X)
Does L%X contain no value? IF $DATA(L%X)#10=0

IF $DATA(L%X)[0

Does L%X contain a value? IF $DATA(L%X)#10
IF $DATA(L%X)'[0
IF 11[$DATA(L%X)

Does L%X Have Array
Descendants?

IF $DATA(L%X)>9
IF $LENGTH($DATA(L%X))=2

Does L%X not have descendants? IF $DATA(L%X)<10
IF $LENGTH($DATA(L%X))=1

• Use the $DATA and $GET functions to interact with symbols that may or may
not contain a value. In some cases, it is better to use $GET instead of $DATA,
while in other cases $DATA is preferable.

Related
CONTAINS ([) operator

EQUALS (=) operator

GREATER THAN (>) operator

LESS THAN (<) operator

MODULO (#) division operator

NOT (') operator

$EXIST function

$GET function
Examples
The following example assigns the value 100 to the variable T%Size if the instance
variable I%Height contains no value, or assigns the value of I%Height to T%Size if it
does contain a value.

IF $DATA(I%Height)[0 SET T%Size=100

ELSE SET T%Size=I%Height

 Functions 198

The following simpler example accomplishes exactly the same task (except that $TEST
is not modified):

SET T%Size=$GET(I%Height,100)

In the following example, the current code body is exited if I%Elements does not have
array children.

IF $DATA(I%Elements)<10 QUIT

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
a FOR loop with $ORDER to traverse the nodes, uses $DATA to determine whether a
given node contains data, and uses $NAME to convert a subnode into a name value. This
name value is then used in name indirection as the argument of $DATA and is passed as
a parameter.

WALK(Node) ; Recursive traversal

NEW Sub,DataVal,NodeName

IF $DATA(@Node)#10 DO $Env.Output(Node_" =<”_@Node_">")

SET Sub=""

FOR SET Sub=$ORDER(@Node@(Sub)) QUIT:Sub="" DO

. SET NodeName=$NAME(@Node@(Sub))

. SET DataVal=$DATA(@NodeName)

. IF DataVal'[0 DO $Env.Output(NodeName_" =<”_@Node_">")

. IF DataVal>9 DO WALK(NodeName)

QUIT

The following example provides an alternative implementation of WALK. It uses
$DATA to display the root node if necessary, uses $LENGTH and $EXTRACT to build
an array root, uses a FOR loop with $QUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition. Inside the FOR loop there is only a
single instance of indirection with no a recursive call. Therefore, this example may run
faster.

WALK(Node) ; Nonrecursive traversal

NEW Root,Len

IF 11[$DATA(@Node) DO $Env.Output(Node_" =<”_@Node_">")

SET Len=$LENGTH(Node),Root=Node

IF $EXTRACT(Root,Len)=")" SET $EXTRACT(Root,Len)=","

ELSE SET Root=Root_"(",Len=Len+1

FOR S Node=$QUERY(@Node) Q:$EXTRACT(Node,1,Len)'=Root DO

. DO $Env.Output(Node_" =<”_@Node_">")

QUIT

 Functions 199

$DELEGATE
The $DELEGATE function is used to delegate the execution of a method or accessor to
another object that has the same protocol. The system automatically changes context to
the delegated object and all input parameters are pass.
Format
$DE{LEGATE} (oref)
Arguments
oref - an object reference to an object that the call will be delegated to.
Explanation
The $DELEGATE function is used to pass all callframe information to another object
that has the same input specification. It is a very fast way to delegate responsibility to
another object. The receiving objects must have the same call interface. IN, INOUT and
OUT parameter keywords are honored.
Related
QUIT Command
SET Command
$CALLFRAME special variable
Examples
Assume a dispatcher object recieves a message to send a truck to deliver a package. The input
parameters on the message call contain all the information needed to dispatch a truck to deliver a
package. The Dispatcher object has a list of all driver objects. The dispatcher simply identifies the
dirver that is available and delegates responsibility to him by issuing a:

QUIT $DELEGATE(T%DriverOID)

The system will switch context to the object identified by T%DriverOID and redirect all input
specifications to that object’s method.
$Delegate will invoke the current service with the current parameters on the requested object.
Should the delegating function need to alter the parameters being delegated it may do so by first
manipulating the current call frame using the $Callframe object.

 Functions 200

$EXIST
The $EXIST function determines whether or not an object exists.
Format
$EX{IST} (oref[, cnexpr])
Arguments
oref ::= expr V OID - object reference to an object that may or may not exist.

cnexpr ::= expr V classname - The optional name of the class of which the object may or
may not be a member.
Explanation
For the one-argument form, if the argument of $EXIST contains an object reference to an
object that currently exists, the function returns 1. If the object no longer exists, the
function returns 0. If the argument of $EXIST is not an object reference, it returns B
(built-in data type), which is interpreted as 0 in a truth-value context.

For the two-argument form, the second argument must evaluate to a class. The full class
reference should be specified, that is, “library$class”. If the object is an instance of the
class, the $Exist function will return true (1).
Comments
Keep the following points in mind when you use the $EXIST function:

• The $DATA and $EXIST functions are related but are different. $DATA checks
for the structural existence of a symbol without referencing its value and $EXIST
checks the value it is passed to determine whether it is an object reference to an
existing object.

• If the argument is a symbol that is not structurally defined (in other words, its
$DATA value is not 1 or 11), then an undefined variable error can occur.

Related
$DATA function
Examples
The following example makes sure that the object T%Window exists before sending it an
Activate message.

IF $EXIST(T%Window) DO T%Window.Activate

The following example shows how to use $EXIST to determine whether the object in the
temporary symbol Unknown can be sent a Browse message (in other words, if it refers to
an existing object).

IF $EXIST(T%Unknown) DO T%Unknown.Browse

 Functions 201

The previous code does not make any distinction between built-ins and invalid OIDs. The
behavior is identical if the $EXIST function returns B or 0, which is in keeping with the
intent of the example.

The two argument form of the $EXIST is used to determine whether an OID is
associated with a particular class. In the following example, if the object bound to the
T%OID variable is not a “Base$Set” instance, then assert an error to the client.

IF ‘$EXIST(T%OID,”Base$Set”) DO $Env.Assert(“Object a Base$Set object.”)

 Functions 202

$EXTCALLBACK
The $EXTCALLBACK function returns a callback frame identifier used in calling back
to a label within any method of the current object.
Format
$EXTCALL{BACK} (methexp, labelexp, typecode {, optionscode})
Arguments
methexp ::= expr V method

The first argument is a method name that is valid for the current object.

labelexp ::= expr V label

The second argument is a label or public label, as it would be referenced from within the
specified method's code context.

typecode - the second argument is a numeric code value interpreted as follows:
Type Description Code
Capture Callback capturing creator's

method-related symbols.
1

Initialized Callback that starts with a clean
variable context.

2

optionscode

An integer interpreted according to bit values:
Option Description Bit
Persistent Survive for the duration of the

creating object.
0

Additive Preserve variable state between
calls.

1

Explanation
Objects can create callbacks to specific labels inside their methods. This allows external
objects to directly invoke a specific label in a specific method. The code being invoked
runs in the context of the object that created the object. Callbacks can be invoked as DO
or GOTO arguments or as extrinsic functions.

The $EXTCALLBACK function is a privileged function that returns a callback frame
identifier used in calling back to a label within any method of the current object. This
identifier can be used to call externally into the specified context. Special privileges are
required to compile code using this function, and its general use in EsiObjects is not
recommended. In most cases you would use the $CALLBACK function to create
callbacks.

 Functions 203

Comments
Keep the following points in mind when you use the $EXTCALLBACK function:

• Use the DO form of a callback for output, looping, and update functions.

• Use the GOTO form for delegation and error handling.

• Use the extrinsic function form of a callback for searches and property lookup.
Related
Message Syntax

$CALLBACK function
Examples
In the following example, the $EXTCALLBACK function is used to return a callback to
the MODIFY label within the Activate method of the current object. The call frame starts
with a clean variable context.

SET T%CallBack=$EXTCALLBACK("Activate","MODIFY",2)

The following example returns a callback to DELETE. The callback starts with a clean
variable context, and is persistent and additive.

SET T%CallBack=$EXTCALLBACK(DELETE,2,3)

 Functions 204

$EXTRACT
The $EXTRACT function returns some part of a string based on character cell positions.
A special SET form can be used to modify portions of a string stored in a variable.
Format
$E{XTRACT} (expr {,intexpr1 {,intexpr2}})
Arguments
expr - An expression whose value is interpreted as a string, some portion of which is to
be returned back.

intexpr1 - An integer value indicating the starting position of the substring to be returned.

intexpr2 - An integer value indicating the ending position of the substring to be returned.
Explanation
$EXTRACT accepts three arguments:

• String

• Starting position

• Ending position
The ending position is an absolute character position, not the number of characters after
the start. The second and third arguments are similar to the third and fourth arguments of
$PIECE, for example:

SET T%String="ABCDEFG"

DO $Env.Output($EXTRACT(T%String,3,5))

Result: CDE

Only the first argument is required. If the ending position is omitted, the starting position
is used as a default value. If the starting position is also omitted, the first position in the
string is used. The first argument of $EXTRACT is interpreted as a string. The second
and third arguments are interpreted as integers. Decimal values are truncated.

 Functions 205

A special SET form can be used to modify portions of a string stored in a variable. The
special construct SET $EXTRACT is used to replace one or more character positions of
a variable's contents without affecting the rest of the string.

SET T%String="ABCDEFG"

SET $EXTRACT(T%String,3,5)="*"

DO $Env.Output(T%String)

Results: AB*FG

If the variable does not exist yet, it is given a starting value of NULL (""). If the number
of characters in the existing string is less then the starting character position, extra space
characters are added as necessary.
Comments
Keep the following points in mind when you use the $EXTRACT function:

• If the starting position is a value less than 0, then 0 is used.

• If the ending position is greater than the number of characters in the string, then
the string's actual length is used.

• If the starting portion of the string comes after its end, or if the starting position is
greater than the ending position, then NULL ("") is returned.

• The $EXTRACT function generally can be used in any expression context.
However, the special construct SET $EXTRACT also can be used to modify a
substring of a variable's contents.

Related
SET command

$LENGTH function

$PIECE function
Examples
The following example displays the third through fifth characters of the string
ABCDEFG.

DO $Env.Output($EXTRACT("ABCDEFG",3,5))

Results: CDE

The following example displays the 5th through 10th characters of the string ABCDEFG.
Because there are only seven characters, the fifth through seventh characters are
displayed.

DO $Env.Output($EXTRACT("ABCDEFG",5,10))

Results: EFG

 Functions 206

The following example displays characters negative three through two of the string
ABCDEFG. Because negative character positions are empty, the first two characters are
displayed.

DO $Env.Output($EXTRACT("ABCDEFG",-3,2))

Results: AB

The following example displays characters 10 through 12 of the string ABCDEFG.
Because the starting position is beyond the end, nothing is displayed.

DO $Env.Output($EXTRACT("ABCDEFG",10,12))

The following example displays characters five through three of the string ABCDEFG.
Because the starting position greater than the ending position, NULL ("") is displayed.

DO $Env.Output($EXTRACT("ABCDEFG",5,3))

The following example displays character four of the string ABCDEFG. Because the
ending position is not specified, the character D is returned.

DO $Env.Output($EXTRACT("ABCDEFG",4))

Results: D

The following example displays the first character of the string ABCDEFG. Because the
starting and ending positions are not specified, only the first character is returned.

DO $Env.Output($EXTRACT("ABCDEFG"))

Results: A

The following example uses the special construct SET $EXTRACT to modify the third
through fifth characters of the variable T%String. Note that the replacement string is
simply substituted for those characters. Because the replacement string's length is not the
same as the length of the substring being replaced, this operation changes the length of
the string in T%String.

SET T%String="ABCDEFG"

SET $EXTRACT(T%String,3,5)="*"

DO $Env.Output(T%String)

Results: AB*FG

 Functions 207

The following example uses SET $EXTRACT to modify the tenth character of the
variable T%String. However, because there are only seven characters in T%String at the
time, two spaces are added first.

SET T%String="ABCDEFG"

SET $EXTRACT(T%String,10)="*"

DO $Env.Output(T%String)

Results: ABCDEFG *

If the variable does not yet exist, it is given a starting value of NULL (""). In the
following example, the variable T%String is undefined, and character position 5 is
replaced with the string Text. To achieve this, four spaces are automatically placed at the
start of the string.

KILL T%String

SET $EXTRACT(T%String,5)="Text"

DO $Env.Output(T%String)

Results: Text

The SET $EXTRACT construct is one way to generate a string containing only spaces.
This example creates a string containing 80 spaces.

KILL T%String

SET $EXTRACT(T%String,81)=""

The following example uses a FOR loop with the one-argument $LENGTH, SET
$PIECE, and $EXTRACT functions to produce a string in which the individual
characters of the string "EsiObjects" become comma-delimited pieces in the variable
T%String. After these lines have been executed, T%Result should contain the string
E,s,i,O,b,j,e,c,t,s.

SET T%Result="",T%String="EsiObjects"

FOR T%Loop=1:1:$LENGTH(T%String) DO

. SET $PIECE(T%Result,",",T%Loop)=$EXTRACT(T%String,T%Loop)

 Functions 208

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
$DATA to display the root node if necessary, uses $LENGTH and $EXTRACT to build
an array root, uses a FOR loop with $QUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition.

WALK(Node) ; Nonrecursive traversal

NEW Root,Len

IF 11[$DATA(@Node) DO $Env.Output(Node_" =<”_@Node_">")

SET Len=$LENGTH(Node),Root=Node

IF $EXTRACT(Root,Len)=")" SET $EXTRACT(Root,Len)=","

ELSE SET Root=Root_"(",Len=Len+1

FOR S Node=$QUERY(@Node) Q:$EXTRACT(Node,1,Len)'=Root DO

. DO $Env.Output(Node_" =<”_@Node_">")

QUIT

 Functions 209

$FIND
The $FIND function finds the next location of a substring within another string after a
specified starting position.
Format
$F{IND} (expr1, expr2 {, intexpr})
Arguments
expr1 - The larger string to be searched.

expr2 - The substring to look for.

Intexpr - The starting character position from which to begin the search.
Explanation
The $FIND arguments are as follows:

• A string to be searched

• The substring to look for

• The starting position for the search
$FIND begins at the starting position, scanning forward until the substring is found. If
the search position is not specified, the search begins at the start of the string. If it is
found, the character position immediately after the end of the substring is returned. (This
is the character position from which the next search might begin.) If it is not found, 0 is
returned.
Comments
Keep the following points in mind when you use the $FIND function:

• The starting position is interpreted as an integer value greater than zero. If a
decimal value is specified, it is truncated to an integer. If a value less than 1 is
specified, then 1 is used.

• If a search position greater than the end of the string is specified, $FIND returns 0.
Related
$EXTRACT function

$LENGTH function

$PIECE function

 Functions 210

Examples
The following example uses $FIND to return the position of the substring “ssi” inside the
string Mississippi, starting at search position 1.

DO $Env.Output($FIND("Mississippi","ssi",1))

Results: 6

The following example uses $FIND to return the position of the substring “ssi” inside the
string Mississippi, starting at search position 6.

DO $Env.Output($FIND("Mississippi","ssi",6))

Results: 9

The following example uses $FIND to return the position of the substring “ssi” inside the
string Mississippi, starting at search position 9.

DO $Env.Output($FIND("Mississippi","ssi",6))

Results: 0

The following example uses $FIND to return the position of the substring “ssi” inside the
string Mississippi, starting at the first character in the string.

DO $Env.Output($FIND("Mississippi","ssi"))

Results: 6

The following example uses a FOR loop to make a string containing pointers to all the
substring positions in the target string.

HITLIST(L%String,L%Sub) ; Display strings with hits

NEW L%Pos,L%Hits

SET L%Pos=1

FOR DO QUIT:'L%Pos

. SET L%Pos=$FIND(L%String,L%Sub,L%Pos)

. IF 'L%Pos QUIT

. SET $EXTRACT(L%Hits,L%Pos)="^"

DO $Env.Output("Searching for '"_L%Sub_"' in '"_L%String_"'.")

DO $Env.Output(L%String)

DO $Env.Output(L%Hits)

QUIT

 Functions 211

$FNUMBER
The $FNUMBER function returns an edited form of a numeric expression.
Format
$FN{UMBER} (numexpr , fncodexpr {, intexpr})
Arguments
numexpr - A numeric value to be formatted.

fncodexpr - A code string containing a series of characters specifying the formatting
operations to be performed on the number. The code strings are interpreted as follows:
Code String Description
P or p Places parentheses around negative values,

or enters spaces if the number is positive
(prefix and suffix).

, Inserts a comma every three places to the
left of the decimal point.

+ Inserts a plus sign (+) before numbers
greater than 0.

- Suppresses the minus sign for negative
values.

T or t Places signs after the string. If sign
suppression is enabled, then using this code
string results in a trailing space.

intexpr - an integer value specifying the number of decimal places to which the number is
to be rounded.
Explanation
The $FNUMBER function performs a variety of different formatting operations on
numeric values. For any of the formatting possibilities listed, the number can be rounded
to any number of decimal places. Trailing zeros are left when necessary by the rounding
operation. If only two arguments are specified, no rounding occurs. If the second
argument is NULL (""), no special formatting occurs other than the rounding operation.

Note the following:

• The P code string places parentheses around negative values and suppresses the
minus sign (–). If the string is positive, it is surrounded by spaces. This code can
be used with the comma code string (,) only. It is not legal with any other code
strings.

• The comma code string (,) inserts a comma every three places to the left of the
decimal point. Digits to the right of the decimal point are not affected. If the
number is between 1000 and –1000, this code string has no effect.

• The + code string inserts a plus sign on numbers greater than 0. If the number is
negative, this code string has no effect.

 Functions 212

• The – code string suppresses the minus sign on negative values. If the number is
positive, this code string has no effect. Use this code string to find the absolute
value of a number.

• The T code string places any sign after the string. If a numeric sign (positive or
negative) is to be displayed, then the sign appears at the end of the number instead
of at the beginning. If sign suppression is enabled, a trailing space results.

Comments
Keep the following points in mind when you use the $FNUMBER function:

• All code string combinations are allowed except you can only use the P code
string with the comma code string (,).

• If the second argument is NULL (""), no special numeric formatting occurs other
than rounding.

• If the third argument is omitted, no rounding occurs.

• The return value of $FNUMBER is a string that can be subjected to further
formatting operations (for example using other functions such as $JUSTIFY and
$TRANSLATE).

Related
PLUS (+) operator

$JUSTIFY function

$TRANSLATE function
Examples
The following example uses $FNUMBER to place parentheses around negative values
and commas before the thousands places.

DO $Env.Output($FNUMBER(-9876543.219,"P,",2))

Results: (9,876,543.22)

The following example uses $FNUMBER to place parentheses around negative values
and commas before the thousands places. Because the number is positive, it is surrounded
by spaces. Asterisks are displayed to show the spaces in the output.

DO $Env.Output("*"_$FNUMBER(9876543.219,"P,",2)_"*")

Results: * 9,876,543.22 *

The following example uses $FNUMBER with no formatting codes and two decimal
places to round the number. Note the use of the numeric interpretation operator + to strip
any trailing zeros.

DO $Env.Output(+$FNUMBER(-9876543.995,"",2))

Results: -9876544

 Functions 213

The following example uses $FNUMBER with the minus code (-) to remove the minus
sign on negative values. Note that the result is the absolute value of the number.

DO $Env.Output($FNUMBER(-9876543.219,"-"))

Results: 9876543,219

The following example uses $FNUMBER to display the plus sign (+) on positive values
and places the sign at the end of the value.

DO $Env.Output($FNUMBER(53647,"T+"))

Results: 53647+

The following example uses $FNUMBER to suppress the minus sign on negative values
and place the minus sign (–) at the end of the value. The asterisks are used to show the
space character. The T- combination always results in a trailing space.

DO $Env.Output("*"_$FNUMBER(-764318.84,"T-")_"*")

Results: *764318.84 *

The following example uses $FNUMBER with $JUSTIFY to format a number with
commas and parentheses, rounded to two decimal places and right justified in a field of
fifteen spaces. Asterisks are used to bring out the spaces. Note that the rounding occurs in
the innermost function.

DO $Env.Output("*"_$JUSTIFY($FNUMBER(-764318.84321,"P,",2),15)_"*")

Results: * (764,318.84)*

The following example uses $FNUMBER with $TRANSLATE to format a number with
periods instead of commas in the thousands places, and a comma instead of a period as
the decimal indicator.

DO $Env.Output($TRANSLATE($FNUMBER(6543210.987,",",2),".,",",."))

Results: 6.543.210,99

 Functions 214

The following example uses $FNUMBER with $TRANSLATE to format a number with
negative values surrounded by square brackets.

DO $Env.Output($TRANSLATE($FNUMBER(-43210,"P"),"()","[]"))

Results: [43210]

 Functions 215

$FREECB
The $FREECB function frees a callback.
Format
$FREECB (cbref)
Arguments
cbref ::= expratom V callbackframe

The callback frame identifier string used to invoke the callback.
Explanation
Objects can create callbacks to specific labels inside their methods. This allows external
objects to directly invoke a specific label in a specific method. The code being invoked
runs in the context of the object that created the object. Callbacks can be invoked as DO
or GOTO arguments, or as extrinsic functions.

Once a callback is no longer required it should be freed. Under certain conditions,
EsiObjects automatically frees callbacks. Original type callbacks are automatically
destroyed when the process stack frame that created them exits. Nonpersistent callbacks
are freed automatically when their target object is destroyed, and when there is a new
incarnation of the environment (in other words, at process shutdown or startup).
Persistent callbacks are automatically freed only when their target object is destroyed.

Despite these considerations, it is recommended that all callback types other than
Original should be freed explicitly when they are no longer needed. This is done using
the $FREECB function. The $FREECB function's argument is a callback reference. It
frees this callback, returning a true value if the callback existed.
Comments
Keep the following points in mind when you use the $FREECB function:

• Use the DO form of a callback for output, looping, and update functions.

• Use the GOTO format for delegation and error handling.

• Use the extrinsic function form of a callback for searches and property lookup.
Related
Message Syntax

$CALLBACK function

$EXTCALLBACK function
Examples
The following example frees the callback in T%CallBack. If the callback was already
free, it displays a message.

IF '$FREECB(T%CallBack) DO $Env.Output("Callback was already freed!")

 Functions 216

$GET
The $GET function references a variable whose existence is in doubt, without the danger
of getting an undefined variable error.
Format
$G{ET} (glvn {, expr})
Arguments
glvn - A variable whose value is to be referenced.

expr - The default value to be returned instead, if the variable does not contain a value.
Explanation
The second argument of $GET specifies a default value to be returned if the variable is
undefined. If no second argument is specified, NULL ("") is used as the default.

If the second argument is present, the value of the argument is always evaluated (even if
the variable is defined).
Comments
Keep the following points in mind when you use the $GET function:

• $GET is related to $DATA because both are used to interact with symbols that
cannot have a value. But unlike $DATA, $GET is insensitive to the difference
between a variable that is not defined and one that is defined with the specified
default value. In certain cases such insensitivity is desired, while in other cases it is
not.

• If the value of the second argument is present, it is always evaluated (even if the
variable is defined). This means that compute-expensive operations should not be
placed in the second argument. In certain cases, it is useful to use $DATA and
$SELECT together.

Related
$DATA function

$SELECT function
Examples
The following example executes the QUIT if L%N is not defined ($GET returns NULL
("") as the default value), or if L%N is defined and its value is NULL ("") ($GET returns
its value).

IF $GET(L%N)="" QUIT

The following example uses $DATA. It assigns the value 100 to the variable T%Size if
the instance variable I%Height contains no value, or assigns the value of I%Height to
T%Size if it does contain a value.

 Functions 217

IF $DATA(I%Height)[0 SET T%Size=100

ELSE SET T%Size=I%Height

The following simpler example uses $GET to do the same task as shown in the previous
example (except that $TEST is not modified):

SET T%Size=$GET(I%Height,100)

In the following example, the following two lines of code are not equivalent. The first
line uses $GET, causing the $CALLBACK function in the second argument to be called
and its value to be ignored if T%CallBack is undefined. The second line uses $SELECT,
causing the $CALLBACK function to be evaluated only if the variable is undefined.

SET T%CallBack=$GET(T%CallBack,$CALLBACK(MODIFY))

S T%CallBack=$S($D(T%CallBack)#10:T%CallBack,1:$CALLBACK(MODIFY))

 Functions 218

$GETENTRYREF
The $GETENTRYREF function returns an entry reference to a handler label that can be
called from any M context external to EsiObjects.
Format
$GETENT{RYREF} (geterefarg)
Arguments
geterefarg ::= expr V MethEnt

MethEnt ::= label ^ method

The argument is an expression whose value is of the form label^method.
Explanation
When the handler is called from outside EsiObjects, it is not immediately in any object
context. To use instance variables, $SELF, and other object-sensitive language elements,
the code must associate itself with an object using the $ASSOCIATE function. Method
inheritance uses the normal inheritance path of the class that implements the method.

The external M code that executes the external callback does not have the benefit of
EsiObjects language elements. It can use simple DO argument indirection to perform the
external callback.
Comments
Keep the following points in mind when you use the $GETENTRYREF function:

• The label in the argument must be declared as Open or Handler.

• The handler is not immediately executed in any object context and must use
$ASSOCIATE to associate itself with an object if it needs to use $SELF, instance
variables, and other EsiObjects language elements.

Related
Method structure

Message Syntax

$ASSOCIATE function
Examples
The following example gets a handler to the label HANDLE in the method Update.

SET T%CallBack=$GETENTRYREF("HANDLE^Update")

 Functions 219

$INFO
The $INFO function returns information about an object.
Format
$INFO(oref, item)
Arguments
oref - An object reference to the object about which information is being requested.

item - An informational item number or name, denoting the kind of information desired
about the object. Possible values are summarized in the following table:

Item Name Description Returns
1 ClassPointer Pointer to object's class. OID of the object’s class.
2 ClassName or

Class
Name of the object's library and
class (and nested classes).

A string in the form:
Lib$Class>NestedClass>…

3 Existence True if the object exists. 1 if the object exists, 0 if it does
not exist.

4 Persistence True if the object is persistent. 1 if object is persistent, 0 if it is
not persistent.

5 Domain The domain in which the object
resides.

Name of the Domain (string).

6 Parent The object's parent. Object reference (OID) to the
parent.

7 Name The object's primary name. Name of the object if it exists
(string).

8 Reference The object’s internal reference
count.

The actual reference count
value of the object.

9 Virtual The object is a virtual object, not a
real object.

0 if not virtual, non-zero if it is
virtual.

10 ExternalClass The objects external class name
(What Java Proxy is used).

Name of the external class.

11 Self The object handle which is
equivalent to $Self. It allows various
remote agents to get at the
information. Only useful within a
Java proxy.

The objects handle.

12 Protected The object is protected from
general debugging access. (An
object is protected using the
$OSR Function)

1 if object is protected, 0 if it is
not.

Explanation
$INFO provides a general mechanism to be used in obtaining status information about an
object. Objects could implement properties to return these values, but $INFO is
automatically available for all objects without placing any constraints or burdens upon
the programmer.
Comments
Keep the following points in mind when you use the $INFO function:

 Functions 220

• The $INFO and $EXIST functions are related but are different. $EXIST only
checks for the existence of an object where $INFO checks for a number of object
related characteristics.

Related
$EXIST function

$DATA function
Examples
The following example makes sure that the object T%Employee exists before sending it
an Promote message:

IF $INFO(T%Employee,3) DO T%Employee.Promote("Supervisor")

The following is equivalent to the last example:

IF $INFO(T%Employee,”Existence”) DO T%Employee.Promote("Supervisor")

The following example makes sure the object bound to the T%Class temporary variable
points to a class befor it gets the classes name.

IF $INFO(T%Class,1) S T%ClassName=T%Class.Name

The example below returns the class path name of an object when it is a nested class. The
value placed in T%Path would be HIS$Patient>AdmitDate if the object inn
T%AdmitDate is an instance of the nested Patient class AdmitDate.

Set T%Path=$INFO(T%AdmitDate,2)

 Functions 221

$ISA
The $ISA function performs two kinds of checks.
• It checks an object as a member of a certain class or one of its descendants
• Additionally, if the object is of a certain type. Types supported are String, Integer, Numeric,

Boolean, Object, Variant or Any.
Format
$ISA (oref , cnexpr)

$ISA (oref , type)
Arguments
oref - An object reference to the object to be tested for class membership.

cnexpr ::= expr V classname - The name of the class of which the object may or may not
be a member.

Type ::= expr V itype – The name of an internal type.
Explanation
The $ISA function is used to insure that an instance of a class belongs to that classes
parentage or of a certain internal type.
Examples
This example checks an object bound to the T%Obj variable as belonging to the
Collection class. If not, it issues a dialog box with an error message.

If ‘$ISA(T%Obj,”Collection”) Do $Env.Assert(“Not a Collection object.”)

The following examples can be used to test for a internal type:

$IsA(x,"String") ;Matches any none object

$IsA(x,"Integer") ;Matches any positive or negative interger

$IsA(x,"Numeric") ;Matches a numeric value (Excluding scientific notation)

$IsA(x,"Boolean") ;Matched 0 or 1

$IsA(x,"Object") ;Matches any object

$IsA(x,"Variant") ;Matches anythng

$IsA(x,"Any") ;Matched anything

 Functions 222

$JUSTIFY
The $JUSTIFY function right-justifies a string or number in a field containing a certain
number of spaces, and rounds numeric values to a specified number of decimal places.
Format
$J{USTIFY} (expr, numexpr2)

$J{USTIFY} (numexpr1, numexpr2, numexpr3)
Arguments
expr - A string to be right-justified by adding spaces to the left (two-argument form).

numexpr1 - A numeric value to be rounded to the specified number of decimal places and
right-justified by adding spaces to its left (three-argument form).

numexpr2 - The minimum width of the return value.

numexpr3 - The number of decimal places to which the rounding is carried out (three-
argument form).
Explanation
The first argument of $JUSTIFY is interpreted as a string in the two-argument form, or
as a number in the three-argument form. This is because the three-argument form needs
to perform an inherently numeric (rounding) operation.

The second argument is the minimum width of the return value. If the string or rounded
number contains fewer characters than this value, the appropriate numbers of spaces are
added to the left until its width equals this value. If the string or rounded number contains
more characters than the second argument, it is longer than the minimum width indicated
by the second argument.

The third argument, if specified, is the number of decimal places to which rounding is
carried out. Trailing zeros are added if necessary. If not specified, the first argument is
not interpreted numerically and no rounding occurs.
Comments
Keep the following points in mind when you use the $JUSTIFY function:

• The third argument is interpreted as an integer and cannot be a negative number.

• In the three-argument form, if the first argument is a value greater than –1 but less
than 1, then the return value has a zero digit to the left of the decimal.

Related
Unary PLUS (+) operator

$FNUMBER function

$TRANSLATE function
Examples

 Functions 223

The following example uses $JUSTIFY to right-justify a string in a field of twenty
spaces. Asterisks are used to show where the spaces are added.

DO $Env.Output("*"_$JUSTIFY("Jane Q. Public",20)_"*")

Results: * Jane Q. Public*

The following example uses $JUSTIFY to round a number to two decimal places, right-
justifying it in a field of 10 spaces. Asterisks are used to show where the spaces are
added.

DO $Env.Output("*",$JUSTIFY(1234.5678,10,2),"*")

Results: * 1234.57*

The following example uses the unary PLUS (+) operator with $JUSTIFY to round a
number to two decimal places. Note the use of the value 0 in the second argument.

DO $Env.Output(+$JUSTIFY(1234.9995,0,2))

Results: 1235

The following example uses $JUSTIFY and $TRANSLATE to pad a number with
leading zeros so that it is 5 characters wide.

DO $Env.Output($TRANSLATE($JUSTIFY(123,5),0," "))

Results: 00123

The following example uses $FNUMBER with $JUSTIFY to format a number with
commas and parentheses, rounded to two decimal places and right justified in a field of
fifteen spaces. Asterisks are used to bring out the spaces. Note that the rounding occurs in
the innermost function.

DO $Env.Output("*"_$JUSTIFY($FNUMBER(-764318.84321,"P,",2),15)_"*")

Results: * (764,318.84)*

 Functions 224

The following extrinsic variable returns a string containing the approximate time, based
on the second comma-piece of $HOROLOG. Note the use of $SELECT, $JUSTIFY,
and $TRANSLATE in this function.

TIME() ; TIME extrinsic variable

NEW L%Time,L%Hour,L%Minute,L%Meridian

SET L%Time=$PIECE($HOROLOG,",",2)

IF L%Time#43200=0 Q "12:00"_$SELECT(L%Time:"pm",1:"am")

SET L%Hour=L%Time\3600

SET L%Meridian=$SELECT(L%Hour>11:"pm",1:"am")

SET L%Hour=$JUSTIFY(L%Hour#12,2)

IF L%Hour=" 0" SET L%Hour=12

SET L%Minute=$JUSTIFY(L%Time\60#60,2)

SET L%Time=$TR(L%Hour_":"_L%Minute_L%Meridian," ",0)

QUIT L%Time

 Functions 225

$LENGTH
The $LENGTH function measures the length of a string in terms of character cells or
delimited pieces.
Format
$L{ENGTH} (expr1 {, expr2})
Arguments
expr1 - A string whose length is to be measured in terms of character cells or delimited
pieces.

expr2 - If present, a delimiter into which the string is to be broken up.
Explanation
The one-argument form of $LENGTH measures the number of characters in the string.
In the two-argument form, the second argument is a delimiter used to divide the string
into pieces. This form of $LENGTH returns the number of pieces in the string.
Delimiters are usually one character in length, but the only limit to their length is the
maximum string size.

The number of pieces is similar to the number of words in a sentence. For example, in the
following string, using a space as a delimiter, the total number of pieces equals 4:

"John dropped the ball."

The number of pieces is always equal to the number of nonoverlapping instances of the
delimiter, plus 1. The following table shows additional examples.
String Delimiter Number of Pieces
"first, second,third, fourth" , 4
"ABCBBDABE" B 5
"^^^^^" ^ 6
"Hello" ? 1
"xxxxxx" Xx 4
"xxxxxxx" Xx 4
"" 1

Comments
Keep the following points in mind when you use the $LENGTH function:

• In the one-argument format, if the string is NULL ("") then $LENGTH returns 0.

• In the two-argument form, if the second argument is specified as NULL (""), then
the return value is always 0.

• The one-argument form of $LENGTH often is used with $EXTRACT. The two-
argument form often is used with $PIECE.

Related
SET command

 Functions 226

$EXTRACT function

$PIECE function

$ZLENGTH function
Examples
The following example uses a FOR loop with the one-argument $LENGTH, SET
$PIECE, and $EXTRACT to produce a string in which the individual characters of the
string "EsiObjects" become comma-delimited pieces in the variable T%String. After
these lines have been executed, T%Result should contain the string "E,s,i,O,b,j,e,c,t,s".

SET T%Result="",T%String="EsiObjects"

FOR T%Loop=1:1:$LENGTH(T%String) DO

. SET $PIECE(T%Result,",",T%Loop)=$EXTRACT(T%String,T%Loop)

The following extrinsic function performs a search-and-replace operation on a string,
sending back the transformed string as its return value. It uses the two-argument
$LENGTH to count the number of pieces in the source string, and uses $PIECE and
SET $PIECE to do the replacement operation.

REPL(L%String,L%From,L%To) ; Replace L%From with L%To in L%String

NEW L%Iter,L%Result,L%Length

IF L%From="" QUIT ""

SET L%Length=$LENGTH(L%String,L%From)

IF L%To="" SET L%Result="" FOR L%Iter=1:1:L%Length DO

. SET L%Result=L%Result_$PIECE(L%String,L%From,L%Iter)

ELSE FOR L%Iter=L%Length:-1:1 DO

. SET $P(L%Result,L%To,L%Iter)=$P(L%String,L%From,L%Iter)

QUIT L%Result

The following expression returns the string EsiObjects Language for
EsiObjects Programming.

$$REPL("M Language for M Programming","M","EsiObjects")

 Functions 227

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
$DATA to display the root node if necessary, uses $LENGTH and $EXTRACT to build
an array root, a FOR loop with $QUERY to traverse the array, and $EXTRACT to
determine the exiting condition.

WALK(Node) ; Recursive traversal

NEW Sub,DataVal,NodeName

IF $DATA(@Node)#10 DO $Env.Output(Node_" =<”_@Node_">")

SET Sub=""

FOR SET Sub=$ORDER(@Node@(Sub)) QUIT:Sub="" DO

. SET NodeName=$NAME(@Node@(Sub))

. SET DataVal=$DATA(@NodeName)

. IF DataVal'[0 DO $Env.Output(NodeName_" =<”_@Node_">")

. IF DataVal>9 DO WALK(NodeName)

QUIT

 Functions 228

$LIBRARY
The $LIBRARY function returns the object reference of a library, given its name as
input.
Format
$LIB{RARY} (libexpr)
Arguments
libexpr ::= expr V libraryname - An expression whose value is the name of a library.
Explanation
This function is useful whenever it is necessary to transform a string containing the name
of a library into an object reference. The function returns NULL ("") if the specified
library does not exist.
Related
$LIBRARY special variable
Examples
The following example transforms a library name that the user has selected from a list
box into an object reference that can be used to communicate with the library. It then asks
the library to copy all its class names into a list box.

SET T%Library=$LIBRARY("MyLibrary")

IF T%Library="" QUIT

DO T%Library.CopyClassList(Target:I%ListBox,Names)

 Functions 229

$LOOKUP
The $LOOKUP function allows privileged code to access the values in a symbol table,
optionally including subscript levels.
Format
$LOOKUP (name, subscripts, typexpr)
Arguments
name - The name of the variable.

subscripts - An expression whose value is an entire subscript list, including the
parentheses.
 A Accessor
 C Class
 CN Constant
 G Global
 I Instance
Typexpr ::= expr V L Local
 N NamePool
 O Object Name
 P Parameter
 R Relative/Region
 S System
 U Universal

Explanation
You can use the $LOOKUP function with any EsiObjects symbol, including templates
and name pools.
Comments
Keep the following points in mind when you use the $LOOKUP function:

• You can use the $LOOKUP function to get the values of EsiObjects variables
instead of using name or subscript indirection.

• Once the names of the variables are obtained with $WALK, their values can be
referenced with $LOOKUP.

• Because special privileges are required, general use of $LOOKUP in EsiObjects
is not recommended.

Related
INDIRECTION (@) operator

$WALK function
Examples

 Functions 230

The following example contains a FOR loop used to traverse the names of an object's
instance variables with $WALK and $LOOKUP is used to obtain their values (for those
that have simple values).

SET T%Loop=""

FOR SET T%Loop=$WALK(T%Loop,"","I") QUIT:T%Loop="" DO

. DO T%Window.AddLine("Var: "_T%Loop_", Val: "_$LOOKUP(T%Loop,"","I"))

QUIT

 Functions 231

$NAME
The $NAME function converts a variable name or array reference to a string
representation in which the subscripts are expressed as literals.
Format
$NA{ME} (glvn, intexpr)
Arguments
glvn - A variable name or array reference to be converted to a string representation.

intexpr - The maximum number of subscript levels for the return value.
Explanation
If the maximum number of subscript levels is specified, then any extra subscripts in the
specified array node are not present in the return value. If the number is 0, then only the
array root node is returned. If the number is not specified, then all the subscripts in the
array node are present in the return value.
Comments
Keep the following points in mind when you use the $NAME function:

• The $NAME function has many uses, but one of the most common is to convert
an array node reference using subscript indirection into a string that can be used in
name indirection, or can itself be used as the base location for deeper levels of
subscript indirection.

• $NAME is also useful in generating strings containing array names to be stored in
variables or passed as parameters.

• The return value of $NAME is a namevalue appropriate to be used with name
indirection, as a root in subscript indirection, or as a parameter of $QLENGTH
and $QSUBSCRIPT.

Related
INDIRECTION (@) operator

$QLENGTH function

$QSUBSCRIPT function

$QUERY function
Examples
The following example uses $NAME to convert an array node reference, accessed
through subscript indirection, into a string representation that can be stored in a variable.
Variable names and expressions in the subscript values are simplified to literal values in
the target string.

SET T%Handle=$NAME(@T%Target@(T%Loop,T%Line+1))

 Functions 232

The following example uses $NAME to return a string containing only the first three
subscript levels of the specified array node.

SET T%Handle=$NAME(@T%Target,3)

The following example uses $NAME to return a string containing only the root node of
the specified array.

SET T%Handle=$NAME(@T%Target,0)

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
a FOR loop with $ORDER to traverse the nodes, uses $DATA to determine whether a
given node contains data, and uses $NAME to convert a subnode into a name value. This
name value is then used in name indirection as the argument of $DATA and is passed as
a parameter.

WALK(Node) ; Recursive traversal

NEW Sub,DataVal,NodeName

IF $DATA(@Node)#10 DO $Env.Output(Node_" =<”_@Node_">")

SET Sub=""

FOR SET Sub=$ORDER(@Node@(Sub)) QUIT:Sub="" DO

. SET NodeName=$NAME(@Node@(Sub))

. SET DataVal=$DATA(@NodeName)

. IF DataVal'[0 DO $Env.Output(NodeName_" =<”_@Node_">")

. IF DataVal>9 DO WALK(NodeName)

QUIT

The following example is an alternative implementation of the WALK subroutine. It uses
$DATA to display the root node if necessary, uses $LENGTH and $EXTRACT to build
an array root, uses a FOR loop with $QUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition. Inside the FOR loop there is only a
single instance of indirection with no a recursive call.

WALK(Node) ; Nonrecursive traversal

NEW Root,Len

IF 11[$DATA(@Node) DO $Env.Output(Node_" =<”_@Node_">")

SET Len=$LENGTH(Node),Root=Node

IF $EXTRACT(Root,Len)=")" SET $EXTRACT(Root,Len)=","

ELSE SET Root=Root_"(",Len=Len+1

FOR S Node=$QUERY(@Node) Q:$EXTRACT(Node,1,Len)'=Root DO

. DO $Env.Output(Node_" =<”_@Node_">")

QUIT

 Functions 233

$NORMALIZE
The $NORMALIZE function is generally used to convert an external value into an
internal value for strorage. For example, the external values Yes and No can be
normalized to the values 1 and 0 respectively as can True and False. The
$NORMALIZE function is used in concert with the $Normalize property accessor.
When a property is messaged within the context of the $NORMALIZE function, the
$Normalize accessor is executed
Format
$NORMALIZE (Normmpr, expr)
Arguments
Normmpr ::= Object . service
 Expr

Normmpr - A reference to an objects property service that contains the $Normalize
accessor that will be executed to normalize the value.

expr - An expression that evaluates to a string to be normalized.
Explanation
If the first argument of $NORMALIZE is an object service reference to the property that
contains the $Normalize accessor. The return value is based on the validity of the service
or property assignment value. The second argument is an expression that must evaluate to
a string. It is the value to be normalized.
Comments
The $NORMALIZE function should always return the normalized value to the caller.
The input value to the function should always be checked for validity before passing it in.
The $NORMALIZE function should only normalize the value. No attempt should be
made to validate or save the value within this function - use the $Valid and Assign
accessors for this respecirively.
Related
$VALID function

Message Syntax

 Functions 234

Examples
The following example illustrates how the $Normalize function would normalize the
external value "Yes" to the internal form 1. First an instance of Employee is created and
bound to the T%Employee temporary variable. Next, the Veteran property of the
Employee object is accessed within the context of the $Normalize function. The
$Normalize function returns the normalized value (1) and binds it to the T%Vet
temporary variable.

CREATE T%Employee=Framework$Employee

S T%Vet=$NORMALIZE(T%Employee.Veteran,"Yes")

 Functions 235

$OIDPTR
The $OIDPTR function is a privileged function that transforms an object reference into
an M pointer that can be used with name indirection.
Format
$OIDPTR (oref)
Arguments
oref - The object reference of the object whose pointer is to be returned.
Explanation
The $OIDPTR function is a privileged function that transforms an object reference into
an M pointer that can be used with name indirection. Some of the object's contents are
stored under its base pointer, but others are not.

If the argument is not a valid object reference or the operation otherwise fails, the
function returns NULL ("").
Comments
Keep the following points in mind when you use the $OIDPTR function:

• It is impossible to tell which of an object's structures fall under its base pointer and
which do not.

• Use of $OIDPTR easily can result in violations of object encapsulation.
Therefore, it is not recommended for general use in EsiObjects.

Related
$PTROID function
Examples
The following example locks the root node of the external object whose oref is contained
in the temporary variable ExtObj, thereby effectively locking the object and its
subcomponents. However, any object structures that do not fall underneath this pointer
are not locked.

LOCK +@$OIDPTR(T%Object12)

 Functions 236

$ORDER
The $ORDER function returns the next or prior subscript, using the specified array
reference as a starting point.
Format
$O{RDER} (glvn {, direction})
Arguments
glvn - The array node from which the search should begin.
direction ::= expr V 1

-1

The value 1 indicates a forward search and –1 indicates a backward search. If not
specified, 1 is the default.
Explanation
The search takes place at the deepest subscript level specified. In other words, if an n-
level array node is specified as the argument, the next or prior nth-level subscript is
returned. The return value is always a subscript in the subtree having the same first n-1
subscripts. If no such subscript exists in the specified direction, NULL ("") is returned.

The order in which subscripts are returned is the array's logical collating sequence. In
most cases standard ASCII collating order is used:

• 1. NULL ("") comes first.

• 2. All purely numeric values come next, in numeric order. A value X is
considered to be purely numeric if the expression +X=X is true (in other words, if
its numeric interpretation equals its actual value). Therefore, 2 is numeric, and 2.0
and 2 installations are not numeric.

• 3. All other string values come next, in order of the ASCII code values of
their characters. Therefore, A comes before Armadillo and Z, but a comes after all
these values.

• 4. NULL ("") comes last.
Subscripts are grouped together in this order underneath their common ancestor. Because
NULL ("") comes both first and last in this sequence but is not itself a legal subscript
value, it is common to use NULL ("") as both the starting and ending values when using
$ORDER.

 Functions 237

The following example illustrates the traversal of the immediate descendants of a global
array node ^MYGLO(22,1).

SET T%Loop=""

FOR SET T%Loop=$ORDER(^MYGLO(22,1,T%Loop)) QUIT:T%Loop="" DO

. DO $Env.Output(T%Loop_" = "_^MYGLO(22,1,T%Loop))

QUIT

This loop begins the traversal from the subscript position NULL (""), ending it when the
iterating variable T%Loop equals NULL ("").
Comments
Keep the following points in mind when you use the $ORDER function:

• Because NULL ("") is the starting and ending value, it is important to test for this
value in the terminal condition. Otherwise, $ORDER uses it as a starting value,
often causing an infinite loop.

• It is more complex to traverse descendant array nodes with $ORDER than with
$QUERY. Often a recursive call is required.

• In some cases where it is desired to visit descendant array nodes, the $QUERY
function is an alternative to $ORDER. However, $ORDER is used in the majority
of application-programming cases.

• Because $ORDER only visits nodes at a single subscript level, it visits all nodes at
that level. This means it can visit any array node whose $DATA value is 1, 10, or
11.

• The relational SORTS AFTER (]]) operator is used to determine whether one
subscript follows another in the subscript collating sequence. Therefore, often it is
used with $ORDER.

Related
SORTS AFTER (]]) operator

FOR command

$DATA function

$QUERY function

 Functions 238

Examples
The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
a FOR loop with $ORDER to traverse the nodes, uses $DATA to determine whether a
given node contains data, and uses $NAME to convert a subnode into a name value. This
name value is then used in name indirection as the argument of $DATA and is passed as
a parameter.

WALK(Node) ; Recursive traversal

NEW Sub,DataVal,NodeName

IF $DATA(@Node)#10 DO $Env.Output(Node_" =<”_@Node_">")

SET Sub=""

FOR SET Sub=$ORDER(@Node@(Sub)) QUIT:Sub="" DO

. SET NodeName=$NAME(@Node@(Sub))

. SET DataVal=$DATA(@NodeName)

. IF DataVal'[0 DO $Env.Output(NodeName_" =<”_@Node_">")

. IF DataVal>9 DO WALK(NodeName)

QUIT

The following example provides an alternative implementation of the WALK subroutine.
It uses $DATA to display the root node if necessary, uses $LENGTH and $EXTRACT
to build an array root, uses a FOR loop with $QUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition. Inside the FOR loop there is only a
single instance of indirection with no a recursive call.

WALK(Node) ; Nonrecursive traversal

NEW Root,Len

IF 11[$DATA(@Node) DO $Env.Output(Node_" =<”_@Node_">")

SET Len=$LENGTH(Node),Root=Node

IF $EXTRACT(Root,Len)=")" SET $EXTRACT(Root,Len)=","

ELSE SET Root=Root_"(",Len=Len+1

FOR S Node=$QUERY(@Node) Q:$EXTRACT(Node,1,Len)'=Root DO

. DO $Env.Output(Node_" =<”_@Node_">")

QUIT

 Functions 239

$OSR
The $OSR (Object Service Request) function is used as a general-purpose function to
provide object services.
Format
$OSR(expr1,expr2, exprn …)

where:

expr1 V string or numeric. It is the name or number of the Service Request.

expr2 V OID which is the target object the service is to be applied to.

exprn… V specific to the Service Request
Explanation
Object Service provides a general approach to implementing services that the
programmer can use. The following table contains a list of services.

Service
Name

Service
Number

Description Parameters

Protect 1 Applies protection to an
object so that the object
cannot be browsed. This
service actually changes the
state of the object.

Expr3 that evaluates to 1.

Comments
Services will be added to the list as they are implemented.
Related
$INFO function
Examples
The following shows how to protect an object using the $OSR function. Assume that a
list contains all the financial transactions of a person. Protecting it from browsing is a
requirement.

Create T%List=Base$List

Do T%FinObj.LoadList(T%List) ;Loads list with transactions.

Do $OSR(“Protect”,T%List,1) ;Protect list from browsing.

If $INFO(T%obj,”Protected”) W “The object is protected”

 Functions 240

$PIECE
The $PIECE function returns one or more pieces in a delimited string.
Format
$P{IECE} (expr1 , expr2 {, intexpr1 {, intexpr2}})
Arguments
expr1 - A string to be broken up in terms of delimited pieces.

expr2 - If present, a delimiter into which the string is to be broken up.

intexpr1 - The number of the first piece being specified.

intexpr2 - The number of the second piece being specified.
Explanation
The first argument of $PIECE is a string and the second argument is a delimiter used to
divide the string into pieces. The function returns one or more of the pieces in the string.
Delimiters are usually one character in length, but the only limit to their length is the
maximum string size.

Informally speaking, the pieces in a string are loosely similar to the words in a sentence if
the space character is used as a delimiter. In the following example, the space character is
used as a delimiter and the total number of pieces equals 4:

"John dropped the ball."

In the previous example, the first piece is “John”, the fourth piece is “ball” and so on.

 Functions 241

In a more formal sense, the number of pieces is always equal to the number of
nonoverlapping instances of the delimiter, plus 1. The pieces are the portions of the string
occurring between the delimiters. If there is nothing between two delimiters, the value of
the piece is NULL (""). The following table contains additional examples.
String Delimiter Number of

Pieces
First Piece Last Piece

"first , second,
third, fourth"

, 4 "first " " fourth"

"ABCBBDABE
"

B 5 "A" "E"

"^^^^^" ^ 6 "" ""
"Hello" ? 1 "Hello" "Hello"
"axxxxxx" xx 4 "a" ""
"xxxxxxx" xx 4 "" "x"
"" Space 1 "" ""

If the delimiter is specified as NULL (""), then the return value of $PIECE is always
NULL ("")

The third and fourth arguments of $PIECE are similar to the second and third arguments
of $EXTRACT. Both arguments are interpreted as integers. If the third argument is less
than 1, the value 0 is used. If the fourth argument is greater than the number of pieces in
the string, the actual number of pieces is used. If the third argument is greater than the
number of pieces in the string, or greater than the fourth argument, NULL ("") is
returned.

If the third and fourth arguments together address more than one of the pieces in the
string, then the entire portion of the string from the starting piece to the ending piece is
returned, including the intervening delimiters. For example, the following expression
returns third-fourth-fifth:

$PIECE("first-second-third-fourth-fifth-sixth-seventh","-",3,5)

If the fourth argument is omitted, the value of the third argument is used as a default.
This causes the single piece referenced by the third argument to be returned. If the third
argument is also omitted, the first piece is returned.
Comments
Keep the following points in mind when you use the $PIECE function:

• The special cases involving the third and fourth arguments of $PIECE obey the
same general principles as the special cases involving the second and third
arguments of $EXTRACT.

• The two-argument form of $LENGTH is often used with $PIECE when it is
necessary to count the pieces in a string.

 Functions 242

• SET $PIECE is a useful tool when manipulating strings in terms of any substring
they may contain, even when the substring is not explicitly being used as a
delimiter.

Related
SET command

$EXTRACT function

$LENGTH function

$QSUBSCRIPT function

$ZPIECE function
Examples
The following example sets T%Result to the value “third-fourth-fifth” using the four-
argument form of $PIECE.

SET T%String="first-second-third-fourth-fifth-sixth-seventh"

SET T%Result=$PIECE(T%String,"-",3,5)

The following example sets T%Result to the value fourth using the three-argument form
of $PIECE.

SET T%String="first-second-third-fourth-fifth-sixth-seventh"

SET T%Result=$PIECE(T%String,"-",4)

The following example sets T%Result to the value "" using the three-argument form of
$PIECE.

SET T%String="first-second-third-fourth-fifth-sixth-seventh"

SET T%Result=$PIECE(T%String,"-",8)

The following example sets T%Result to the value first using the two-argument form of
$PIECE.

SET T%String="first-second-third-fourth-fifth-sixth-seventh"

SET T%Result=$PIECE(T%String,"-")

The following example sets T%Result to the value "" because the fourth piece is a null
piece.

SET T%String="A^B^C^^E"

SET T%Result=$PIECE(T%String,"^",4)

 Functions 243

The SET $PIECE is used to replace one or more delimited pieces of a variable's contents
without affecting the rest of the string. In this example, pieces 3, 4, and 5 of the string in
T%String are replaced with an asterisk (*).

SET T%String="one/two/three/four/five/six/seven"

SET $PIECE(T%String,"/",3,5)="*"

DO $Env.Output(T%String)

Results: one/two/*/six/seven

If the variable does not exist yet, it is given a starting value of NULL (""). If the number
of pieces in the existing string is less then the starting piece position, extra delimiters are
added as necessary. In the following example, the variable T%String is undefined, and "."
piece 5 is replaced with the string Text. To achieve this, four periods are automatically
placed at the start of the string.

KILL T%String

SET $PIECE(T%String,".",5)="Text"

DO $Env.Output(T%String)

Results:Text

The following example uses a FOR loop with the one-argument $LENGTH, SET
$PIECE, and $EXTRACT to produce a string in which the individual characters of the
string EsiObjects become comma-delimited pieces in the variable T%String. After these
lines have been executed, T%Result should contain the string E,s,i,O,b,j,e,c,t,s.

SET T%Result="",T%String="EsiObjects"

FOR T%Loop=1:1:$LENGTH(T%String) DO

. SET $PIECE(T%Result,",",T%Loop)=$EXTRACT(T%String,T%Loop)

The following extrinsic function performs a search-and-replace operation on a string,
sending back the transformed string as its return value. It uses the two-argument
$LENGTH to count the number of pieces in the source string, and uses $PIECE and
SET $PIECE to do the replacement operation.

REPL(L%String,L%From,L%To) ; Replace L%From with L%To in L%String

NEW L%Iter,L%Result,L%Length

IF L%From="" QUIT ""

SET L%Length=$LENGTH(L%String,L%From)

IF L%To="" SET L%Result="" FOR L%Iter=1:1:L%Length DO

. SET L%Result=L%Result_$PIECE(L%String,L%From,L%Iter)

ELSE FOR L%Iter=L%Length:-1:1 DO

. S $PIECE(L%Result,L%To,L%Iter)=$PIECE(L%String,L%From,L%Iter)

QUIT L%Result

The following expression returns the string EsiObjects Language for EsiObjects
Programming:

$$REPL("M Language for M Programming","M","EsiObjects")

 Functions 244

$PROTECT
The $PROTECT function protects an object from being preserved or destroyed.
Format
$PROTECT(expr)

where:

expr V OID
Explanation
The $PROTECT function creates a protected pointer (OID) to an object. Often, when an
object handle is exposed to a consumer, protecting it from being destroyed or preserved is
important.
Comments
The protected object ignores both the Preserve & Destroy commands.

Used to protect an object when the pointer is exposed.

Changes the OID form $C(31)_N_ptr to $C(31)_T_ptr.
Related
DESTROY command

$REFERENCE special variable

PRESERVE command

CREATE command
Examples
Assume that a handle to a patients record must be returned to the consumer and that it
must be protected from being destroyed or preserved. The handle can be handed back by
the methods Quit command.

Quit $Protect(I%PatOid)

 Functions 245

$PTROID
Given a string representing the name of an M variable that is the base location for an
object, $PTROID returns a handle for the object.
Format
$PTROID (namevalue , typexpr)
Arguments
namevalue ::= expr V glvn - An expression whose value is the base array node of the
object's location.

typexpr ::= expr V type - An expression whose value is generally N for normal, but can
be T for template, L for class or I for instance.
Explanation
The $PTROID function is a privileged function that transforms an M pointer into an
object reference. This can cause errors if a valid object is not stored at the specified
location.
Comments
Keep the following points in mind when you use the $PTROID function:

• $PTROID is only needed in cases where an M pointer to an object exists, but the
object reference is not known. It is generally better to use object-level services to
interact with objects.

• Use of $PTROID can result in violations of object encapsulation. Therefore, it is
not recommended for general use.

Related
$OIDPTR function
Examples
The following example converts the root node ^OOTEST(10) into a normal object
reference.

SET T%Object12=$PTROID("^OOTEST(10)","N")

 Functions 246

$PTRSTR
The $PTRSTR function converts an object reference into a normalized form suitable for
use with string operations.
Format
$PTR{STR} (oref)
Arguments
oref - The object reference to be converted.
Explanation
The $PTRSTR function converts an object reference into a normalized form suitable for
use with string operations.
Comments
Keep the following points in mind when you use the $PTRSTR function:

• Unlike $PTROID and $OIDPTR, $PTRSTR is not a privileged function.

• The string produced by $PTROID can contain control characters, but it is suitable
for use in string operations. Usually, the string can be displayed without causing
errors, and is interpreted as a literal value rather than an object reference.

Related
$OIDPTR function

$PTROID function
Examples
The following example returns the pointer to a database directory object in string form
and displays it in the output window.

S T%DbPtr=$PTROID(I%Databases))

Results: N N^shrobj(35,1)

 Functions 247

$QLENGTH
The $QLENGTH function returns the number of subscripts in a string containing an
array reference.
Format
$QL{ENGTH} (namevalue)
Arguments
namevalue - A string containing the name of an array node.
Explanation
The $QLENGTH function returns the number of subscripts in a string containing an
array reference. For example, if the string references an array node with 5 subscripts, then
$QLENGTH returns 5. If the string references a root array node with no subscripts, then
$QLENGTH will return 0.
Comments
The behavior of this function is unspecified in cases where the argument is not a properly
formatted namevalue.
Related
$LENGTH function

$QSUBSCRIPT function

$ZLENGTH function
Examples
The following FOR loop displays the root node and all the subscripts of the array
referenced in T%Target.

FOR T%Loop=0:1:$QLENGTH(T%Target) DO

. DO $Env.Output($QSUBSCRIPT(T%Target,T%Loop))

The following example removes the last subscript from the array node in T%Target:

SET T%Target=$NAME(T%Target,$QLENGTH(T%Target)-1)

 Functions 248

$QSUBSCRIPT
The $QSUBSCRIPT function returns the specified subscript in a string containing an
array reference.
Format
$QS{UBSCRIPT} (namevalue, intexpr)
Arguments
namevalue - A string containing an array node reference suitable for use with name
indirection.

intexpr - The numeric position of the subscript whose value is to be returned.
Explanation
The $QSUBSCRIPT function returns the specified subscript in a string containing an
array reference. If subscript number 0 is requested, the array root node is returned. If
subscript number −1 is requested, then the return value is the environment if the array
reference includes an environment name, or NULL if it does not. If a subscript number is
specified that is greater than the actual number of subscripts in the array reference, the
NULL ("") is returned. Subscripts numbered less than -1 are not allowed.

For example, consider a string that references an array node with 5 subscripts. If subscript
3 is requested, then $QSUBSCRIPT returns the literal value of the third subscript. If
subscript 0 is requested, it returns the value of the array root. If subscript 6 is requested, it
returns NULL ("").
Comments
The behavior of this function is unspecified in cases where the argument is not a properly
formatted namevalue.
Related
$NAME function

$PIECE function

$QLENGTH function

$ZPIECE function
Examples
The following FOR loop displays the root node, and all the subscripts of the array
referenced in T%Target.

FOR T%Loop=0:1:$QLENGTH(T%Target) DO

. DO $Env.Output($QSUBSCRIPT(T%Target,T%Loop))

 Functions 249

$QUERY
The $QUERY function returns the full reference of an array node that has a value
associated with it.
Format
$Q{UERY} (glvn)
Arguments
glvn - Specifies the array node position from which the search is to begin.
Explanation
The $QUERY function's argument is a glvn (array node) and its return value is a
namevalue (string containing an array node). Name indirection is often used to convert
this string back to an array node.

The order in which subscripts are returned is the array's logical collating sequence. In
most cases standard collating order is used:

• 1. NULL ("") comes first.

• 2. All purely numeric values sort next in numeric order. A value X is
considered to be purely numeric if the expression +X=X is true (in other words, if
its numeric interpretation equals its actual value). Therefore, 2 is numeric and 2.0
and 2 installations are not numeric.

• 3. All other string values come next, in order of the ASCII code values of
their characters. Therefore, A comes before Armadillo and Z, but a comes after all
these values.

• 4. NULL ("") comes last.
Subscripts are grouped together in this order underneath their common ancestor. Because
NULL ("") is an illegal subscript value, it is never actually returned by $QUERY except
when there is no next value to return.

 Functions 250

The following example illustrates a $QUERY traversal beginning from the array node
^MYGLO(22,1). Note that the traversal does not automatically stop once it has passed
the descendants of this node.

CREATE I%File=Base$AbsSerializationObject

DO I%File.Open("MYGLO.TXT")

SET T%Loop="^MYGLO(22,1)"

FOR SET T%Loop=$QUERY(@T%Loop) QUIT:T%Loop="" DO

. DO I%File.Use("MYGLO.TXT")

. DO I%File.Write(T%Loop,@T%Loop)

DO I%File.Close("MYGLO.TXT")

QUIT

This loop begins the traversal from the array node ^MYGLO(22,1), ending it when the
iterating variable T%Loop equals NULL (""). A more complicated terminal condition
would be required to exit when the subtree has been completed.
Comments
Keep the following points in mind when you use the $QUERY function:

• $QUERY only visits array nodes whose $DATA values are 1 or 11.

• The root node of the subtree to be traversed should be specified as the starting
value.

• It is more complex to traverse descendant array nodes with $ORDER than with
$QUERY. However, determining when the end of a subtree has been reached is
easier with $ORDER. $QUERY returns NULL ("") when it reaches the end of the
array, not the end of the subtree being traversed. Therefore, a special test is
required to determine when the subtree has been entirely traversed.

Related
FOR command

$DATA function

$ORDER function

 Functions 251

Examples
The following example, the WALK subroutine, traverses all the descendants of the
specified array node, exporting the node name and value to an external serial device. It
uses a FOR loop with $ORDER to traverse the nodes, uses $DATA to determine
whether a given node contains data, and uses $NAME to convert a subnode into a name
value. This name value is then used in name indirection as the argument of $DATA and
is passed as a parameter.

WALK(Node) ; Recursive traversal

;Assumes I%File points to a serialization object

DO I%File.Open("MYGLO.TXT")

IF $DATA(@Node)#10 DO I%File.Write(Node,@Node)

SET Sub=""

FOR SET Sub=$ORDER(@Node@(Sub)) QUIT:Sub="" DO

. SET NodeName=$NAME(@Node@(Sub))

. SET DataVal=$DATA(@NodeName)

. IF DataVal'[0 DO I%File.Write(NodeName,@NodeName)

. IF DataVal>9 DO WALK(NodeName)

QUIT

The following example provides an alternative implementation of WALK. It uses
$DATA to display the root node if necessary, uses $LENGTH and $EXTRACT to build
an array root, uses a FOR loop with $QUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition. Recursive calls are unnecessary when
using the $QUERY.

WALK(Node) ; Nonrecursive traversal

IF 11[$DATA(@T%Node) DO I%File.Write(T%Node,@T%Node)

SET T%Len=$LENGTH(T%Node),T%Root=T%Node

IF $EXTRACT(T%Root,T%Len)=")" SET $EXTRACT(T%Root,T%Len)=","

ELSE SET T%Root=T%Root_"(",T%Len=T%Len+1

FOR SET T%Node=$QUERY(@T%Node) QUIT:$EXTRACT(T%Node,1,T%Len)'=T%Root DO

. DO I%File.Write(T%Node,@T%Node)

QUIT

 Functions 252

$QUOTE
The $QUOTE function returns a string enclosed in quotation marks.
Format
$QUO{TE} (expr)
Arguments
expr - The string to enclose in quotation marks.
Explanation
The $QUOTE command is useful when the XECUTE command or the INDIRECTION
(@) operator are used and quotation marks need to be doubled. It is also useful in
simplifying the management of nested quotation marks in cases where multiple levels of
indirection are necessary.
Comments
The entire string is enclosed in quotation marks. Any quotation marks inside the string
are replaced by two quotation marks.
Related
INDIRECTION (@) operator

XECUTE command
Examples
The following example constructs a command that will extract a substring from the
variable T%String, starting with T%Start and ending with T%End, placing it in the
T%Value variable.

X "Set T%Value=$E("_""""_T%String_""""_",T%Start,T%End)"

 Functions 253

$RANDOM
The $RANDOM function returns a random integer in the specified range.
Format
$R{ANDOM} (intexpr)
Arguments
intexpr - A positive integer specifying the number of possible return values minus 1.
Explanation
The $RANDOM function returns a random integer in the specified range. The argument,
always interpreted as an integer, specifies the number of possible return values. If the
argument is a positive integer X, the function returns a number between 0 and X-1. If the
argument is less than 1, an error occurs.
Comments
Keep the following points in mind when you use the $RANDOM function:

• The return value of this function is not truly random, only arbitrary. Regular
patterns can sometimes be detected in extended sequences of so-called random
numbers.

• The return value is always an integer 0 or greater, but mathematical operations can
be performed on this value to telescope it into any numeric range with any desired
distribution frequency or degree of sensitivity, so this limitation is not truly a
handicap.

Examples
The following example generates a random integer between 0 and 99:

SET T%Result=$RANDOM(100)

The following example generates a random decimal number between –10 and 10, with a
possible return value at every one-hundredth interval.

SET T%Result=$RANDOM(2001)/100-10

The following example generates a random decimal number between 0 and 10, with 100
possible return values. The values are not evenly distributed: most of them are less than
1, but the number 0 is never returned.

SET T%Result=10/($RANDOM(100)+1)

 Functions 254

$REVERSE
The $REVERSE function reverses a string of characters in the reverse order of the string
argument.
Format
$RE{VERSE} (expr)
Arguments
expr - A string to be reversed.
Explanation
The $REVERSE function reverses the input string so that the last character in the input
string becomes the first character in the result string. The second from the last character
in the input string becomes the second character in the result string, and so on, until all
characters have been reversed.
Comments
Keep the following points in mind when you use the $REVERSE function:

• The $REVERSE function is rarely used. However, turning a string around can
make it easier to manipulate.

• $REVERSE returns a result identical to the input string when the input string is a
single character or a null string.

Related
$EXTRACT function

$LENGTH function
Examples
The following example gets the last character of a string.

SET T%Result=$EXTRACT($REVERSE(T%Result))

The following example shows an alternative way to get the last character of a string.

SET T%Result=$EXTRACT(T%Result,$LENGTH(T%Result))

The following example gets the last piece of a string.

SET T%Result=$REVERSE($PIECE($REVERSE(T%Result),T%Delim))

The following example shows an alternative way to get the last piece of a string.

SET T%Result=$PIECE(T%Result,T%Delim,$LENGTH(T%Result,T%Delim))

The following example determines whether the array node I%Elements(T%Loop) is
undefined (does not contain a value) and, if so, exits.

IF '$EXTRACT($REVERSE($DATA(I%Elements(T%Loop)))) QUIT

 Functions 255

Each of the following lines contains an alternative way to exit if the array node
I%Elements(T%Loop) is undefined.

IF $DATA(I%Elements(T%Loop))[0 QUIT

IF 11'[$DATA(I%Elements(T%Loop)) QUIT

IF $DATA(I%Elements(T%Loop))#2=0 QUIT

IF $DATA(I%Elements(T%Loop))#10=0 QUIT

 Functions 256

$SELECT
The $SELECT function returns one of several different values, depending on any
number of true or false conditions.
Format
$S{ELECT} (L tvexpr : expr)
Arguments
tvexpr - A condition to be evaluated if none of the $SELECT arguments to the left of it
have true conditions.

expr - An expression to be evaluated and its value returned only if its associated
condition is the first true condition.
Explanation
The $SELECT function evaluates its conditions from left to right until a true condition is
encountered. At that point, it evaluates the expression associated with this condition,
returning its value. Expressions associated with false conditions are never evaluated.
Conditions to the right of the first true condition are not evaluated, nor are their
associated expressions.

In the following example, $SELECT returns the value even based on the true condition
of X>0:

SET X=2

DO Env.Output($SELECT(X<0:"MINUS",X#2:"ODD",X>0:"EVEN",1:"ZERO"))

Results: even

Comments
Keep the following points in mind when you use the $SELECT function:

• $SELECT has no effect on $TEST.

• $SELECT can sometimes replace several lines of code using IF and ELSE.

• $SELECT can sometimes be used instead of the two-argument form of $GET
with a performance improvement because the default value need not be evaluated
if the variable is defined.

• A return value is required, so the last condition must evaluate to true. An error
occurs if the last condition does not evaluate to true.

 Functions 257

Related
IF command

ELSE command

$GET function
Examples
The following example illustrates a typical programming error that can occur because
$TEST is likely to change between the IF and the ELSE.

IF I%Height'>I%Width DO

. DO TEST

ELSE DO $Env.Output("Greater")

QUIT

TEST ; Subroutine containing IF and ELSE

IF I%Height=I%Width DO $Env.Output("Equal")

ELSE DO $Env.Output("Not Greater")

QUIT

Assuming that I%Height=5 and I%Width=10, the IF command on the first line sets
$TEST to 1 and the DO calls TEST. Inside TEST, the IF sets $TEST to 0, and the
ELSE performs a write to the output window. The QUIT then exits TEST. The ELSE on
the second line checks $TEST (which is now 0) and performs a write to the output
window. The first line of output is "Not Greater" and the second line is "Greater". This is
probably not what the programmer intended.

A number of language elements (method and property calls, extrinsic functions, and the
argumentless DO) place $TEST on the stack, avoiding the problem shown in the
previous example. Also, postconditionals and the $SELECT function can be used to
conditionalize certain operations without affecting $TEST. The following example
solves the previous problem by using the argumentless DO:

IF I%Height'>I%Width DO

. IF I%Height=I%Width DO $Env.Output("Equal") QUIT

. DO $Env.Output("Not Greater")

ELSE DO $Env.Output("Greater")

QUIT

The following example using $SELECT is functionally equivalent to the previous
example, except that it does not modify $TEST.

DO

$Env.Output($SEL(I%Height>I%Width:"Greater",I%Height=I%Width:"Equal",1:"Not

Greater"))

 Functions 258

In the two-argument form of $GET, the value of the second argument is always
evaluated, (even if the variable is defined). This means that compute-expensive
operations should not be placed in the second argument. The following example uses
$GET, causing the $CALLBACK function in the second argument to be called and its
value ignored if T%CallBack is undefined.

SET T%CallBack=$GET(T%CallBack,$CALLBACK(MODIFY))

The following example might be more efficient because it uses $SELECT, causing the
$CALLBACK function to be evaluated only if the variable is undefined.

S T%CallBack=$S($D(T%CallBack)#10:T%CallBack,1:$CALLBACK(MODIFY))

The following extrinsic variable returns a string containing the approximate time, based
on the second comma-piece of $HOROLOG. Note the use of $SELECT, $JUSTIFY,
and $TRANSLATE in this function.

TIME() ; TIME extrinsic variable

NEW L%Time,L%Hour,L%Minute,L%Meridian

SET L%Time=$PIECE($HOROLOG,",",2)

IF L%Time#43200=0 QUIT "12:00"_$SELECT(L%Time:"pm",1:"am")

SET L%Hour=L%Time\3600

SET L%Meridian=$SELECT(L%Hour>11:"pm",1:"am")

SET L%Hour=$JUSTIFY(L%Hour#12,2)

IF L%Hour=" 0" SET L%Hour=12

SET L%Minute=$JUSTIFY(L%Time\60#60,2)

SET L%Time=$TRANS(L%Hour_":"_L%Minute_L%Meridian," ",0)

QUIT L%Time

 Functions 259

$STACK
The $STACK function returns information about the underlying M process stack.
Format
$ST{ACK} (intexpr {, stackcodeexpr})
Arguments
intexpr - Specifies a process stack frame number about which information is desired, or
one of the special values 0 or –1.

stackcodeexpr ::= expr V stackcode - Specifies the kind of information that is requested
about a specific stack frame.
Explanation
The information provided by $STACK is principally useful in debugging. However, the
EsiObjects process stack does not necessarily have any correspondence to the underlying
M process stack.

Internal EsiObjects optimizations can alter the behavior of the M process stack for a
given operation, and $STACK might change in future releases to explicitly support the
EsiObjects process stack. For these reasons, caution is advised when using $STACK.

In its one-argument form, the argument of $STACK determines the type of return value:
1 Returns the number of frames on the process stack (equivalent to

the $STACK special variable).
0 Returns a platform-specific value indicating the way in which the

process was originally invoked.

N Assuming n is a positive integer, the name of the command used to
create that stack level (in other words, DO or XECUTE), the
string $$ if it is an extrinsic function, or an error code if it is an
error frame. If n is greater than the number of stack levels,
NULL ("") is returned.

In its two-argument form, the first argument is a stack frame number and the second
argument specifies the specific kind of information to be returned about that stack frame.
PLACE The location of the code that invoked that stack level. If it is the

current stack level, then the location of the currently executing
command is used. The location is of the general form:
{label} {+intexpr} {^routinename} SP + eoffset
Where eoffset is the character position of the place in the line
where the stack level was located, but its exact accuracy is not
guaranteed.

MCODE A string containing the actual line of code that invoked that
stack level. An empty string if the text is not available.

ECODE A list of error codes added (to the $ECODE special variable) at
that level.

 Functions 260

Comments
Keep the following points in mind when you use the $STACK function:

• $STACK is handled by the underlying M platform. Therefore, use caution when
interpreting its return values.

• The construct $STACK(-1) is equivalent to the special variable $STACK and
rarely is used.

• The construct $STACK($STACK) always returns information about the current
M process stack level.

Related
DO command

XECUTE command

$STACK special variable
Examples
The following example displays information about the current error condition for every
stack frame in $STACK that contains error codes.

DO $Env.Output("Process Type: ",$STACK(0))

DO $Env.Output("Frames on Stack: ",$STACK)

FOR T%Loop=1:1:$STACK IF $STACK(T%Loop,"ECODE")'="" DO

. SET T%Code=$STACK(T%Loop,"ECODE")

. SET T%Line=$STACK(T%Loop,"PLACE")

. SET T%Text=$STACK(T%Loop,"MCODE")

. DO $Env.Output("Errors at Frame "_T%Loop_": "_T%Code

. DO $Env.Output("Execution Location: "_T%Line)

. IF T%Text'="" DO $Env.Output(T%Text)

. DO $Env.Output(" ")

QUIT

 Functions 261

$TEXT
The $TEXT function returns a single line of code from the specified routine or current
code body.
Format
$T{EXT} (textarg)
Arguments
textarg ::= + intexpr [^ routineref]
 Entryref
 @ expratom V textarg
entryref ::= Dlabel [+ intexpr] [^ routineref]
 ^ routineref

Explanation
In EsiObjects, $TEXT is handled entirely by the underlying M platform, and applies to
the intermediate M code, not to the EsiObjects source. Therefore, it is only reliable to use
as follows:

• On lines having a label and a comment beginning with two semicolons

• On any contiguous following lines that contain a comment beginning with two
semicolons, and no commands

Note the following:

• The EsiObjects source code on a line is not guaranteed to be present, but may be
present in future releases.

• Intermediate M source can appear, but only unreliably.

• There is no direct correlation between the lines in the EsiObjects source and the
lines in the M source, except on label lines containing a comment with two
semicolons, and on any contiguous following lines containing only a comment
with two semicolons.

Many source editors use the TAB character (ASCII character #9) as the line start
indicator. However, $TEXT always renders the line start indicator as a space (ASCII
#32). If the argument of $TEXT addresses a line that does not exist, the function returns
NULL ("").

Three forms of indirection are allowed with $TEXT. The label and routine names, if
present, can be indirected. Also, the entire argument of $TEXT can be indirected.

 Functions 262

Comments
Keep the following points in mind when you use the $TEXT function:

• $TEXT allows its own special form of indirection (the entire $TEXT argument
can be indirected).

• $TEXT applies to the underlying M code, not to the EsiObjects source. Therefore,
its reliability is restricted. In a future release, $TEXT may apply instead to the
EsiObjects source.

Related
Method structure

IndirectionIntroductiontoIndirection
Examples
The following example uses $TEXT to set up an array in I%Elements.

INIT(Year) ; Set up I%Elements

FOR T%Loop=1:1 DO QUIT:T%Number=""

. SET T%Line=$TEXT(+T%Loop)

. SET T%Number=$PIECE(T%Line,";",3)

. SET T%Text=$PIECE(T%Line,";",4)

. IF T%Number="" QUIT

. SET I%Elements(T%Loop,"Days")=T%Number

. SET I%Elements(T%Loop,"Name")=T%Text

IF Year#4=0,Year#100 SET I%Elements(2)=29

QUIT

;

ELEMENTS ;;

;;31;January

;;28;February

;;31;March

;;30;April

;;31;May

;;30;June

;;31;July

;;31;August

;;30;September

;;31;October

;;30;November

;;31;December

;;

 Functions 263

$TRANSLATE
The $TRANSLATE function converts a string by changing all members in one set of
characters to the corresponding members of another set of characters.
Format
$TR{ANSLATE} (expr1, expr2 {, expr3})
Arguments
expr1 - A source string to be converted in some way.

expr2 - A string containing a set of characters to be changed in the source string.

expr3 - A string containing a set of characters to replace the set in the second argument.
Explanation
The $TRANSLATE function performs a character-for-character replacement within a
string. It accepts a source string, a set of characters to change from, and a set of
characters to change them to. The translated string is the return value. In the return value,
all instances of the first character in the ‘from’ string are changed to the first character in
the to string, then this process is repeated for the second character in from, and so on.

DO $Env.Output($TRANSLATE("Macdonalds","sandMolc","oE i"))

Results: Ei Eio

Any characters in the ‘from’ string that are not opposed in the to string are translated into
null strings (in other words, are stripped). If there are ten characters in the ‘from’ string,
and only five in the to string, then the last five characters of from are stripped. Any extra
characters in to are ignored. If the third argument is omitted, it defaults to NULL ("") and
all characters in the second argument are stripped from the source string.
Comments
Keep the following points in mind when you use the $TRANSLATE function:

• $TRANSLATE converts individual characters. It is not a search-and-replace
function.

• The primary use of $TRANSLATE is for doing case conversions. It can also be
used to filter illegal characters

 Functions 264

Related
CONTAINS ([) operator

$FNUMBER function

$JUSTIFY function
Examples
The following extrinsic function shows how to use $TRANSLATE. The label XLATE is
called with the target string passed in as String and a U (to upper) or L (to lower) is
passed in the parameter To.

XLATE(String,To) ;

SET Lower="abcdefghijklmnopqrstuvwxyz"

SET Upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

IF To="U" QUIT $TRANSLATE(String,Lower,Upper)

QUIT $TRANSLATE(String,Upper,Lower)

Sometimes it is necessary to determine whether a string contains a certain character. For
example, user input is often not allowed to contain the database delimiter. The
CONTAINS ([) operator is generally useful in such cases. However, it is occasionally
necessary to test whether an input string contains one of several characters. In the
following example, $TRANSLATE is used to determine whether the input string STR
contains one of five illegal delimiter characters.

ILLEGDLM(STR) ; Return 1 if STR contains delimiters ~`|\^, 0 if not

QUIT STR=$TRANSLATE(STR,"~`|\^")

The following example uses $FNUMBER with $TRANSLATE to format a number with
periods instead of commas in the thousands places and a comma instead of a period as the
decimal indicator.

DO $Env.Output($TRANSLATE($FNUMBER(6543210.987,",",2),".,",",."))

Results: 6.543.210,99

The following example uses $FNUMBER with $TRANSLATE to format a negative
number with square brackets (instead of a minus sign).

DO $Env.Output($TRANSLATE($FNUMBER(-43210,"P"),"()","[]"))

Results: [43210]

The following example uses $JUSTIFY with $TRANSLATE to pad a number with
leading zeros so that it is 5 characters wide.

DO $Env.Output($TRANSLATE($JUSTIFY(123,5),0," "))

Results: 00123

 Functions 265

The following extrinsic variable returns a string containing the approximate time, based
on the second comma-piece of $HOROLOG. Note the use of $SELECT, $JUSTIFY,
and $TRANSLATE in this function.

TIME() ; TIME extrinsic variable

NEW L%Time,L%Hour,L%Minute,L%Meridian

SET L%Time=$PIECE($HOROLOG,",",2)

IF L%Time#43200=0 QUIT "12:00"_$SELECT(L%Time:"pm",1:"am")

SET L%Hour=L%Time\3600

SET L%Meridian=$SELECT(L%Hour>11:"pm",1:"am")

SET L%Hour=$JUSTIFY(L%Hour#12,2)

IF L%Hour=" 0" SET L%Hour=12

SET L%Minute=$JUSTIFY(L%Time\60#60,2)

SET L%Time=$TRANS(L%Hour_":"_L%Minute_L%Meridian," ",0)

QUIT L%Time

 Functions 266

$VALID
The $VALID function determines whether a certain value is valid for a given property,
or whether a certain property/method is valid for an object.
Format
$VALID (validmpr {, expr})
Arguments
validmpr ::= Object . service
 Expr

validmpr - An expression or a reference to an object's method/property that is to be
tested.

expr - A value that might possibly be assigned to the property, whose validity is to be
tested.
Explanation
If the first argument of $VALID is an expression, then the type is a string and the
function returns true. If an object with service is specified, the return value is based on
the validity of the service or property assignment value. If the second argument is
specified, then the function returns true if its value could be assigned validly to the
object.
Comments
If the first argument is not an expression, then the object's $Valid accessor is invoked to
compute the return value of $VALID. This means that the return value, while expected to
be true or false as appropriate, can vary according to the intent of the programmer who
wrote the accessor method.
Related
$NORMALIZE function
Examples
The following code attempts to verify that the value in T%SSN constitutes an acceptable
value for the Social Security Number property for employee object bound to the
T%Employee variable before assigning it that value.

IF $VALID(T%Employee.SSN,T%SSN) SET T%Employee.SSN=T%SSN

 Functions 267

$WALK
The $WALK function allows privileged code to traverse the entries in a symbol table,
optionally including their subscripts.
Format
$WALK (name, subscripts, typexpr {, direction})
Arguments
name - The name of the variable.

subscripts - An expression whose value is an entire subscript list, including the
parentheses.
 A Accessor
 C Class
 CN Constant
 G Global
 I Instance
typexpr ::= expr V L Local
 N NamePool
 P Parameter
 S System
 U Universal

direction - The direction of the search. Use 1 for searching forwards (default) and –1 for
searching backwards.
Explanation
The $WALK function allows privileged code to traverse the entries in a symbol table,
optionally including their subscripts, similar to $ORDER. It can be used with any
EsiObjects symbol, including templates and name pools. However, this function is not
recommended for general use in EsiObjects.
Comments
Keep the following points in mind when you use the $WALK function:

• $WALK is used to loop through all the instance variables of an object, all the
accessor variables of a method, and so on.

• Once the names of the variables have been obtained with $WALK, their values
can be referenced with $LOOKUP.

 Functions 268

Related
FOR command

$LOOKUP function

$ORDER function
Examples
The following example contains a FOR loop used to traverse the names of an object's
instance variables with $WALK, while $LOOKUP is used to get their values (for those
that have simple values).

SET T%Loop=""

FOR SET T%Loop=$WALK(T%Loop,"","I") QUIT:T%Loop="" DO

. DO $Env.Output("Var: "_T%Loop_", Val: "_$LOOKUP(T%Loop,"","I"))

QUIT

 Functions 269

$WATCHDETECT
The $WATCHDECTECT function allows an object to detect when it is being watched.
Format
$WATCH{DETECT} (on/off, vector)
Arguments
on/off - Returns 0 or 1.

vector ::= label {^{interface::} method} - The callback label to invoke when a watch is
established or ignored.
Explanation
Because an object can be watched, it allows an object to tailor its behavior.
$WATCHDETECT returns true if it succeeds. Any watch or ignore causes the callback
vector to be invoked, which passes the event or property being watched.

The format of the watch detect callback parameters is as follows:

label(obsrvobj,desc,event,state)

where:
Obsrvobj is the object that is observing the current object
Desc is a description string that has the following format:
 "$SYSTEM>$HOOK"
Event is the name of the event of property
State is 1 if watched, 0 if ignored

Comments
Keep the following points in mind when you use the $WATCHDETECT function:

• Any watch established prior to enabling $WATCHDETECT is not seen.

• The best place to establish a watch detection is in the CREATE method.

• The best place to turn off watch detection is during the DESTROY method.
Related
WATCH command
Examples
The following example establishes watch detection during the creation of an object.

;CREATE Method

IF $WATCHDETECT(1,Entry^ONWATCH)

; Set up Internal State

QUIT

The following example establishes a watch detection during the creation of an object. The
OnWatch method is used to track what events are being watched on the current object.

 Functions 270

;OnWatch Method

ENTRY(Observer,Description,Event,State)

IF STATE DO

. SET I%Active(Event,Observer)=""

ELSE DO

. KILL I%Active(Event,Observer)

 Functions 271

$ZLENGTH
The $ZLENGTH function returns the number of subscripts in a string containing an
array reference.
Format
$ZL{ENGTH} (expr1, expr2)
Arguments
expr1 - A string in which the number of pieces is to be measured (ignores strings
enclosed in quotation marks).

expr2 - The delimiter used to break the string apart.
Explanation
The $ZLENGTH function counts the number of pieces in a string. The second argument
is a delimiter used to divide the string into pieces. In the string, anything enclosed in
balanced quotation marks is ignored when counting pieces. Delimiters are usually one
character in length. The only limit to the length of a delimiter is the maximum string size.

The number of pieces in a string is similar to the number of words in a sentence. In the
following example, the space character is used as a delimiter and the total number of
pieces equals 4:

John dropped the ball.

Note that in the following string, the parts enclosed in quotation marks are ignored when
counting delimiters:

"Don't look now," Sally said, "but John dropped the ball."

In the previous example (the space character is the delimiter), the total number of pieces
equals 4.

The number of pieces is always equal to the number of nonoverlapping instances of the
delimiter not found inside quotation marks plus 1. The following table contains additional
examples.
String Delimiter Number of Pieces
one,"two",three , 3

^A("A,B",1,2,3) , 4

^B(2,"Hello,
Bye",3,"7,3,2")

, 4

A/"B/C"/D/"E"/F"/G/H/I" / 5

If the second argument is specified as NULL (""), then the return value is always 0.

 Functions 272

Comments
The behavior of this function is unspecified in cases where the delimiter contains one or
more quotation marks.
Related
$LENGTH function

$QLENGTH function

$ZPIECE function
Examples
In the following example, the FOR loop displays all the comma-delimited pieces in the
string contained in L%String to the output window.

FOR T%Loop=1:1:$ZLENGTH(L%String,",") DO

. DO $Env.Output($ZP(L%String,",",T%Loop))

The following example removes the first space-delimited piece from the string contained
in L%String:

SET L%String=$ZPIECE(L%String," ",2,$QLENGTH(L%String," "))

 Functions 273

$ZPIECE
The $ZPIECE function returns one or more pieces from a delimited string (ignoring
nested strings).
Format
$ZPI{ECE} (expr1, expr2 {, intexpr1 {, intexpr2})
Arguments
expr1 - A delimited string from which one or more pieces are to be returned.

expr2 - The delimiter used to break the string apart.

intexpr1 - The starting piece position to return.

intexpr2 - The ending piece position to return.
Explanation
The second argument is a delimiter used to divide the string into pieces. Inside the string,
anything enclosed in balanced quotation marks is ignored when identifying pieces. Most
delimiters are usually one character in length, but the only limit to their length is the
maximum string size.

The number of pieces is similar to the number of words in a sentence. In the following
example, the space character is used as a delimiter:

John dropped the ball.

In the previous example, the total number of pieces is four. The first piece is John and the
last piece is Ball. Note that in the following string, the parts enclosed in the quotation
marks are ignored when counting delimiters:

"Don't look now," Sally said, "but John dropped the ball."

In the previous example, using the space as a delimiter, the total number of pieces is four.

 Functions 274

The number of pieces is always equal to the number of nonoverlapping instances of the
delimiter not found inside quotation marks, plus 1. The following table contains
additional examples.
String Delimiter Number

of Pieces
First
Piece

Last
Piece

one,"two",three , 3 one Three

^A("A,B",1,2,3) , 4 ^A("A,B" 3)
^B(2,"Hello,
Bye",3,"7,3,2")

, 4 ^B(2 "7,3,2")

A/"B/C"/D/"E"/F"/G/H/I" / 5 A F"/G/H/I"

If the second argument is specified as NULL (""), then the return value is always ("").
Comments
The behavior of this function is unspecified in cases where the delimiter contains one or
more quotation marks.
Related
$PIECE function

$QSUBSCRIPT function

$ZLENGTH function
Examples
The following FOR loop displays the root node and all the subscripts of the array
referenced in T%Target.

FOR T%Loop=0:1:$QLENGTH(T%Target) DO

. DO $Env.Output($QSUBSCRIPT(T%Target,T%Loop))

The following example removes the last subscript from the array node in T%Target.

SET T%Target=$NAME(T%Target,$QLENGTH(T%Target)-1)

 Operators 275

Operators
Operators are symbolic characters that specify the operation to be performed and the type
of value to be produced from their associated operand or operands. This section describes
the following types of operators:

• Arithmetic Operators

• Relational Operators

• Logical Operators

• String Operator

• Indirection Operator
The following table contains a list of the operators supported by EsiObjects.

 Operators 276

Arithmetic Operators
Arithmetic operators perform arithmetic operations. The following table illustrates those
arithmetic operators supported by EsiObjects.
Operator Syntax
Binary ADD A+B
Binary DIVIDE A/B
Binary EXPONENTIATION A**B
Binary INTEGER DIVIDE A\B
Unary MINUS -A
Binary MODULO A#B
Binary MULTIPLY A*B
Unary PLUS +B
Binary SUBTRACT A-B

 Operators 277

Binary ADD (+)
The binary ADD operator produces the sum of two numerically interpreted operands.

Format

operand + operand
Explanation
Binary ADD uses any leading, valid numeric characters (the digits 0 to 9, the decimal
point, the unary MINUS operator, the unary PLUS operator, and the letter E) as the
numeric values of operands. Then binary ADD produces a value that is the sum of the
value of the operands. If an operand has no leading numeric characters, binary ADD
gives it a value of 0.
Related
Expression evaluationEvaluatingExpressions
Examples
The following example shows string arithmetic on two operands that have leading digits.

DO $Env.Output("3 APPLES"+"8 ORANGES")

Results: 11

The following example performs addition on two real, numeric literals.

DO $Env.Output(1044.368+91.36)

Results: 1135.728

The following example performs addition on two defined local variables.

SET A=3.01,B=92.7 DO $Env.Output(A+B)

Results: 95.71

The following example illustrates that leading zeroes on a numerically evaluated operand
do not affect the results the operator produces. It also shows operands without leading
numerics.

DO $Env.Output("007" + 100 + "One" + " 10")

Results: 107

The following example returns the total number of elements in two collections
(PRQUEUE1 and PRQUEUE2), which hold items that are going to be printed. The
method TotalElements returns the number of items in the queue.

DO $Env.Output(PRQUEUE1.TotalElements+PRQUEUE2.TotalElements)

 Operators 278

Binary DIVIDE (/)
The binary DIVIDE operator produces the quotient that is the result of dividing two
numerically interpreted operands.

Format

operand A/operand B

Parameters

operand A - the dividend

operand B - the divisor

Explanation

Binary DIVIDE uses any leading, valid numeric characters (the digits 0 to 9, the decimal
point, the unary MINUS operator, the unary PLUS operator, and the letter E) as the
numeric values of the operands. Then it produces a quotient that is the result of dividing
operand A by operand B. If an operand has no leading numeric characters, binary
DIVIDE assumes its value to be 0.

Related

Expression evaluation

Binary MODULO (#) operator

Examples

The following example divides two integer numeric literals.

SET QPZ=355/113

DO $Env.Output(QPZ)

3.1415929035398

The following example performs division on operands with leading digits.

DO $Env.Output("16 PIES"/"4 PEOPLE")

Results: 4

The following example gets the number of errors logged in the Errorlog object

since January 1, 1995. It divides the number of errors by the number of days

since January 1, 1995 to get the average number of errors per day.

SET T%Ave=Errorlog.Count(from:"1/1/95")/Date.DaysSince("1/1/95)

Binary EXPONENTIATION (**)
The binary EXPONENTIATION operator produces the exponentiated value of operand
A raised to the power of operand B.

 Operators 279

Format

operand A**operand B

Parameters

operand A - the operand designated as the base

operand B - the operand designated as the exponent

Explanation

Binary EXPONENTIATION uses any leading numeric characters (the digits 0 to 9, the
unary MINUS operator, the decimal point, and the letter E) as the numeric values of the
operands. Then it produces a result that is operand A raised to the power of operand B. If
an operand has no leading numeric characters, binary EXPONENTIATION assigns it a
value of 0. If you attempt to raise a negative number to a non-integer power, an error
occurs.

Related

Expression evaluation

Examples

The following example shows how to use exponentiation to find the square root of a
number

DO $Env.Output(16**.5)

Results: 4

 Operators 280

Binary INTEGER DIVIDE (\)
The binary INTEGER DIVIDE operator produces the integer result of the division of
operand A by operand B.

Format

operand A\operand B

Parameters

operand A - The dividend

operand B - The divisor

Explanation

Binary INTEGER DIVIDE uses leading, valid numeric characters (the digits 0 to 9, the
unary MINUS operator, the unary PLUS operator, the decimal point, and the letter E) as
the values of the operands. Then binary INTEGER DIVIDE produces a result that is the
integer portion of the quotient of the division of operand A by operand B. It does not
return a remainder and it does not round up the result.

If an operand has no leading numeric characters, its value is assumed to be 0. An error
occurs if you perform integer division with a zero-valued divisor.

Related

Expression evaluation

Examples

The following example performs integer division on two real numeric operands.

DO $Env.Output(27.82\16.39767)

Results: 1

The following example uses binary ADD and binary INTEGER DIVIDE to perform the
rounding up operation to the nearest integer.

SET X=9.996

DO $Env.Output(X+.5\1)

Results: 10

 Operators 281

The following example uses a function to round a value to a given level of precision.

RND(V,Prc) ; Rounds to a level of decimal point

SET Prcvl=10**(Prc\1)

QUIT (V*Prcvl+.5)\1/Prcvl

The following example rounds a value to the penny.

SET AVG=199.748632

SET ADJAVG=((AVG*100+.5)\1)/100

DO $Env.Output(ADJAVG=199.75)

 Operators 282

Unary MINUS (–)
The unary MINUS operator negates an operand's numeric interpretation.

Format

–operand

Explanation

Unary MINUS uses any leading, valid numeric characters (the digits 0 to 9, the decimal
point, the unary PLUS operator, other unary MINUS operators, and the letter E) as the
numeric value of the operand. Unary MINUS then returns the additive inverse of this
numeric value. If the string has no leading numeric characters, unary MINUS assigns the
string a numeric value of 0.

Because unary MINUS returns a numeric value, it can be used to compare a string
expression to a numeric literal or other numeric expression.

Comments

Unary MINUS operator takes precedence over the binary arithmetic operators. A
numeric expression is scanned and any unary MINUS operator to the operand on its right
is applied. Then the expression is evaluated and a result is produced.

Related

Expression evaluation

$FNUMBER function

Examples

In the following example, parentheses take precedence over unary operators. The string
in the parentheses is treated as one value (12BOATROPES). When the operand is
interpreted numerically, the string is scanned, a numeric value of 12 is encountered, and
then interpretation stops. The unary MINUS operator is applied to this value and returns
a value of –12.

DO $Env.Output(-("12BOAT"_"ROPES"))

Results

-12

 Operators 283

Multiple unary MINUS operators with an operand are applied in a right-to-left order. The
following examples show the use of binary SUBTRACT and multiple unary MINUS
operators:

DO $Env.Output(18---10)

Results: 8

DO $Env.Output(18----10)

Results: 28

The following example reverses the sign of a numeric literal.

DO $Env.Output(-+100)

Results: -100

 Operators 284

Binary MODULO (#)
The binary MODULO operator produces the value of an arithmetic modulo operation on
two numerically interpreted operands.

Format

operand A#operand B

Parameters

operand A - the value on which the modulo operation is to be performed

operand B - the modulus

Explanation

Binary MODULO uses any leading, valid numeric characters (the digits 0 to 9, the
decimal point, the unary MINUS operator, the unary PLUS operator, and the letter E) as
the numeric values of the operands. If an operand has no leading numeric characters,
binary MODULO gives it a value of 0.

When the operands A and B are both positive, then the modulo operation is the remainder
of operand A integer divided by operand B.

Comments

Keep the following points in mind when you use the binary MODULO operator:

• The operation is not defined if operand B is zero-valued.

• The operation returns a 0 if operand A is zero-valued.

• When both operands are positive, the modulo operation produces the remainder of
the integer division of operand A by operand B. This is not true if either operand is
negative.

Related

Expression evaluation

Binary INTEGER DIVIDE (\)

 Operators 285

Examples

The following examples illustrate the modulo operation with two positive operands. The
modulo operation produces a value equivalent to the remainder after division of operand
A by operand B.

DO $Env.Output(47#10)

Results: 7

DO $Env.Output(24#6)

Results: 0

DO $Env.Output(15.76#5.5)

Results: 4.76

The following examples illustrate the effect of the modulo operater on two operands
preceded with unary MINUS operators. The modulo operation is equivalent to the
following:

-(operand A#operand B)

DO $Env.Output(-47#-10)

Results: -7

DO $Env.Output(-24#-6)

Results: 0

The following examples show the effect of a unary MINUS on operand B. The
expression has the value -(-operand A#operand B).

DO $Env.Output(47#-10)

Results: -3

DO $Env.Output(24#-6)

Results: 0

The following examples show the effect of a zero-valued operand A. The result is 0
regardless of the sign of operand B. When operand B evaluates to 0, the operation is
undefined and results in an error.

DO $Env.Output("ALPHA"#10)

Results: 0

DO $Env.Output(0#-10)

Results: 0

 Operators 286

Binary MULTIPLY (*)
The binary MULTIPLY operator returns the product of two numerically interpreted
operands.

Format

operand*operand

Explanation

Binary MULTIPLY uses any leading numeric characters (the digits 0 to 9, the unary
MINUS operator, the decimal point, and the letter E) as the numeric values of the
operands. Then it produces a result that is the product of the two operands. If an operand
has no leading numeric characters, binary MULTIPLY assigns it a value of zero.

Related

Expression evaluation

Examples

The following example multiplies two string operands with leading digits.

DO $Env.Output("2 Years"*"8 Workers")

Results: 16

The following example multiplies one string literal and one numeric literal.

DO $Env.Output("7.5"*.5)

Results: 3.75

The following example multiplies the values in two local variables.

SET H=10,W=12 DO $Env.Output("Area: "_H*W)

Results: 120

 Operators 287

Unary PLUS (+)
The unary PLUS operator gives its operand a numeric interpretation.

Format

+operand

Explanation

Unary PLUS gives its operand a numeric interpretation. It uses any leading, valid
numeric characters (the digits 0 to 9, the decimal point, the unary MINUS operator,
another unary PLUS operator, and the letter E) to determine the numeric value of the
operand.

Comments

Because unary PLUS returns a canonic representation of the value, you can use it to
ensure that a given subscript is stored as a numeric subscript.

Related

Expression evaluation

$FNUMBER function

Examples

The following example evaluates a string value as a numeric value.

DO $Env.Output(+"0030")

Results: 30

The following example evaluates a string value as a numeric value. Because the string
literal does not contain any leading numeric characters, its numeric value is 0.

DO $Env.Output(+"ABCDEFG")

Results: 0

 Operators 288

Binary SUBTRACT (-)
The binary SUBTRACT operator produces the difference between two numerically
interpreted operands.

Format

operand A-operand B

Parameters

operand A - the minuend (the value from which operand B is to be subtracted)

operand B - the subtrahend (the value to be subtracted from the minuend)

Explanation

Binary SUBTRACT interprets any leading, valid numeric characters (the digits 0 to 9,
the decimal point, the unary MINUS operator, the unary PLUS operator, or the letter E)
as the numeric values of the operands. Then it produces a value that remains after
subtraction. If an operand has no leading numeric characters, binary SUBTRACT
assumes its value to be 0.

Related

Expression evaluation

Examples

The following example subtracts a real numeric literal from an integer numeric literal.

DO $Env.Output(12.756-3.75)

Results: 9.006

The following example performs subtraction on two literals with leading digits.

DO $Env.Output("12 APPLES"-"4 ORANGES")

Results: 8

The following example subtracts quota from the total sales amount in the salesperson
object.

SET T%Perf=Salesperson.TotalSalesAmount-SalesPerson.Quota

 Operators 289

Relational Operators
Relational operators perform relationship operations. The following table illustrates those
relational operators supported by EsiObjects.
Operator Syntax
Binary CONTAINS A[B
Binary EQUALS A=B
Binary FOLLOWS A]B
Binary GREATER THAN A>B
Binary LESS THAN A<B
Binary PATTERN MATCH A?PATTERN
Binary SORTS AFTER A]]B

 Operators 290

Binary CONTAINS ([)
The binary CONTAINS operator tests whether the sequence of characters in the right
operand is a substring of the left operand.

Format

operand A[operand B

Parameters

operand A - the operand being tested to determine if it contains operand B

operand B - the operand being tested to determine if it is contained in operand A

Explanation

Binary CONTAINS treats operands as string values and gives them no special
interpretation. Binary CONTAINS returns true if operand A contains the character string
represented by operand B. It returns false if operand A does not contain the character
string represented by operand B.

To produce a true result, the characters in operand B must be in the same order as the
characters in the substring of operand A. If operand B is the null string, binary
CONTAINS always produces a result of true.

Comments

Use the unary NOT operator with binary CONTAINS to produce a negative
CONTAINS (DOES NOT CONTAIN). You can express DOES NOT CONTAIN
using either of the following equivalent formats:

operand A'[operand B

'(operand A[operand B)

DOES NOT CONTAIN reverses the truth value of binary CONTAINS applied to both
operands. DOES NOT CONTAIN produces a true result if operand A does not contain
the character string represented by operand B. It produces a false result if operand A does
contain the character string represented by operand B.

 Operators 291

Examples

The following example tests whether D contains C. Because D does contain C, the result
 is true.

SET C="MOTOR",D="MOTORCYCLE"

DO $Env.Output(D[C)

Results: 1

The following example shows how to use DOES NOT CONTAIN to determine if a
string is not a substring of another string.

SET CODE ="- OK - Operation Successful!"

IF CODE '["- OK -" GOTO ERROR

The following examples show that all strings contain the null string, even the null string.

DO $Env.Output("CATALOG"["")

Results: 1

DO $Env.Output(""["")

Results: 1

The following example checks if the file object's PrivString property contains a D and if
so it destroys the FileObject. If PrivString does not contain a D, the example asserts a
message that it cannot delete the object.

IF T%Command="Delete" DO

. IF FileObj.PrivString["D" DESTROY FileObj

. ELSE DO $ENVIRONMENT.Assert:("No privs for delete operation.")

 Operators 292

Binary EQUALS
The binary EQUALS operator compares two operands for equality.

Format

operand=operand

Explanation

Binary EQUALS returns a result of true if the two operands are identical strings;
otherwise, it returns a result of false.

To produce a true result, the character sequence in both operands must be identical. There
can be no intervening characters (including spaces). Binary EQUALS does not imply any
numeric interpretation of either operand.

You can use binary EQUALS to test for numeric equality if both operands have numeric
values. The following example produces a result of true:

DO $Env.Output(07=7)

Results: 1

If the operands are not automatically converted to numeric values (as in the process of
evaluating numeric literals), you can force the conversion by using the unary PLUS
operator. The following example produces a result of true:

DO $Env.Output(+"007"="7")

Results: 1

The following statement does not set both A and B to 7:

SET A=B=7

The previous statement sets A equal to true if the value of B is 7. A is set to false if B has
some other value. If you want to set both A and B equal to 7, do the following:

SET (A,B)=7

Comments

Keep the following points in mind when you use the binary EQUALS operator:

• You can specify a NOT EQUALS operation by using the unary NOT operator
with binary EQUALS. You can express the NOT EQUALS operation in two
ways:

• operand'=operand

• '(operand=operand)

 Operators 293

• NOT EQUALS reverses the truth-value of the EQUALS operator applied to both
operands. If the two operands are not identical, the result is true. If the two
operands are identical, the result is false.

• With the SET command, the equal sign becomes an assignment operator that
indicates the assignment of the value of the right operand to the left operand.

• For example, the following statement sets variable A equal to Channel Islands:
SET A="Channel Islands"

Related

Expression evaluation

Examples

The following example checks a string to see if it is empty.

IF STR="" DO $Env.Output("Empty String")

The following example illustrates two uses of the equal sign. First, the example uses the
equal sign with the SET command to give two local variables the value of two strings.
Second, the example tests the identify of the strings using binary EQUALS. Because the
strings are not identical, the result is false.

SET A="A56BC",B="ABC" DO $Env.Output(A=B)

Results: 0

The following example asserts the Yes/No dialog box and the user can click on a Yes or
No button. The Assert method passes back a "Yes" or "No" and it is compared to the
literal "Yes". The result of the comparison is 1 if the user selects the Yes button or 0 if
the No button is selected. The value is displayed in the environments output window.

Note: The Assert method's parameters are passed in by keyword. The Assert method is
found in the ESI library, in the primary interface of the Environment class.

DO $Env.Output($Env.Assert(Text:"Save File?",Buttons:"Yes")="Yes")

 Operators 294

Binary FOLLOWS (])
The binary FOLLOWS operator tests whether the characters in the left operand come
after the characters in the right operand in ASCII collating sequence.

Format

operand A]operand B

Parameters

operand A - the operand being tested to see if its characters follow the characters in
operand B in ascending ASCII collating sequence

operand B - the operand that operand A is being compared to

Explanation

The binary FOLLOWS test compares the ASCII characters in both operands starting
with the leftmost character. The test ends when a character is found in operand A that is
different from the character at the corresponding position in operand B, or when there are
no characters left to compare in either of the operands.

Binary FOLLOWS produces a result of true if the first differing in operand A has a
higher ASCII value than the corresponding character in operand B (that is, if the
character in operand A comes after the character in operand B in ASCII collating
sequence). It produces a result of false if the first unique character in operand A has a
lower ASCII value than the corresponding character in operand B.

If operand A is identical to operand B, then a truth-value of false is returned. If operand
A is shorter than operand B, but otherwise identical, then a truth-value of false is
returned. If operand B is shorter than operand A, but otherwise identical, then a truth
value of true is returned.

Comments

You can produce a NOT FOLLOWS operation by using the unary NOT operator with
binary FOLLOWS. You can express NOT FOLLOWS using either of the following
equivalent formats:

operand A']operand B

'(operand A]operand B)

NOT FOLLOWS reverses the truth-value of binary FOLLOWS applied to both
operands. If all characters in the operands are identical, or if the first unique character in
operand A has a lower ASCII value than the corresponding character in operand B, NOT
FOLLOWS returns a result of true. If the first unique character in operand A has a
higher ASCII value than the corresponding character in operand B, NOT FOLLOWS
returns a result of false.

 Operators 295

If operand A is shorter than operand B, but otherwise identical, NOT FOLLOWS
returns a value of true. If operand B is shorter than operand A, but otherwise identical,
NOT FOLLOWS returns a value of false.

Related

Expression evaluation

Examples

The following example tests to determine if the string HARPOON follows the string
HARP in ASCII collating order. The result is true.

DO $Env.Output("HARPOON"]"HARP")

Results: 1

The following example tests the collating order of numeric literals. Because 3 in 123
follows the corresponding 2 in 122, the result is true.

DO $Env.Output(123]122)

Results: 1

The following example also tests numeric literals. Because the numeric literal 12 collates
before the numeric literal 2, the result is false.

DO $Env.Output(12]2)

Results: 0

The following example tests whether the string CDE follows string ABC in ASCII
collating order. Because C in CDE follows A in ABC, the result is true.

DO $Env.Output("CDE"]"ABC")

Results: 1

The following uses binary FOLLOWS to test for a non-null string. Because any string,
except the null string, follows the null, the expression T%Value]"" is true whenever
T%Value is non-null.

QUIT:T%Value]""

 Operators 296

Binary LESS THAN (<)
The binary LESS THAN operator tests whether operand A is numerically less than
operand B.

Format

operand A<operand B

Parameters

operand A - the operand considered the smaller

operand B - the operand considered the larger

Explanation

The binary LESS THAN returns a result of true if operand A has a lesser numeric value
than operand B. It returns a result of false if operand A has an equal or greater numeric
value than operand B.

Comments

You can produce a NOT LESS THAN operation by using the unary NOT operator with
binary LESS THAN as follows:

operand A'<operand B

'(operand A<operand B)

NOT LESS THAN reverses the truth value of binary LESS THAN applied to both
operands. It produces a result of true when operand A is greater than operand B or when
operand A is equal to operand B. It produces a result of false when operand A is less than
operand B.

You can use the NOT LESS THAN operation to specify greater than or equal to.

Related

Expression evaluation

 Operators 297

Examples

The following example shows the result of using a series of relational operators. All
expressions with binary operators are evaluated left to right. The first operation is 100<X,
the result of which is 0. The second operation is 0<10, the result of which is 1.

SET X=0

DO $Env.Output(100<X<10)

Results: 1

The following example verifies that the password entered is a least 5 characters in length.

IF PwControl.textLength<5 $ENVIRONMENT.Assert("Password must contain at least

5 characters") QUIT

 Operators 298

Binary GREATER THAN (>)
The binary GREATER THAN operator tests whether operand A is numerically greater
than operand B.

Format

operand A>operand B

Parameters

operand A - the operand considered the larger

operand B - the operand considered the smaller

Explanation

The binary GREATER THAN operator evaluates the two operands numerically. Binary
GREATER THAN produces a result of true if operand A is numerically larger than
operand B. It produces a result of false if operand A is numerically equal to or smaller
than operand B.

Comments

Use the unary NOT operator with binary GREATER THAN to produce a NOT
GREATER THAN operation. You can express NOT GREATER THAN using either of
the following equivalent formats:

operand A'>operand B

'(operand A>operand B)

NOT GREATER THAN reverses the truth value of binary GREATER THAN applied
to both operands. You can use it to specify less than or equal to. NOT GREATER
THAN produces a true result when operand A is less than operand B or operand A is
equal to operand B. NOT GREATER THAN produces a false result when operand A is
greater than operand B.

Related

Expression evaluation

 Operators 299

Example

The following example tests two numeric literals.

DO $Env.Output(1900>1950)

Results: 0

The following example tests two variables with the NOT GREATER THAN operator.
Because both variables have an identical numerical value, the result is true.

SET A="99",B="112"

DO $Env.Output(A'>B)

Results: 1

The following example tests if the number of elements in the buffer is greater than 5 and
if it is, then removes one element.

IF Buffer.TotalElements>5 SET T%Obj=Buffer.Remove

 Operators 300

Binary PATTERN MATCH (?)
The binary PATTERN MATCH operator tests whether the string of characters in the
left operand is correctly specified by the pattern in the right operand.

Format

operand?pattern

Parameters

operand - The string whose characters you want to test for a pattern

pattern - Can be one of the following:

a sequence of one or more patatoms

@expr_atom

where:
Patatom can be one of the following:

 repcount patcharacter {...}

 repcount string_literal

 repcount alternation

 where:

 repcount is a repeat count
 patcharacter is a pattern code character (a character

that represents a group of ASCII
characters)

 string_literal is a quoted string literal
 alternation is a set of patatom sequences to choose

from to pattern match a segment of the
operand string (provides logical OR
capability in pattern specifications)

@expr_atom is an indirect reference that evaluates to a sequence of one or
more patatoms

Explanation
Binary PATTERN MATCH returns true when the pattern correctly specifies the pattern
of characters in the operand and returns false if the pattern does not correctly specify the
pattern of characters in the operand.

 Operators 301

You can produce a NOT MATCH operation by using the unary NOT operator with
binary PATTERN MATCH as follows:

operand'?pattern
'(operand?pattern)

NOT MATCH reverses the truth-value of binary PATTERN MATCH. If the characters
in the operand cannot be fully described by the pattern, then NOT MATCH returns a
result of true. If the pattern matches all of the characters in the operand, then NOT
MATCHES returns a result of false.

The binary PATTERN MATCH operation is performed by comparing the characters in
the operand string against their expected values as described by the pattern.

• Repeat count

• Pattern Code Characters

• String literals

• Alternations

An alternation has the following syntax:

(patatom sequence {, patatom sequence} . . .)

Comments

If a pattern match successfully describes only part of a string, then the pattern match
returns a result of false. That is, there cannot be any string left over when the pattern is
exhausted. The following expression evaluates to a result of false because the pattern
does not match the final R:

"SUSHI BAR"?.U1P2U

Related

Expression evaluation

Pattern indirection

INDIRECTION (@) construct

Examples

The following example produces a result of true. The string tested includes two numeric
characters, one punctuation character, two numeric characters, one punctuation character,
and two numeric characters.

DO $Env.Output("10/26/72"?2N1P2N1P2N)

Results: 1

 Operators 302

The following example produces a result of false. The first character in the tested string is
1 of the 52 uppercase and lowercase alphabetics, but the test has no provision for 2
characters.

SET B="LA" DO $Env.Output(B?1A)

Results: 0

The following example produces a result of true.

DO $Env.Output("3672STK-0067"?2.N.3U1P2.4N)

The following example produces a result of false. The first two characters are
alphanumeric, but the third character is punctuation.

DO $Env.Output("B4*"?3AN)

Results: 0

The following example produces a result of true. The string STK matches the first three
characters, and the 1.E matches the remainder.

DO $Env.Output("STK-0037"?1"STK"1.E)

Results: 1

The following example checks the text entered in control to ensure that it matches the
specified pattern (one or more alphabetic characters, a comma, and one or more
alphabetic characters).

IF FullUsernmControl.Text'?(1.A1","1.A) DO $Env.Assert("Invalid Format") QUIT

Pattern Code Characters
The following table describes the pattern code characters you can use with binary
PATTERN MATCH. Note that these codes are summarized by the mnemonic
"CLEANUP".
Character Specifies
C Any one of the 33 control characters (including DEL) or any of

the 128 8-bit characters
L Any one of the 26 lowercase, alphabetic characters from a to z
E Any one of the characters in the ASCII set and all 8-bit

characters
A Any one of the 26 uppercase or 26 lowercase, alphabetic

characters from A to Z or a to z
N Any one of the 10 ASCII numeric characters from 0 to 9
U Any one of the 26 uppercase, alphabetic characters from A to Z
P Any one of the 33 punctuation characters (including SP)

 Operators 303

Binary SORTS AFTER (]])
The binary SORTS AFTER operator tests whether the left operand sorts after the right
operand in numeric subscript collating sequence.

Format

operand A]]operand B

Explanation

Binary SORTS AFTER compares two operands to determine if the first operand sorts
after the second in the subscript ordering sequence defined by the single argument
$ORDER function for the numeric collating sequence.

Binary SORTS AFTER produces a result of true if the first operand sorts after the
second operand. Otherwise, it produces a result of false. If operand A is equal to operand
B, then a truth value of false is returned.

In a numeric collating sequence canonic number operands sort according to numeric
value, with negative numbers sorting first, followed by zero, then positive numbers. All
operands that are not canonic numbers (except the null string, which sorts before all non-
null string operands) sort after canonic number operands. If both SORTS AFTER
operands are not canonic numbers, then they sort in the same way as the binary
FOLLOWS operator.

Comments

You can produce a NOT SORTS AFTER operation by using the unary NOT operator
with binary SORTS AFTER as follows:

operand A']]operand B

'(operand A]]operand B)

NOT SORTS AFTER reverses the truth-value of binary SORTS AFTER applied to
both operands. If operand A is identical to operand B, or if operand B sorts after operand
A, then NOT SORTS AFTER returns a result of true. If operand A sorts after operand
B, NOT SORTS AFTER returns a result of false.

Related

Expression evaluation

Binary FOLLOWS (])

$ORDER function

 Operators 304

Examples

The following example creates an array and shows how the binary SORTS AFTER
operator, the $ORDER function, and the binary FOLLOWS operator sort the array.

SET I%NODE(2)=""

SET I%NODE(122)=""

SET I%NODE(123)=""

SET I%NODE("+")=""

SET I%NODE("HARP")=""

SET I%NODE("HARPOON")=""

$ORDER Function

SET T%X=""

FOR SET X=$ORDER(I%NODE(T%X)) QUIT:T%X="" DO $Env.Output(T%X)

Results:

2

122

123

+

LAMP

LAMPOON

Binary SORTS AFTER Operator

DO $Env.Output(2]]"")

Results: 1

DO $Env.Output(122]]2)

Results: 1

DO $Env.Output(123]]122)

Results: 1

DO $Env.Output("+"]]123)

Results: 1

DO $Env.Output("HARP"]]"+")

Results: 1

DO $Env.Output("HARPOON"]]"HARP")

Results: 1

 Operators 305

Binary FOLLOWS Operator

DO $Env.Output(2]"")

Results: 1

DO $Env.Output(122]2)

Results: 0

DO $Env.Output(123]122)

Results: 1

DO $Env.Output("+"]123)

Results: 0

DO $Env.Output("HARP"]"+")

Results: 1

DO $Env.Output("HARPOON"]"HARP")

Results: 1

 Operators 306

Logical Operators
Logical operators perform logical operations. The following table illustrates those logical
operators supported by EsiObjects.
Operator Syntax
Binary AND A&B
Binary INCLUSIVE OR A!B
Unary NOT 'B

 Operators 307

Binary AND (&)
The binary AND operator tests whether both of its operands have a truth value of true.

Format

operand&operand

Explanation

Binary AND produces a value of true only if both operands are true (that is, have non-
zero values when evaluated numerically); otherwise, it produces a value of false.
Comments
You can specify the Boolean operation of NOT AND (NAND) by using the unary NOT
operator with binary AND. You can express NOT AND using either of the following
equivalent formats:

operand'&operand

'(operand&operand)

The negative AND reverses the truth value of binary AND applied to both operands. It
produces a value of true when either operand, or both operands, are false. It produces a
value of false only when both operands are true.
Related
Expression evaluation

Examples

The following example evaluates two non zero-valued operands as true and produces a
value of true.

SET L= 1,R=-71 DO $Env.Output(L&R)

Results: 1

The following example evaluates one true and false operand and produces a value of
false.

SET L=1,R=0 DO $Env.Output(L&R)

Results: 0

The following example evaluates two false operands with a negative AND. It produces a
value of true.

SET A=0,B=0 DO $Env.Output(A'&B)

Results: 1

 Operators 308

The following example checks user input T%USRNM and T%PW against the user
object. If not valid, a message is asserted.

IF User.Username=T%USRNM&User.Password=T%PW DO

. DO INIT

ELSE $ENVIRONMENT.Assert("Invalid username or password") DO LOGIN

 Operators 309

Binary INCLUSIVE OR (!)
The binary INCLUSIVE OR operator tests whether one or both operands are true.

Format

operand!operand

Explanation

Binary INCLUSIVE OR produces a result of true if either operand has a value of true, or
if both operands have the value of true. It produces a result of false only if both operands
are false.

Comments

You can produce a NOT OR (or NOR) operation by using unary NOT with
INCLUSIVE OR. To express NOT OR use either of the following equivalent forms:

operand'!operand

'(operand!operand)

The NOT OR operation reverses the truth-value of binary OR applied to both operands.
If both operands are false, NOT OR produces a result of true. If either operand is true or
if both operands are true, it produces a result of false.

Related

Expression evaluation

Examples

The following example evaluates one true and one false operand and produces a true
result.

SET L=1,R=0 DO $Env.Output(L!R)

Results: 1

The following example evaluates two false operands and produces a false result.

SET L=0,R=0 DO $Env.Output(L!R)

Results: 0

The following NOT OR example evaluates two false operands and produces a true result.

SET L=0,R=0 DO $Env.Output(L'!R)

Results: 1

 Operators 310

The following example shows how two tests can be combined. The example matches the
user name and password entered against the same information for the current uses. If they
do not match, then an error message is displayed.

IF UsrnmControl.Text'=Usr.Usrnm!(UsrPwControl.Text'=Usr.Passwd)

ELSE $ENVIRONMENT.Assert("Invalid Login") QUIT

 Operators 311

Unary NOT (')
The unary NOT operator inverts the truth value of the Boolean operand or operator it
modifies.

Format

'operand

'operator

Explanation

Unary NOT with an operand inverts the truth-value of the operand. If the operand is true,
unary NOT gives it a value of false. If the operand is false, unary NOT gives it a value of
true.

Unary NOT with an operator inverts the sense of the operation it performs. It effectively
inverts the result of the operation. The following table describes how the unary NOT
operator affects the meaning of the binary operators.
Operator Meaning
'& The expression is true when one or both operands are

false.
'! The expression is true only when both operands are

false.
'= The expression is true only when both operands are not

identical strings.
'> The expression is true when the left operand is less

than or equal to the right operand.
'< The expression is true when the left operand is greater

than or equal to the right operand.
'[The expression is true when the right operand is not

contained in the left operand.
'] The expression is true when the left operand does not

follow the right operand in ASCII collating sequence.
'? The expression is true when the left operand is not a

string in the pattern specified by the right operand.

Comments
You can invert the meaning of any relational or logical operator using either of the
following equivalent formats:

operand'operator operand

'(operand operator operand)

Related

Expression evaluation

 Operators 312

Examples

The following example tests the sum of two local variables in the context of a
postconditional expression. Because their values do not equal 10, control transfers to the
line labeled INV.

A SET A=4,B=3

.

.

.

DO:A+B'=10 INV

The following example tests two variables with the NOT AND (NAND) operator.
Because one variable is true and one is false, the result is true.

SET A=0,B=1 DO $Env.Output(A'&B)

Results: 1

The following example tests two variables with the binary AND operator. Because the
example places unary NOT with the false operand, the truth-value is reversed, and the
result is true.

SET A=1,B=0 DO $Env.Output(A&'B)

Results: 1

 Operators 313

String Operator
String operators perform operations on strings. The following table illustrates the string
operator supported by EsiObjects.
Operator Syntax
Binary CONCATENATE A_B

 Operators 314

Binary CONCATENATE
The binary CONCATENATE operator produces a result that is a string composed of the
right operand appended to the left operand.

Format

operand_operand

Explanation

Binary CONCATENATE gives its operands no special interpretation. It treats them as
string values. If the concatenated string is longer than string length supported on the
underlying M platform, an error occurs.

Examples

The following example concatenates two string literals.

DO $Env.Output("OBJECT"_"ORIENTED")

Results: OBJECTORIENTED

The following example concatenates two local variables, NAME and SUBS.

SET T%NAME="^DD",T%SUBS="(1,2,3)",T%GLOBAL=T%NAME_T%SUBS

DO $Env.Output(T%GLOBAL)

Results: ^DD(1,2,3)

The following example concatenates two string literals and the null string. The null string
has no effect on the length of a string. (you can concatenate an infinite number of null
strings to a string.)

SET T%V="TECH"_""_"NOLOGY" DO $Env.Output(T%V)

TECHNOLOGY

The following example sets the property FULLNAME in object user to the variable Last
and First, which are concatenated.

SET USER.FULLNAME=T%Last_","_T%First

 Operators 315

Indirection (@) Operator
The INDIRECTION construct is used to translate string data into executable code at
runtime. For example, a string can be translated into the argument of a command, or into
certain kinds of variable references. The @ is a language contstruct that is only used in
certain restricted contexts. Indirection gives the programmer a language construct that
can be used to generalize code, that is, defer execution until runtime based on the
execution context.

Format

@expr_atom

@expr_atom@(subscript{,...})

Parameters

expr_atom

The expression atom whose value is to be used

@expr_atom@(subscript{,...})

A string used to name an array node that descends from the variable referred to by
expr_atom

Explanation

Each occurrence of indirection in a statement is replaced with a corresponding value,
which is then used in the statement. All occurrences of indirection must evaluate to:

• One or more command arguments (argument indirection)

• A variable name, routine name or label name (name indirection)

• A subscripted variable name prefix, terminated by a second @ (subscript
indirection)

• A pattern (pattern indirection)

Comments

In the evaluation of subscript indirection, if an expression atom refers to an unsubscripted
global or local variable, the value of the indirection is the variable name and all
characters to the right of the second INDIRECTION (@) operator (note that an entire
expression may be used, provided that it is surrounded by parentheses).

Related

Binary PATTERN MATCH (?)

 Operators 316

Examples

The following example uses argument indirection to call the routine at the label VALID
within the current routine.

H1 SET T%HND="VALID"

DO @T%HND

The following example uses routine name indirection to call the routine at the first line of
the routine REB.

H2 SET DOAR="REB"

DO ^@DOAR

The following example sets T%W to the pattern for one or more digits and T%B to 10
and tests whether T%B meets the specified pattern. Because the operand evaluates to two
digits, the result is true and control passes to the label OK.

SET T%W="1.N",T%B=10

IF T%B?@T%W DO OK

The following example uses subscript indirection to initialize an array with some
defaults.

 SET NAM="X(A)",A=10

INIT ; Initializes default values

SET DEF(1)="",DEF(2)=+$HOROLOG

SET DEF(3)=$PIECE($HOROLOG,",",2),DEF(4)="Unknown"

FOR I=1:1:4 SET @NAME@(I)=DEF(I)

QUIT

Argument Indirection
In this type of indirection, indirection evaluates to one or more command arguments. In
the following example, MyNode(10,6) is set to the value 4.

SET ND="MyNode(10,6)=12\3"

SET @ND

Name Indirection
In this type of indirection, the indirection evaluates to a name. A name is any language
element that contains an uppercase or lowercase alphabetic character or percent sign (%)
followed by up to seven alphanumeric characters. You can use name indirection for the
following:

• Variable names

• Line labels

• Routine names

 Operators 317

When you use indirection to reference a named variable, the value of the indirection must
be a complete global or local variable name, including any necessary subscripts. In the
following example, the variable DT is set to 10/16/92.

SET ND="DT",@ND="10/16/92"

When you reference a line label with indirection, the value of the indirection must be a
syntactically valid line label.

In the following example, ACT is set to the value of the line label that matches the state
of V. Control is transferred to the label selected.

SET ACT=$SELECT(V="green":"GO",V="yellow":"ACCL",V="red":"STOP",1:"caution")

When you reference a routine name with indirection, the value of the indirection must be
a syntactically valid routine name. In the following example, control is transferred to the
routine VALID.

CHK SET ROU="VALID"...

.

.

.

GO ^@ROU

Subscript Indirection
This form of indirection is an extended form of name indirection. The value of the
indirection must be the name of a local or global array node. Subscript indirection is
syntactically different than the other forms of indirection. Subscript indirection has the
following format:

@expr_atom@(subscript,...)

where:
expr_atom evaluates to a local or global variable name, defined or

undefined
subscript is a string of one or more subscripts separated by commas

and enclosed in parentheses

Subscript indirection creates (or references) variables that logically descend from the
variable referenced by the expression following the first INDIRECTION operator. The
actual variable reference created depends on the list of subscripts following the second
INDIRECTION operator.

In the following example, the variable D(1,1) is set to the minimum of 100 or D(1).

SET ND="D(1)"

SET @ND@(1)=$SELECT(@ND>100:100,1:@ND)

 Operators 318

Pattern Indirection
Pattern Indirection is a special form of indirection, unrelated to any other kind. The
INDIRECTION operator and its operand replace a pattern match and the value of the
indirection must be a valid pattern. The INDIRECTION (@) operator follows the
PATTERN MATCH (?) operator. For example:

SET PAT="3N1""-""2N1""-""4N",MSG="Invalid SSN"

IF VAL'?@PAT DO INVAL

.

.

.

QUIT

INVAL DO $ENVIRONMENT.Assert(MSG)

For more information about pattern matching, see the description of the binary
PATTERN MATCH operator.

Class Element Indirection
Allows indirection to be used when dealing with class defined names. Class element
indirection allows the name of a class to be indirected when using the CREATE
command. This allows the creator of the object to specify the actual class name at run
time. For example:

;Function to return a shape object based on input

;T%Shape: 0 = Box, 1 = Circle, 2 = Triangle

SET

T%Class=$Select(T%Shape=1:"MyCircleClass",T%Shape=2:"StockTriangle",1:"Box")

CREATE T%Out=@T%Class@

;

SET $RETURN=T%Out

The names of properties and methods can also be indirected when making service
requests. For example:

;Sorts the T%List Object based on the value of T%What

; 0 = A Normal sort, 1 = a ReverseSort

SET T%Action=$SELECT(T%What=0,"Sort",1:"ReverseSort")

DO T%List.@T%Action@

QUIT

; Looks up the value of a property of the linked object

; T%Prop is the name of the property to look up

SET $RETURN=I%Link.@T%Prop@

 Operators 319

Parameter List Indirection
Parameter list indirection provides a mechanism whereby the parameter passed on a
service request can be indirected. This is useful for delegation, for example:

; Forward the current call to the linked object

;

SET $RETURN=I%Link.Method@($PARAMS)

; Construct a parameter list and invoke a method

;

SET T%Params="20,20"

DO I%Window.Move@(T%Params)

If the values are stored in temporary variables, rather than specified literally, the
following construct must be used to indirect the parameter list correctly. (Note that
$LOOKUP is a privileged function.)

If T%x=20 and T%y=20, then

Set T%Params=$QUOTE($LOOKUP("T%x"))_","_$QUOTE($LOOKUP("T%y"))

DO I%Window.Move@(T%Params)

mailto:I%Window.Move@(T%Params
mailto:I%Window.Move@(T%Params

 Operators 320

Index
$ASCII... 183
$ASNVECTOR ... 186
$ASSOCIATE ... 188
$CALLBACK.. 189
$CALLER.. 132
$CALLFRAME ... 133
$CHAR .. 191
$CLASS... 136
$COPY... 194
$DATA .. 195
$DELEGATE .. 198
$DEVICE... 137
$ECODE.. 140
$ENVIRONMENT .. 142
$ESTACK.. 143
$ETRAP... 144
$EXIST.. 199
$EXTCALLBACK .. 201
$EXTRACT... 203
$FIND.. 208
$FNUMBER .. 210
$FREECB .. 214
$GET ... 215
$GETENTRYREF... 217
$HOROLOG.. 145
$INFO.. 218
$INTERFACE ... 146
$IO ... 147
$ISA... 220
$JOB .. 148
$JUSTIFY.. 221
$KEY ... 149
$LENGTH ... 224
$LIBRARY.................................... 151, 193, 227
$LOOKUP ... 228
$MAXNUM... 153, 155
$MESSAGE... 156
$MINNUM .. 157
$NAME.. 230
$NORMALIZE.. 232
$OIDPTR... 234
$ORDER.. 235
$PARAMETERLIST..................................... 159
$PARAMETERS... 158
$PIECE .. 239
$POINTER .. 161
$POOL... 162
$PRINCIPAL... 163
$PRIVILEGED.. 164
$PTROID... 244
$PTRSTR... 245
$QLENGTH .. 246
$QSUBSCRIPT ... 247

$QUERY.. 248
$QUIT.. 165
$QUOTE.. 251
$RANDOM.. 252
$RETURN ... 166, 167
$REVERSE.. 253
$SELECT... 255
$SELF .. 169
$STACK .. 171, 258
$STORAGE ... 172
$SUPER... 173
$SYSPOOL.. 174
$SYSTEM.. 175
$TEST.. 176
$TEXT ... 260
$TRANSLATE .. 262
$VALID ... 265
$WALK ... 266
$WATCHDETECT.. 268
$X .. 179
$Y .. 180
$ZLENGTH ... 270
$ZPIECE.. 272
$ZVIRDATA ... 181
ADD... 276
AND... 306
BREAK.. 52
CLOSE... 53
CONCATENATE.. 313
CONTAINS ... 289
CREATE.. 56
DESTROY ... 61, 104
DIVIDE.. 277
DO

Argumentless ... 68
Callbacks ... 69
Introduction ... 63
Parameters ... 68

ELSE.. 72
EQUALS.. 291
EVENT .. 74
EXPONENTIATION..................................... 277
FOLLOWS... 293
FOR.. 76
GOTO .. 80
GREATER THAN ... 297
HALT... 82
HANG.. 83
IF 85
IGNORE .. 87
INCLUSIVE OR.. 308
Indirection

Argument... 315

 Operators 321

Class Element .. 317
Name ... 315
Pattern.. 317
Subscript.. 316

Input:.. 7
INTEGER DIVIDE.. 279
JOB .. 89
KILL .. 91
LESS THAN.. 295
LOCK .. 94
MERGE ... 97
MINUS .. 281
MODULO.. 283
MULTIPLY ... 285
NEW .. 99

NOT ... 310
OPEN... 101
Options:.. 3
PATTERN MATCH 299
PLUS.. 286
QUIT.. 106
READ... 109
SET .. 112
SORTS AFTER ... 302
SUBTRACT... 287
USE.. 117
WATCH... 120
WRITE... 124
XECUTE.. 127
ZAPPLY .. 129

	Introduction
	Document Conventions
	Language Concepts
	Interfaces and Services
	Method and Properties
	Code Body Structure
	Options Specification Block
	Input Specification Block
	Parameter Options
	Parameter Variable Assignment
	Example 1: Simple Parameter Passing
	Example 2: Array Parameter Passing
	Example 3: Using Keywords on Parameters
	Example 4: Using Keyword and Positional Parameters
	Example 5: Defaulting Parameter Values
	Example 6: Positional and Keyword Parameters
	Example 7: Unspecified Parameters
	Example 8: More Unspecified Parameters
	Example 9: Positional and Keyword Errors
	Example 10: Positional and Keyword Mapping

	Logic Block
	Four Types of Lines
	Line Syntax Examples
	Labels and Label Keywords - Introduction
	Labels in EsiObjects
	Label Keywords

	Introduction to Preprocessor Directives
	
	Instance and Class Variables
	Name Pool Variables

	Message Syntax
	Message Delivery Keywords
	Reserved $Unknown Method and Interface Name
	How to Tell Methods and Properties Apart
	Examples

	Callback Syntax
	Callback Types and Options
	Callback Ownership and Lifetime
	Documenting Callbacks
	Extrinsic Functions - Introduction
	Extrinsic Function Examples
	Syntax of an Extrinsic Function Callback

	Using Expressions
	Expressions
	Literals
	Evaluating Expressions

	Variables
	Syntax of a Variable Name
	Variable Names and Scoping Codes
	Value of Variables

	Variable Scoping
	Variable Scoping - Introduction
	Why Is Scoping Important?
	Implicit Scoping
	Explicit Scoping
	Scope Hierarchy

	Variable Inheritance
	InitClassVars and InitSysVars Methods
	NamePool Variables
	Grouping Code into Interfaces
	Interfaces and Inheritance
	Mix-in Classes and Multiple Inheritance

	Commands
	BREAK
	CLOSE
	CREATE
	DESTROY
	DO Command - Introduction
	DO Command - Parameters
	DO Command - Argumentless
	DO Command - Callbacks

	ELSE
	EVENT
	FOR
	GOTO
	HALT
	HANG
	IF
	IGNORE
	JOB
	KILL
	LOCK
	MERGE
	NEW
	OPEN
	PRESERVE
	QUIT
	READ
	SET
	USE
	WATCH
	WRITE
	XECUTE
	ZAPPLY

	Special Variables
	$CALLER
	$CALLFRAME
	$CHILDCNT
	$CHILDREN
	$CLASS
	$DEVICE
	$DOMAIN
	$ECODE
	$ENVIRONMENT
	$ESTACK
	$ETRAP
	$HOROLOG
	$INTERFACE
	$IO
	$JOB
	$KEY
	$LASTCHILDID
	Examples $LIBRARY
	$LOCALOBJECTS
	$MAXNUM
	$MEMORYOBJECTS
	$MAXSTR
	$MESSAGE
	$MINNUM
	$PARAMETERS
	$PARAMETERLIST
	$PEERS
	$POINTER
	$POOL
	$PRINCIPAL
	$PRIVILEGED
	$QUIT
	$REFERENCE
	$RETURN
	$ROOTOBJECTS
	$SELF
	$SHAREDOBJECTS
	$STACK
	$STORAGE
	$SUPER
	$SYSPOOL
	$SYSTEM
	$TEST
	$X
	$Y
	$ZVIRDATA

	Functions
	$ASCII
	$ASNVECTOR
	$ASSOCIATE
	$CALLBACK
	$CHAR
	$CLASSOID
	$COPY
	$DATA
	$DELEGATE
	$EXIST
	$EXTCALLBACK
	$EXTRACT
	$FIND
	$FNUMBER
	$FREECB
	$GET
	$GETENTRYREF
	$INFO
	$ISA
	$JUSTIFY
	$LENGTH
	$LIBRARY
	$LOOKUP
	$NAME
	$NORMALIZE
	$OIDPTR
	$ORDER
	$OSR
	$PIECE
	$PROTECT
	$PTROID
	$PTRSTR
	$QLENGTH
	$QSUBSCRIPT
	$QUERY
	$QUOTE
	$RANDOM
	$REVERSE
	$SELECT
	$STACK
	$TEXT
	$TRANSLATE
	$VALID
	$WALK
	$WATCHDETECT
	$ZLENGTH
	$ZPIECE

	Operators
	Arithmetic Operators
	Binary ADD (+)
	Binary DIVIDE (/)
	Binary EXPONENTIATION (**)
	Binary INTEGER DIVIDE (\)
	Unary MINUS (–)
	Binary MODULO (#)
	Binary MULTIPLY (*)
	Unary PLUS (+)
	Binary SUBTRACT (-)

	Relational Operators
	Binary CONTAINS ([)
	Binary EQUALS
	Binary FOLLOWS (])
	Binary LESS THAN (<)
	Binary GREATER THAN (>)
	Binary PATTERN MATCH (?)
	Binary SORTS AFTER (]])

	Logical Operators
	Binary AND (&)
	Binary INCLUSIVE OR (!)
	Unary NOT (')

	String Operator
	Binary CONCATENATE

	Indirection (@) Operator
	Argument Indirection
	Name Indirection
	Subscript Indirection
	Pattern Indirection
	Class Element Indirection
	Parameter List Indirection

	Index

