

Programmer’s Reference Guide

EsiObjects V4.2

(c) Copyright 1994 - 2004, ESI Technology Corp, Bolton MA

This document contains the intellectual property of its copyright holder(s) and is made
available under a license. If you are not familiar with the terms of the license, please refer
to the license.txt file that is a part of the distribution kit.

Information in this document is subject to change without notice. Companies, names and
data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of ESI Technology
Corporation.

Trademarks

EsiObjects is a registered trademark of ESI Technology Corporation.

GT.M is a registered trademark of Sanchez Inc.

DSM, Cache, MSM are registered trademarks of InterSystems Corporation.

Microsoft, Visual Basic, Windows and Windows NT are registered trademarks of
Microsoft Corporation.

Table of Contents
PROGRAMMER’S REFERENCE GUIDE.. 1

ESIOBJECTS V4.1.. 1

TABLE OF CONTENTS .. 3

INTRODUCTION ..I

DOCUMENT CONVENTION ..I

PART 1: CLIENT SERVER OVERVIEW ... 1

ESIOBJECTS OVERVIEW ... 2
CLASS DEVELOPMENT ENVIRONMENT .. 3
APPLICATION RUNTIME ENVIRONMENTS .. 5

PART 2: OBJECT LIFECYCLE ISSUES .. 6

USING OBJECTS ... 7
WHAT IS AN OBJECT? .. 7
OBJECT INTERFACE.. 8

Primary Interface... 9
Factory Interface ... 10
VariableFactory Interface ... 10

BUILDING OBJECTS .. 11
Creating, Preserving and Destroying Objects... 11
Creating an Object from a Class ... 12
Virtual Objects... 13
Prebuilt Objects ... 18
Issues When Building Objects.. 19

ACCESSING OBJECTS.. 19
USING METHODS.. 20

Definition of Methods... 20
Delegating Responsibility to another Object.. 20
Using Methods with the DO Command .. 21
Methods and Evaluating Expressions.. 22
Using Static Methods ... 22

USING PROPERTIES .. 23
Properties and Accessors ... 23
Accessor Input Specification ... 23
Generated Events ... 25
Using Accessors.. 25

USING EVENTS ... 34
Definition of Events... 34
The Event Cycle .. 35

How an Object Watches for Events .. 35
How Events are Triggered... 36
How the Event Notification is Terminated... 36

USING RELATIONSHIPS .. 37
CREATING AND DESTROYING OBJECTS ... 37

Object Life Cycle ... 37
Object Creation.. 38
Object Preservation ... 40
Object Protection... 40
Object Destruction... 41

USING CLASS LIBRARIES ... 44
Absolute and Virtual Libraries .. 46

INTEGRATING OBJECTS ... 47
ELEMENTS OF INTEGRATION.. 47

Object Contracts .. 47
Object Responsibilities .. 47

HOW TO INTEGRATE OBJECTS ... 47
Grouping Integration... 47
Event Based Integration... 49
Relationship Integration .. 54

GUIDELINES FOR USING OBJECTS.. 56
OBJECT LIFE CYCLE... 56

Object Creation.. 56
Object Lifetime... 57
Object Destruction... 61

ADDING INTERFACES TO AN OBJECT ... 64
OBJECT NAVIGATION... 65

Creation ... 66
Nesting ... 66
Data Sources.. 66
Events and Messages ... 68
Domain Names... 69

DEFINING OBJECTS .. 69
The Types of Classes.. 69
Inheritance... 70
Multiple Inheritance .. 71
Overriding.. 73
Message Searching .. 73
Building the Class Hierarchy .. 74
Avoiding Multiple Inheritance Conflicts.. 75
Resolving Multiple Inheritance Conflicts .. 75

PART 3: REUSEABLITY... 76

USING COLLECTION CLASSES.. 77
WHAT ARE COLLECTION CLASSES? .. 77
COLLECTIONS PROTOCOL .. 77

Collections Hierarchy.. 77
Collection Class... 78

Set Class... 80
Bag Class ... 81
Array Class .. 83
List Class ... 83
Dictionary Class .. 84
Log Class ... 86
Map Class .. 87
MultiMap Class.. 90

CHOOSING A COLLECTION CLASS.. 93
CREATING COLLECTION OBJECTS ... 94
MANIPULATING COLLECTION OBJECTS... 95

Collection Life Cycle ... 95
Accessing all Elements in a Collection.. 96
Iterators ... 96
Using Iterators... 104
Collection Operations.. 113

USING IMMUTABLE CLASSES ... 117
WHAT ARE IMMUTABLE CLASSES?.. 117
IMMUTABLE PROTOCOLS ... 117

Immutable Hierarchy... 117
Immutable Class .. 117
Date Class.. 117
Interval Class... 117
Mvariable Class... 117
NameValuePair Class.. 118
Time Class ... 118
TimeRange Class ... 118
TimeStamp Class.. 118

USING THE DATAMANAGER CLASS .. 119
WHAT IS A DATAMANAGER CLASS? ... 119
CREATING AND DESTROYING A DATAMANAGER OBJECT .. 119

Creating a DataManager... 119
Destroying a DataManager ... 120

THE DATAMANAGER INTERFACE .. 120
Class Property ... 120
ControlsData Property .. 120
CreateElement Method .. 121
InsertElement Method.. 121
RemoveElement Method .. 122
Cardinality Property.. 122
SelectMatches Method ... 123
Keys Property .. 123
AddKey Method.. 123
RemoveKey Method ... 124

USING CRITERIA CLASSES... 125
WHAT ARE CRITERIA CLASSES? .. 125
CRITERIA PROTOCOL ... 126

Citeria Hierarchy... 126

Criteria Class... 127
USING MIX-IN CLASSES... 138

WHAT ARE MIX-IN CLASSES?.. 138
ADDING INTERFACES USING MIX-IN CLASSES.. 138

Accessing Interfaces .. 138
Major Interface.. 139

PART 4: EXTERNAL INTERFACE .. 143

EXTERNAL CALL INTERFACE... 145
INITIALIZATION.. 145
API INPUTS .. 145

CREATE... 145
INVOKE... 146
SETPROP .. 147
GETPROP.. 147
DESTROY .. 148

 i

Introduction
This guide is designed to assist the EsiObjects programmer build object oriented
application systems. It contains the following:

• An overview of EsiObjects.

• Information on how to use the EsiObjects tools.

• How to call EsiObjects from an external M environment.

• Using objects within the EsiObjects environment.

• Description of all database, collection and bulk transfer reusable classes.

• How to integrate objects into an application.

• How to use objects.

Document Convention
EsiObjects documentation uses the following typographical conventions:

For more information on
this subject please refer to
the BREAK Command
section of this Guide.

Underlined text is used to highlight a reference to
another section of this manual or another guide.

Property In text, italicized words indicate defined terms that
are usually used for the first time. Words are also
italicized for emphasis.

CREATE Words in bold and capitalized are EsiObjects
commands or keywords.

Set T%Test=I%Pat.Name This font is used for code examples.

 Client Server Overview 1

Part 1: Client Server OverviewPart 1: Client Server OverviewPart 1: Client Server OverviewPart 1: Client Server Overview

 Client Server Overview 2

EsiObjects Overview
EsiObjects (pronounced ‘easy objects’) is an object oriented database system that runs on
the most popular ANSI, FIPS and ISO standard MUMPS (M) systems: DSM, MSM,
GT.M and Cache.

Illustrated below are some possible multi-tier EsiObjects configurations. The major
components of the EsiObjects system reside on the server tier. They are the EsiObjects
Runtime Module and TCP/IP Gateway.

 Client Server Overview 3

The EsiObjects Runtime Module contains all the components of a state-of-the-art object
oriented database system. This module contains support for the Class Development
Environment and all Application Runtime Environments. It implements:

• A robust, comprehensive object model implementation based on the Smalltalk class
model. This model implements all the concepts required of a full object oriented
system, particularly, encapsulation, inheritance and polymorphic behavior.

• A compiler that implements the 1995 ANSI standard M language and EsiObjects
language extensions in support of the object model.

• Numerous linguistic enhancements that evolve the M language into a powerful object
oriented language that supports persistent or nonpersistent objects.

• Concrete and virtual libraries are supported to partition classes for convenient access
and transfer.

• Full support for the Class model including single and multiple inheritance as well as
nested classes.

• Class services partitioned by specific interfaces. Method, property, relationship and
event object services that can be used to implement a new application based on real
objects or virtual objects that wrap existing M data.

• Full variable scoping that enforces encapsulation, a fundamental requirement of
object orientation.

• Bi-directional message service that permits communication between objects. These
services include all public class interfaces that allow access to an object’s methods,
properties and relationships.

• Complete event handling model that permits objects to watch for events that are fired
by other objects. The event-handling model is based on a built-in callback mechanism
that is available to the programmer as well.

• Numerous predefined classes such as Collections (Lists, Arrays, Set, etc.),
Immutables (time and date stamps), Data Manager, etc. that accelerate development
through reuse.

The TCP/IP Gateway implements an object oriented API into the EsiObjects Runtime
Module. It supports all valid message protocols needed to invoke an object’s services. It
provides the foundation support needed to implement the more sophisticated forms of
connectivity supported by EsiObjects. It also provides direct, simple connectivity via
ActiveX controls. The COM proxy, Java proxy and CORBA ORB communications
components enable applications to run in multi-tier Client Server or Internet based
configurations.

Class Development Environment
The diagram below illustrates the Class Development Environment that runs on any
Windows NT, 2000 or 98 PC. The Class Development Environment is designed to

 Client Server Overview 4

expedite the development of classes. Variable declaration as well as method, property,
event and relationships are developed through editors and wizards. It provides the
programmer with all the tools needed to rapidly develop applications.

The EsiObjects Class Development Environment (CDE) implements all the necessary
browsers and tools needed to implement an object oriented application.

The CDE activity is directed to the server side implementations through a Session
Control module. The Session Control module supports connections to multiple server tier
M implementations that are running the EsiObjects Runtime module and TCP/IP
Gateway. The programmer can have any number of sessions active at once.

It is important to understand that the client and the server tiers of EsiObjects run
independently of each other. They are loosely bound to permit interoperability between
different M environments.

Central to the CDE is the Session Browser. It provides access to all libraries and work
folders contained in connected sessions with full drag and drop features expected in a
modern object oriented development environment. The CDE contains sophisticated
Search/Edit functionality as well as an Interactive Debugger and Object Browser. It also
provides Export and Import facilities for the transfer of class libraries and all of their
components as well as access to traditional Global and Routine facilities.

 Client Server Overview 5

The On-line Help facility of EsiObjects contains all documents needed to use EsiObjects
including an on-line Getting Started Tutorial.

Application Runtime Environments
Illustrated below are the various application runtime connections that are possible with
EsiObjects.

On the right is a DSM Server running the EsiObjects Runtime Module, TCP/IP Gateway
and a CORBA ORB.

At the top of the diagram is a Microsoft Web Server that contains an Active Server Page
(ASP). Within that server page is a COM proxy that permits connectivity to the server
side via the TCP/IP Gateway. Active Server Page implementations are accessed via Web
Browsers running on a client.

The next diagram down is a simple TCP/IP connection to the server side via an ActiveX
control. This control can be used within any popular GUI development environment such
as Visual Basic, Visual C++, Delphi, etc.

Next is a client that is running a client ORB that communicates to the ORB running
within the EsiObjects environment.

At the bottom of the diagram is the EsiObjects Java Proxy that runs within an server page
on an Apache Web Server.

EsiObjects supports multiple middleware implementations. The COM and Java proxies
can run in diverse environments.

 Object Lifecycle Issues 6

Part 2: Object Lifecycle IssuesPart 2: Object Lifecycle IssuesPart 2: Object Lifecycle IssuesPart 2: Object Lifecycle Issues

 Object Lifecycle Issues 7

Using Objects
What is an Object?
The diagram below illustrates an object (instance) that was created from the class on its
right. An object is a discrete entity that contains data in the form of variables. The
combined nature of the data gives the object its state. It can be viewed as a symbol table.

Classes are special objects that contain all the definitional information needed to create
the instance. When an object is created from a class, it is assigned a unique identifier
called an Object Identifier (OID). This gives an object identity. Instances always contain
a internal pointer to the class that created them. This pointer provides a way for the
instance to know what services are available to it. EsiObjects supports the following
services: Methods, Properties, Events and Relationships. These services are partitioned
into interfaces. Methods are code bodies that give the object its behavior. Properties are
used to expose the state of the object to the outside. Relationships are used to form links
between objects so that they may collaborate with each other. Events may be used to alert
other objects of a state change for example.

Hidden from the object user are other things a class is responsible for. The class knows
how to create Variables. Each class has a documentation object associated with it. When
relationships are defined, they may be one to many and require Collection objects to hold
the objects pointed to. This definitional information is stored in the class. Additionally,
Nested classes are pointed to if they exist.

When accessing an object's data it must be accessed via a method or property in the
object's interface. Because encapsulation is enforced in EsiObjects, it cannot be accessed

 Object Lifecycle Issues 8

directly. Only the methods or properties in the object interface can access the data.
Entities that are external to an object (other objects or API's) can communicate with it via
messages, thereby indirectly accessing or modifying its data.

The following is a description of the internal characteristics of an object.

Identity The identity of an object is a unique identifier that contains the
object's location or address. The Object Identifier (OID)
represents identity in EsiObjects. The OID of an object is a
unique address that defines its exact location. The OID is
externally accessible to other objects and can be thought of as a
handle to the object. To send a message to an object, you can
specify any symbol that contains the OID of an object as the
target of a message.

State State is the collective value of the object's data. All data in an
object and the current values of that data refer to the object's state.
If you change the data values, the state of the object changes.

Behavior Behavior is the interaction with an object. The behavior of an
object is defined by the actions an object can exhibit. From the
perspective of an object user, the behavior of an object is exposed
through its interface. The behavior of an object can result in any
of the following:

• A state change

• Message generation

• Event generation

The following section(s) describe the object interface. For more information about mes-
sages and events, see the section Guidelines for Using Objects in the guide.

Object Interface
The object interface is where object’s services are found. It contains the methods,
properties, relationships and events supported. The interface is the external view into an
object. The following are the elements that make up the object interface:

Methods Methods perform operations that give the object its behavior. A method is
a body of code that performs an operation and may or may not return a
value.

 Object Lifecycle Issues 9

Properties A property is an external representation of an internal state of an object.
Properties reflect the state of an object and are used to modify the state.
Properties provide a safe mechanism so the state of an object can be
exposed to the outside world. Properties represent something that a user
expects to be a part of an object's physical state, but they are not bound
directly to the physical state. The various ways to access the object state
(assign, lookup, and so on) can be limited on a property-by-property basis
via the implementation of property accessors. Accessors are special
methods.

Events An event is something that happens at a given point in time. Objects use
events to communicate to interested parties without knowing who they
are. All interested parties take out a watch on a particular event. When an
object fires that event, the watching objects are informed of its firing
through an established callback mechanism that the watcher specified.

There are two major forms of events:

• Generalized events indicate that some element of the object has
changed (not necessarily its state).

• Property events indicate that the state (value) of a property is
changing.

Relationships A relationship is a way for objects to know about each other. A
relationship has Cardinality, that is, an object can have a relationship
established with one and only one other object (one-to-one cardinality) or
a one-to-many relationship. Additionally, inverse relationships can be
established to make sure the known object knows who know it.

Objects react to requests through their interface and also notify the outside world when a
certain criteria in its state have been met.

The previous shows the Primary, Factory and Admissions interfaces for an object. The
Primary and Factory interfaces are significant and will be explained in more detail.
Within the EsiObjects Class Development Environment, you as a programmer can create
any number of interfaces within a class.

Primary Interface
The primary interface may contain a set of methods, properties, relationships and events
that are exposed by an object and accessed by a calling object directly or indirectly. The
primary interface is the default interface to the object. When a class is first created only
the Primary interface is created. Other internal structures and objects are created at that
time all well such as Variable and Documentation objects.

Objects communicate with each other via messages. The message syntax contains the
path to a specific item (property, method or relationship) within an interface. The
structure Object.[Interface::]Item[(parms…)] represents the general message syntax of

 Object Lifecycle Issues 10

EsiObjects. Item is the property or method name. (parms…) is a list of optional
parameters. Interface is the optional name of the interface the item exists in. Object is
the OID of an object (associated with a class) that is receiving the message.

Making a reference of Object.Item assumes the Primary interface is being used.

Other interfaces can be added to the object to partition its functionality. Often these
interfaces are used to hide detail not normally of concern to a general user of the object.
Other interfaces also can be used as a mechanism to ensure some common protocol
contract.

Factory Interface
The factory interface contains class level methods, properties and events that are exposed
explicitly through the message syntax. The factory interface may contain four methods of
interest.

CREATE If the CREATE method exists at the time an object is instantiated,
it will be executed immediately after the object is created. The
name must be spelled correctly and in uppercase. It is useful for
initializing the state of an object.

DESTROY If the DESTROY method exists at the time an object is destroyed,
it will be executed before the object is removed from the system.
The name must be spelled correctly and in uppercase. It is useful
for cleaning up around the object before it is destroyed. It can also
be used to abort the destruction of the object based on some
internal or external condition. See the EsiObjects the DESTROY
command in the EsiObjects Language Reference Guide for more
information.

InitAllSysVars The variable editor creates this method when an instance variable is
declared as Initialized (created at object creation time). This
method replaces the old InitSysVars. The InitAllSysVars does a
full compile of variables up the inheritance tree at compile time.
They old method was forced to search at runtime with the Knows
message keyword which created performance problems.

InitClassVars The variable editor creates this method when a class variable is
declared as Initialized. The programmer may insert extra code to
enhance initialization.

VariableFactory Interface
The variable editor inserts this interface when a variable is created as dynamic (created
the first time it is referenced). A method is inserted into this interface with the same name
as the variable. The method will contain generated initialization code that is executed
when the variable is first referenced. Additional initialization code may be added to this
method to enhance the initialization of the variable.

 Object Lifecycle Issues 11

Building Objects
The following sections describe the mechanisms available for building objects.

There are two, general types of objects:

• Real

• Virtual
The majority of objects are real Real objects that contain data and consequently maintain
state. However, Virtual objects are much more lightweight. Virtual objects are simply
OID’s that contain information its services need to perform their operations. They can not
store data. Virtual object have classes and services like any real object. They are often
used to access structures external to EsiObjects (such as M globals, or text files), or
information that can be produced by the system (such as a representation of the time or
date).

Creating, Preserving and Destroying Objects
The CREATE command is used to create an object. The DESTROY command is used
to destroy an object.

The timing of object creation can be important depending on the type of object involved
and the relationships that the object is to form.

Every object that is created can be destroyed. Generally, when you finish with an object
you should invoke the DESTROY command for that object. This literally destroys the
object if the internal reference count is less than 1, and it can no longer be accessed. The
internal reference count can be incremented using the PRESERVE command. Any other
object that has access to it can preserve the object using this command. This ensures that
the object will not disappear before the preserving object has finished with it.

You can create the following types of objects:

Type Description

Private Private objects are not designed to be passed outside the process.

Shared Shared objects are meant to be shared among multiple users.

Child A child object has the same access (shared or private) and life span
attributes as its parent. The default in EsiObjects is to create child
objects.

Stack The object is created within the current call frame. This type overrides
all other types. This means that the object does not have to be
explicitly destroyed. It will disappear when the current call frame is
popped from the stack.

 Object Lifecycle Issues 12

These types of object are created with the CREATE command by specifying the specific
keywords.

It is valid for private objects to have shared components. However, shared objects cannot
have private components. This prevents integrity errors, whereby a shared context might
reference a nonexistent private context.

Creating an Object from a Class
You can create objects (instances) of a class with the CREATE command. When you
create an object you are creating a new instance of the class. The object is created imme-
diately and is initialized to the state you specify with the CREATE command (using
parameters and initialization properties).

The CREATE command lets you accomplish the following:

• You can control the initial state of the object.

• You can ensure that the object is created from a specific class.

• You can control the core attributes of the object (for example, shared or child).
For more information about the CREATE command, see the description in the EsiObjects
Language Reference Guide.

Requirements for Building an Object from a Class

To build an object from a class, the following requirements must be met:

• The class must exist (you must be able to see the class using the Library Browser).

• You need sufficient resources (disk space and memory) on your system.

Issues When Creating an Object from a Class

The first thing to decide when creating an object is to identify what type of object you
want to create. The type of object to create depends on the requirements of your
application and depends on the capabilities of the various classes available to you.

Normally an object is created as a child object of the defining object context, which
means that an object normally survives until the creating object is destroyed. If the object
is going to be shared outside the current context, then use the Share=1 keyword with the
CREATE command.

You must determine the initial state that the new object should be in when it is created.
This might be as simple as determining the object's defaulted state or as complex as
specifying initial contents, relationships, or limits. Specifying the appropriate creation
parameters and the initial properties sets the initial state. Note that some properties can be
assigned only during object creation.

 Object Lifecycle Issues 13

Examples

The following example shows how to create an instance of a Set that resides in the Base
library.
CREATE T%Items=Base$Set

The following show how to create an Address object, passing it a parameter containing a
default state. The parameter will be accepted by the CREATE factory method. It will use
it to initialize the I%State instance variable to "MA"
CREATE I%CustAddr=Framework$Address("MA")

Alternatively, the following example shows how to use the concept of a property to
accomplish the same thing. The CREATE accessor would accept the value "MA" as a
parameter and bind it to the I%State instance variable.
CREATE I%CustAddr=Framework$Address::(State="MA")

The following example shows how to create an object that will wrap an external file
named test.tmp. The object is persistent.
CREATE I%File= Base$AbsSerializationObject:(Share=1):(Name:"test.tmp")

Virtual Objects
Virtual objects, frequently used to build an object representation of external information,
are objects that have no instance variables. The state of the object is represented by the
external structures or entities it wraps. A classic example of this is a "wrapper" object
that is typically used to provide an object representation for data in legacy M globals.
However, virtual objects might be created for anything external to EsiObjects, such as a
text file at the operating system level. The M language's $H special variable is also
"wrapped" by the EsiObjects Base$TimeStamp class, which represents the primitive $H
format with a rather sophisticated object interface.

Virtual objects encapsulate only a single string's worth of data, stored in the
$ZVIRDATA special variable which is available to all services of the class that creates
the virtual object. This value must be assigned by the object's CREATE method; it
cannot be changed later on, once the object has been created. This limits the application
of virtual objects to those cases where there is no need to extend the object in the future.
They are used to wrap the data as is, providing a façade that has the standard EsiObjects
interface but no instance variables (way to store state).

Virtual Object Creation and Destruction

To designate a class as virtual, the class property Virtual must be checked on (in the
Class's property sheet), and the class must have a unique Virtual ID. Uniqueness of
virtual ID's is not enforced by EsiObjects. It is your responsibility to pick a unique ID in
the range 1025 to 65024.

 Object Lifecycle Issues 14

Virtual ID's used by ESI are in the range between 1 and 1024. To use the numbers in this
range, you must be signed on with the /Admin or /ESI EsiObjects command line
qualifiers.

Virtual objects are created from classes, just like any other object, by using the CREATE
command. All virtual objects require a CREATE method in their factory interface; it is
the task of this method to assign the $ZVIRDATA special variable's value. Note that the
virtual object cannot have instance variables; its only internal data must be stored in
$ZVIRDATA, and this value can never change after the object has been created.

Please note that the DESTROY object has no effect on a virtual object, because virtual
objects have no symbol table to be removed. (Of course, the virtual object can
implement a DESTROY method that will destroy its target data.) The only way to
remove a virtual object is to KILL the variable containing the handle to the virtual
object.

However, it may be inappropriate for one object to make assumptions about whether
another is real or virtual. For example, a certain class that is virtual today may become
an real class in the future. So a reasonable precaution, when eliminating an object, is to
both DESTROY it and KILL the variable containing the handle to the object. If you
want to eliminate the handle but have no intention of destroying object's encapsulated
data, then simply KILL the variable containing the handle to the object. In the case, you
must make sure that the object is indexed so it does not get lost in the system.

Finally, note that if a variable containing the handle to an object is scoped within the
current method (i.e. T% or P% variables), then the variable will be destroyed
automatically when the method terminates. However, this may not result in the
automatic destruction of any real object being referenced by it.

Requirements for Building a Virtual Object

How can you tell whether to use a virtual or an real object? Since its data or reference to
data is contained within the $ZVIRDATA string, a virtual object is very lightweight, and
virtual objects sometimes enjoy a performance edge over real objects. However, the data
string or reference contained by the virtual object is static; it can never change, once the
object has been created. This is the primary criterion in determining what kind of object
to use.

It is critical to keep in mind that a virtual object does not have access to any dynamic
encapsulated data: although it can make use of EsiObjects language features, it cannot
use instance variables.

The EsiObjects TimeStamp class illustrates one way to use a virtual object. It is used to
represent a single $H date/time value. It implements properties such as Date and Time,
which return a formatted string rather than an encoded $H number. It also implements
properties such as Day and Month, which return the day within a month, and month
within a year. Each of these properties is calculated dynamically, based on the value of

 Object Lifecycle Issues 15

$ZVIRDATA. All of them implement value accessors; none can be assigned. If you
would like to see the implementation details of this somewhat intricate class, you can
browse the class Base$TimeStamp.

What if you wanted to create an object to represent an ASCII text file in the host
operating system? A virtual object might be feasible in this case—$ZVIRDATA could
contain the file's name, and standard input/output commands could be used to interact
with the actual file. One critical issue would be managing device identifiers for use in
input/output operations. A problem would occur, however, if it became necessary to
support the operation of renaming the file. In that case, the virtual object would become
invalid as soon as the file was renamed. Thus, a virtual object might be appropriate in
some cases, but not others.

By definition, virtual objects do not have instance variables. Although you can create
instance variables for a class that has been marked virtual, they have no meaning in an
executable context.

Virtual Objects Example

Patient File Example—Global Structure

2

321

^PAT

“Andrew Smith”102101

“S”

2

“012-98-7777”

“N”0

Global "wrapper" objects are the classic examples of virtual objects. Let's imagine an
(extremely simplified) legacy M global database, containing patient data. The following
global listing shows the global with only three patients.
^PAT(0)="3"

^PAT(1,101)="Doe, Jane W^123-45-6789^F"

^PAT(1,102)="22 Beacon St.^Boston^MA^02134"

^PAT(2,101)="Smith, Andrew P^012-98-7777^M"

^PAT(2,102)="33 Water St. #222^Texarkana^TX^54321"

^PAT(3,101)="Aaron, Greta^999-99-9999^F"

^PAT(3,102)="99 Ward St.^Waitsfield^VT^05673"

^PAT("N","Aaron, Greta",3)=""

^PAT("N","Doe, Jane W",1)=""

^PAT("N","Smith, Andrew P",2)=""

^PAT("S","012-98-7777",2)=""

^PAT("S","123-45-6789",1)=""

^PAT("S","999-99-9999",3)=""

 Object Lifecycle Issues 16

Each patient in the file is represented by a sequentially numbered array node (1 through
3). As new patients are added, they will receive higher numbers, i.e. the next patient will
go under ^PAT(4). The global implements two cross-references, "N" for names and
"S" for social security numbers.

Each patient entry in the global spans two array nodes, 101 and 102, each having its own
$PIECE layout. The format of node 101 is Name^SSN^Sex, and of 102 is
Street^City^State^ZIP.

Patient File Example—PatientFile Object

2

321

^PAT

“Andrew Smith”102101

“S”

2

“012-98-7777”

“N”0

PatientFile Object
“^PAT”

The Patient Global ^PAT, shown in the previous section, is wrapped by two classes of
virtual objects. The first class, PatientFile, represents the patient file as a whole, and the
second, Patient, represents a single patient object.

The $ZVIRDATA special variable of the PatientFile object contains a global reference
to the root of the file—"^PAT". This object is responsible for managing the overall
file's global structure, and for providing access to virtual Patient objects representing
data within the file.

If an external object requests access to an individual patient, the PatientFile creates a
virtual Patient object to represent this data, as follows:

;Property - Rapper$PatientFile - Primary::Patients(Value)

; Return matching virtual Patient object, or "" if there is no such

;patient.

Input: (

P%Ssn ; SSN is input.

)

IF $get(P%Ssn)="" QUIT "" ; SSN must not be null.

SET T%Id=$order(@$ZVIRDATA@("S",P%Ssn,""))

IF T%Id="" QUIT "" ; No such SSN on file.

SET T%PatientGlobal=$name(@$ZVIRDATA@(T%Id))

CREATE T%Patient=Rapper$Patient(T%PatientGlobal)

QUIT T%Patient ; Return patient object.

Note: If the same request is made again later, the process will be repeated with no
problems—remember, virtual objects do not contain data; therefore two identical virtual
objects are no different from one virtual object.

 Object Lifecycle Issues 17

Patient File Example—Patient Object

2

321

^PAT

“Andrew Smith”102101

“S”

2

“012-98-7777”

“N”0

Patient Object
“^PAT(2)” PatientFile Object

“^PAT”

In this example, the Patient object represents a single patient's information. Its
$ZVIRDATA special variable contains a global pointer to the array node where the
patient's data is stored. For example, a patient named Andrew P. Smith's information is
stored under ^PAT(2):
^PAT(2,101)="Smith, Andrew P^012-98-7777^M"

^PAT(2,102)="33 Water St. #222^Texarkana^TX^54321"

Normally it is the responsibility of the PatientFile object to create virtual Patient
objects. For testing purposes, however, this object might be created with the following
CREATE command from the Xecute Shell:
CREATE I%TestPatient=Rapper$Patient("^PAT(2)")

The CREATE command shown above invokes the Patient class's CREATE method,
which might look as follows:

; CREATE method for Patient object.

Input: (P%Global) ; Input is the global location.

set $ZVIRDATA=P%Global

quit

Notice how simple this is: since virtual objects don't contain any data, it's really not
much work to create one.

It is beyond our scope to show all the implementation details of this imaginary Patient
class. But let's suppose that the virtual Patient object implements a separate property for
each of the fields in the database's Patient record. In that case, the Value accessor of the
City property would look like this:

;Property - Rapper$Patient - Primary::City(Value)

Input:(

P%Subs...

)

;

IF P%Subs QUIT "" ; No subscripts allowed.

QUIT $piece($get(@$ZVIRDATA@(102)),"^",2)

 Object Lifecycle Issues 18

The above accessor method is invoked whenever the virtual Patient object's City
property is referenced. The Assignment accessor of the City property would look like
this:

;Property - Rapper$Patient - Primary::City(Assign)

Input:(

P%Value,

P%Subs...

)

;

IF P%Subs QUIT 0 ; No subscripts allowed.

SET $piece(@$ZVIRDATA@(102),"^",2)=P%Value

QUIT 1 ; Successful completion.

The above accessor method is invoked whenever the virtual Patient object's City
property is assigned with the SET command. (Setting data into a database using the
Assign accessor assumes that the data has been validated and normalize, if required.)

Note: Certain properties of the Patient object, such as Name, exist both in the patient
record, which is the responsibility of the Patient object, and in the global's indexes,
which are the responsibility of the PatientFile object. The assignment accessor of the
Name property must therefore involve communication between two virtual objects.
Strategies for dealing with such cases are beyond the scope of this discussion. In general,
however, the Patient object will need to generate a virtual PatientFile object for the
purposes of such communication.

Prebuilt Objects
Prebuilt objects are objects that you do not have to build. There are two types of prebuilt
objects:

Persistent objects Persistent objects are always resident and are always
available. EsiObjects supplies some persistent objects. Also,
you can create your own persistent object by using the
Share=1 option on the CREATE command.

System-defined objects System-defined objects are provided with EsiObjects. The
following special variables point to examples of system-
provided prebuilt objects:

• $ENVIRONMENT
• $LIBRARY
• $SELF
• $SYSPOOL

For more information about these special variables, see the
Special Variables section of the EsiObjects Language
Reference Guide.

 Object Lifecycle Issues 19

Issues When Building Objects
Generally it is the responsibility of the creator of an object to ensure that it is deleted
when it is no longer in use. The exception is objects that are creating objects on behalf of
other objects (for example, factories). Under some circumstances, a factory can retain
ownership of the objects it creates.

You can reference objects only while they are still alive. Object creation is not a guaran-
teed operation and can result in a run-time error. An error occurs most often as a result of
resource depletion or mismatched parameters. Checking on the existence of an object can
be accomplished using the $EXIST or $INFO functions. For more information about
these functions, see the Functions section of the EsiObjects Language Reference Guide.

By default all objects are created with a sharing context equal to the context of the
object's creator. For applications, which generally last for the life of the process, an object
is created with the keyword Share=0 (local to the process and not persistent) option with
the CREATE command by default. If the object is to be shared (by either saving a
pointer to it in a global or by using the Share=1 option), then it should be created with the
Share=1 option. There is no mechanism to alter the Share state of an object. Persistent
objects are stored in M globals and non-persistent objects are stored in local arrays.

When you no longer need an object, use the DESTROY command to destroy the object.

Accessing Objects
Sending the object a message accesses an object’s services. A message typically requests
an object to do something. The object performs the operation if it exists within its
interface. If the service returns a value, it will be sent back to the object.

The following are ways to access an object:

• By action - This form of access is a request to perform some action. It is always an
invocation of a method, usually by using the DO command, for example:

DO T%Obj.InsertElement(T%Element)

• By value - This form of access is a request for some information from an object. The
request is either a property or a method that calculates a value and is invoked in an
expression, for example:

SET T%V=T%Obj.Name

• By chained access - This form of access is executed from left to right. The following
are examples:

DO T%List.FindPatient(“Doe, John”).Sex

SET T%V=T%List.FindPatient(“Doe, John”).Sex

In the example above, the T%List temporary variable contains the OID of a list object
that contains a list of patients. The FindPatient method is a service on that object that
looks up the patient specified as the parameter and returns the OID of the patient. That
OID is then used to access the Name property on the patient object returning the patients
Sex.

 Object Lifecycle Issues 20

When objects are accessed, parameters may or may not be used. This depends on the
request.

The following example shows how to access an object by action. First a customer list
object is created using the List collection in the Base library. Then an element is added to
the List object using the InsertElement method.
CREATE I%CustList=Base$List

DO I%CustList.InsertElement("ACME Tool Company")

The following example shows how to access an object by value. Using the object created
in the last example, the Cardinality value is returned.
SET T%Card=I%CustList.Cardinality

Using Methods
Definition of Methods
A method is a code body that performs some operation for the object and may or may not
return a value to its caller via the $RETURN special variable. Methods are created and
reside within an interface.

Delegating Responsibility to another Object

Often in object oriented programming it is necessary to create façade objects that hide
complex operations. These façade objects typically collaborate with other objects that
share in the façade objects responsibility to the calling object. Although the façade object
is totally responsible to the calling object, it may very well delegate that responsibility to
another object. The problem at this point becomes, how do you transfer all the
information passed into the object to the helper object. EsiObjects supports the following
two ways to do this:

• The GOTO Command

• The $DELEGATE function

Delegating Responsibility using the GOTO Command

The GOTO command is used to invoke a method by unilateral delegation, transferring
control to a method of an object. The GOTO command can be useful when the current
method wants to delegate to another object, or to another method of the same object.
(Many programmers prefer to avoid GOTO to a label within the body of a method or
routine, but delegation is a different case.)

The following is the syntax for invoking a method with the GOTO command as a form
of delegation:

 GOTO Object.Method

 GOTO Object.Method(Parameters)

 Object Lifecycle Issues 21

The following example shows how to delegate a request to the parent object.
GOTO I%Parent.Request(P%Param1)

Using the GOTO command to unilaterally pass control to an object means that control
will not be returned to the object like it would be if you used the DO command.
Additionally, using the GOTO command for delegation forces you to select and pass the
proper parameters. There is additional overhead in this approach. However, if delegation
to another object simply means passing the entire context of the current object to another
object, you should always use the $DELEGATE function This approach is explained in
the next section.

For more information about the GOTO command, see the EsiObjects Language
Reference Guide.

Delegating Responsibility using the $DELEGATE Function

The $DELEGATE function has been specifically implemented in EsiObjects to make
the process of delegating an object’s call context to another object simple and fast.

Assume that you have a method that is merely a façade and its responsibility is to pass
the caller context to a helper object that is actually responsible for processing the request.
The simplest approach is to use the following construct:
Quit $Delegate(T%HelperObject)

The temporary variable T%HelperObject contains the OID of the helper. This construct
simply passes the entire calling context (via an internal pointer switch) to the current
context making it available to a method of the same name in the helper object.

Sometimes it is necessary for the façade object to do some processing based on what the
helper object has accomplished. In this case the responsibilities are shared. The following
construct can be used in this scenario:
Set T%Results=$Delegate(T%HelperObject)

In this case, T%Results variable would contain any return value for further processing.

Using Methods with the DO Command

Usage

Invoking a method with the DO command is useful when you want an object to perform
some operation but you do not care about any possible return values.

The following is the syntax of the DO command when invoking a method:

 DO Object.Method

 DO Object.Method(parameters)

For more information about the DO command, see the EsiObjects Language Reference
Guide.

 Object Lifecycle Issues 22

Examples

The following example asks an object to update its current state.
DO T%Object.UpdateData

The following example shows how to have an object move across the screen.
FOR T%X=1:1:200 DO T%Graphic.MoveTo(T%X)

Methods and Evaluating Expressions

Usage

Methods also can be invoked in the context of an expression. These types of methods
return a value. The value returned is generally one of the following:

• Success code

• Result
The following is the syntax for invoking a method as an expression:

 SET T%Vat=T%Object.Method

 SET T%Vat=T%Object.Method(Parameters)

Methods invoked as an expression return a value. This value is related directly to the
requested operation. For some methods, the value is a success code that indicates if the
operation could be done. For other methods, the return value is the result of the operation,
which can vary from simple scalar data to a reference to an object.

For more information about evaluating expressions, see the Using Expressions section of
the EsiObjects Language Reference Guide.

Examples

The following example opens a file with the requested file name.
IF 'T%File.Open("test.tmp","R")

DO $ENVIRONMENT.Assert("Cannot open test.temp")

The following example finds the number of elements in a collection.
SET T%Total=I%MySet.Cardinality

Using Static Methods
Static methods are methods that can be executed without making reference through an
instance of a class. The method can be executed by referencing the class directly. Static
methods are useful where entry point objects bound to a domain variable (O%) are
typically required. To access a static method, you must declare it as static. That can be
done by bringing up the property sheet on the method and clicking the Static checkbox on
the General tab sheet.

 Object Lifecycle Issues 23

Examples

Normally an entry point object would be bound to a domain variable (O%). For example,
assume you had a Database object bound to O%Database and you wanted to run the
Initialize method in the Intialization interface. You would have to do it as follows:
Create O%Database=MyLibrary$Database

Do O%Database.Initialization::Initialize

This approach is valid, however, it requires instantiating a Database object and binding it
to the O%Database variable. Additionally, if the object is a singleton, enforcing that
becomes problematic.

To avoid this, simply declare the Initialize method as Static. Now you can access it
directly as follows:
Do MyLibrary$Database.Initialization::Initialize

Using Properties
Properties and Accessors
A property expresses the outside view of the state of an object. Properties in EsiObjects
are subdivided into discrete code bodies called accessors. An accessor is a special
purpose method and controls access to the state of the object. An accessor is strongly
bound to the EsiObjects language. For example, the Assign accessor is used when a
property is assigned a value via the SET command. The Value accessor is used when
property is used to produce a value. The following sections describe the different types of
property accessors supported.

Accessor Input Specification
Listed below is a table of Input specifications for each property accessor.

Accessor Input Specification

Assign Input:(Value,[P2-Pn,Pn+1…])

Create Input:(Value,[P2-Pn,Pn+1…])

Value Input:([P1-Pn,Pn+1…])

Kill Input:([P1-Pn,Pn+1…])

$Order Input:(Direction, [P2-Pn,Pn+1…])

$Get Input:(Default, [P2-Pn,Pn+1…])

$Data Input:([P1-Pn,Pn+1…])

$Query Input:(Direction, [P2-Pn,Pn+1…])

$Normalize Input:(Value, [P2-Pn,Pn+1…])

 Object Lifecycle Issues 24

$Valid Input:(Value, [P2-Pn,Pn+1…])

Each accessor has a specific structure that is explained in the Using Accessors section of
this guide. The parameters in the Input Specification must adhere to the following rules:

Rule 1

The first position in the Input Specification is reserved for those accessors that must pass
in a value in order to function appropriately. This parameter is called a System parameter.
For example, within your code you may have the following line:
Set T%Object.Name=T%Name

Where T%Object holds a person object’s OID and T%Name holds a persons name. In
this case, the compiler will generate code that will pass the content of T%Name into the
Assign accessor of the Name property. Consequently, the first position of the Input
Specification would look like the following.
Input:(

P%Value ;Value from right side of = in Set command.

)

Rule 2

If the … parameter syntax is used, it must be the last parameter in the list. The … syntax
permits the caller to pass in a list of parameters. If this syntax is used in the Input
Specification as the last parameter, this means that all parameters passed in from this
position on will be put into a list that has the name specified. For example, assume you
have the handle to an object that is a calculator and you want it to add two or more
numbers. The call to the calculator object would look like the following:
Set T%Total=T%Object.Add(1,30,900,22,4,67)

The code body of the Add method would look like this:
Input:(

P%List…

)

Set T%Sum=0

For T%Idx=1:1:P%List Set T%Sum=T%Sum+P%List(T%Idx)

Quit T%Sum

Rule 3

All other parameters must go between these two special cases if they exist.

More Examples

The following example will invoke the Value accessor of the Name property to insert the
value (Doe, John) into the Tax and Archive indices.
SET I%Index.Name("Tax","Archive")="Doe,John"

The Name properties Input specification would look like:

 Object Lifecycle Issues 25

Input: (P%Value,P%Indices…)

where P%Value will hold "Doe,John" and an array P%Indices will be created that looks
like the following:
P%Indices=2

P%Indices(1)="Tax"

P%Indices(2)="Archive"

Generated Events
Within the EsiObjects system, an object can generate events and other objects can watch
for those events. There are two accessors that generate events: Assign and Kill. Anytime
a property value is assigned or killed explicitly (or implicitly through the Destroy object
command), the appropriate event is triggered. See the Assign or Kill accessor for specific
information on generated events.

Using Accessors

Value Accessor

The Value accessor is used to find the value of a property. It is the most commonly used
accessor. Most properties implement the Value accessor. By convention the value
obtained from this accessor is also valid for the Assign accessor.

Message Syntax

The following is the syntax for a Value accessor:

 SET T%Val=Object.Property

 SET T%Val=Object.Property(parameters)

In the following example, an object is created from the Customer class and its handle is
stored in the instance variable I%Cust. Next the Value accessor of the Title property of
the Customer object is access and returns the title of the customer, binding it to the
T%CustTitle temporary variable.
CREATE I%Cust=Framework$Customer

SET T%CustTitle=I%Cust.Title

The parameters of the Value accessor are optional. It does not have a System parameter
in the first position, therefore Rules 2 and 3 are applicable.

Input Syntax

 Input:([P1-Pn,Pn+1…])

Typically the Value accessor does not have a parameter list. The simplest Value accessor
code could look like the following:

;

Q I%Title ;Simply return the value of I%Title

 Object Lifecycle Issues 26

Assign Accessor

The Assign accessor is used to assign a value to a property. Many objects allow their
properties to be assigned. The assign accessor is one means by which a variable value can
be added or modified within an object.

The Assign accessor may also be used in lieu of the Create accessor when passing
property values in on the Create command. See the CREATE command in the EsiObjects
Language Reference Guide for more detailed information.

Message Syntax

The following is the syntax for an Assign accessor:

 SET Object.Property=Value

 SET Object.Property(Parameters)=Value

The following example creates a customer object and binds it to the I%Cust instance
variable. Then the Assign accessor is invoked to set the property to the string on the right
side of the equals sign.
CREATE I%Cust=Framework$Customer

SET I%Cust.Title="ABC Widget Company"

The Assign accessor code could look like the following:
Input:(P%Title) ;Assign value comes in bound to P%Title

;Note that pass back false (setting $RETURN=0) on an Assign

;accessor forces an error.

;If a value not passed in, then force an error and return

QUIT:'$DATA(P%Title) 0

SET I%Title=P%Title ;Set the customer title to the value

QUIT 1 ;Quit indicating success

The Assign accessor requires that Rule 1 to be adhered to. The first parameter must be a
System parameter and must identify a variable to hold the value to be assigned. If the
second and subsequent parameters are specified, they must adhere to Rules 2 and 3.

Input Syntax

 Input:(Value,[P2-Pn,Pn+1…])

 Where:

 Value is the value assigned to the property.

Generated Events

Note: Setting the $RETURN special variable to 0 will force an exception to occur,
resulting in an error message.

 Object Lifecycle Issues 27

By default, the $Return value is set to 1 (true) before the accessor is executed. During the
execution of the accessor, a PRESET event is generated to alert any objects watching this
or all properties that the set is about to begin. Once the properties value has been
assigned, the SET property event is generated.

If for any reason it is determined that the set should not happen, simply setting $Return to
0 (false) or QUIT 0 will cause a SETREJECT event to be generated.

Create Accessor

Some properties of an object can be assigned during object creation. Generally, the
Create accessor is used for this purpose. If the Create accessor is not defined, then the
Assign accessor will be used.

Message Syntax

The following is the CREATE command syntax for using the Create accessor:

 CREATE Var=Library$Class::(Property=Value)

 CREATE Var=Library$Class::(Property(Parameters)=Value)

 Object Lifecycle Issues 28

The following example creates a Customer object bound to the T%Cust temporary
variable with the CreditRating property set to 1. The Create accessor will be accessed.
CREATE T%Cust=Framework$Customer::(CreditRating=1)

The Create accessor code could look like the following:
Input:(I%CreditRating=1)

;Default instance variable to 1 if not defined

;If defined on input, parameter passing will set it automatically.

QUIT

Like the Assign accessor, the Create accessor requires the first parameter to be a System
parameter. The first parameter is identifies a variable holding the value. Rules 1, 2 and 3
are applicable.

Input Syntax

 Input:(Value,[P2-Pn,Pn+1…])

 Where:

 Value is the value assigned to the property.

Kill Accessor

The Kill accessor is used when a property appears as a part of a KILL command.
Applying the Kill command on an object's property results in the execution of the
property Kill accessor. The accessor will determine what to do with the particular
property. The Kill accessor gives the programmer control over the destiny of the property
value. For example, if the property is used to manage an instance variable containing an
OID of an external object the Kill accessor can simply destroy the object or store it away
in a trash container.

Message Syntax

The following is the syntax for a Kill accessor:

 KILL Object.Propety

 KILL Object.Property(Parameters)

The following simple example illustrates how the MailStop property of an Address
instance would be deleted.
CREATE T%CustAddr=Framework$Address

KILL T%CustAddr.State

The Kill code above would invoke the Kill accessor of the State property. The code
below represents what the accessor executes. In this case it simply kills the instance
variable since it contains a pointer to a state object. The accessor could be embellished to
actually store the pointer away in an audit object before actually killing it. The Kill
accessor permits numerous scenarios.

 Object Lifecycle Issues 29

;

KILL I%State

The Kill accessor allows optional parameters and does not require a System parameter.
Rules 2 and 3 are applicable. Typically the KILL accessor does not have a parameter list.
However, it could have a parameter that specified a specific trash can object to put the an
object in.

Input Syntax

 Input:([P1-Pn,Pn+1…])

Generated Events

By default, the $Return value is set to 1 (true) before the accessor is executed. During the
execution of the accessor, a PREKILL event is generated to alert any objects watching
this or all properties that the kill is about to be executed. Once the property has been
killed, the KILL property event is generated.

If for any reason it is determined that the kill should not happen, simply setting $Return
to 0 (false) will cause a KILLREJECT event to be generated. Additionally, a DEAD
event is generated when an object is destroyed.

$Get Accessor

The $Get accessor is used to find the value of a property and provide a default if so
desired. An optional default value can be provided when the property does not have a
value. The $Get accessor is invoked when the property in used in the $GET function.
Often, the $Get accessor normalizes the default value through the default specification.

Message Syntax

The following is the syntax for a $Get accessor:

 SET Var=$Get(Object.Property,Default)

 SET Var=$Get(Object.Property(parameters),Default)

In the following example, an Address object is created and bound to the T%CustAddr
temporary variable. Then, the State property is accessed via the $GET accessor. The
default State abbreviation "MA" is passed in.
CREATE T%CustAddr=Framework$Address

SET T%State=$Get(T%CustAddr.State,"MA")

A possible $Get accessor is implemented below. The default value "MA" is passed into
the accessor code body via the T%Default temporary variable. If it was not specified, it
will default to "". If the instance variable does not exist or it is not an object, the default is
returned. If not, then the value is returned via a Key property (States are stored as shared
objects).

 Object Lifecycle Issues 30

;Note: the input default value is defaulted is not specified.

Input:(T%Default="MA")

;Return default if I%State doesn't exist or not an object.

QUIT:'$EXIST($GET(I%State)) T%Default

;Return the existing value.

QUIT I%State.Key

The $Get accessor requires a System parameter in the first position with optional
parameters following it. The first parameter is identifies a variable holding the default
value for the $Get to be applied to the property. Rules 1, 2 and 3 are applicable.

 Input Syntax

 Input:(Default, [P2-Pn,Pn+1…])

 Where:

Default value is the second argument of the $GET.

$Order Accessor

The $Order accessor is used when a property is the argument to the $ORDER function.
This often occurs when a property exposes some collection.

Message Syntax

The following is the syntax for a $Order accessor:

 SET Var=$Order(Object.Property(parameters),Direction)

Assume that a customer index object pointed to by the I%CustList instance variable
contains an array of all customers a company has. The array is stored an in instance
variable I%Index where the first subscript is the customer name and the value of the node
is the OID of the customer object.

The code below creates a CustIndex object and binds it to the temporary variable
T%CustList. It then performs a Next operation on the customer index object returning the
OID of the next customer beyond the last operation.
CREATE T%CustList=Customer$CustIndex

SET T%NxtCus=$Order(I%CustList.Next)

The following code implements the $Order accessor.
Input:(T%Direction=1) ;Default direction forward.

;Do a $Order on the I%Index array in the direction specified.

SET T%Nxt=$O(I%Index(I%LastCust),T%Direction)

;Set the last customer to the one just found

SET I%LastCust=T%Nxt

;If end of list return null, else return the IOD

QUIT $Select(T%Nxt="":"",1:I%Index(T%Nxt))

 Object Lifecycle Issues 31

The $ORDER function requires that the first parameter be a System parameter with
optional parameters to follow. The first parameter is the direction (1 for forward and –1
for backwards) of the order. Rules 1, 2 and 3 are applicable.

Input Syntax

 Input:(Direction, [P2-Pn,Pn+1…])

 Where:

 Direction is the second parameter of the $ORDER, either 1 or -1.

$Query Accessor

The $Query accessor is used when a property reference appears in a $QUERY function.
The $QUERY function traverses the leaf nodes of a tree that have values.

Message Syntax

The following is the syntax for a $Query accessor:

 SET Var=$Query(Object.Property(parameter))

Assume that a customer index object pointed to by the I%CustList instance variable
contains an array of all customers a company has. The array is stored an in instance
variable I%Index where the first subscript is the customer name and the value of the node
is the OID of the customer object.

The code below creates a CustIndex object and binds it to the temporary variable
T%CustList. It then performs a NextValue operation on the customer index object
returning the OID of the next customer beyond the last operation.
CREATE T%CustList=Customer$CustIndex

SET T%NxtCus=$Query(I%CustList.NextValue)

The following code implements the $Query accessor.
Input:()

;Do a $Query on the I%Index array in the direction specified.

SET T%Nxt=$Query(I%Index(I%LastCust))

;Set the last customer to the one just found

SET I%LastCust=T%Nxt

;If end of list return null, else return the IOD

QUIT $Select(T%Nxt="":"",1:I%Index(T%Nxt))

 Object Lifecycle Issues 32

Input Syntax

 Input:([P1-Pn,Pn+1…])

 Where all parameters are optional.

$Data Accessor

The $Data accessor is used to determine if a property exists.

Message Syntax

The following is the syntax for a $Data accessor:

 SET Var=$Data(Object.Property(Parameters))

In the following example, an Address object is created and bound to the T%CustAddr
temporary variable. Then, the State property is accessed via the $GET accessor. The
default State abbreviation "MA" is passed in.
CREATE T%CustAddr=Framework$Address

SET T%State=$DATA(T%CustAddr.State)

A possible $Data accessor is implemented below that simply returns the $Data value of
the I%State instance variable.

;Return $Data value of I%State.

QUIT $DATA(I%State)

The $Data accessor does not require that the first parameter be a System parameter. It
will take optional parameters. Rules 2 and 3 are applicable.

 Input Syntax

 Input:([P1-Pn,Pn+1…])

$Normalize Accessor

The $Normalize accessor is invoked when a property is used in a $NORMALIZE
function. This accessor is used to transform the property value from an external into an
internal value for storage. For example, the numbers 0 and 1 are often used internally to
store the external values of No and Yes or Off and On respectively. The $Normalize
function lets the programmer engage the $Normalize accessor.

 Object Lifecycle Issues 33

Message Syntax

The following is the syntax for a $Normalize accessor:

SET Var=$Normalize(Object.Property,Value)

SET Var=$Normalize(Object.Property.Value(Parameters),Value)

The following example illustrates how the $Normalize function would normalize a Social
Security Number to an internal form that does not have the hyphens embedded. First an
instance of Employee is created and bound to the T%Employee temporary variable. Next,
the SSN property of the Employee object is accessed within the context of the
$Normalize function. The $Normalize function returns the normalized value of the SSN.
CREATE T%Employee=Framework$Employee

S T%SSN=$NORMALIZE(T%Employee.SSN,"555-55-5555")

The following code implements the $Normalize accessor.
Input:(T%SSN) ;Value passed in from $Normalize function.

;The SSN is assumed to be validated to the form 3N1"-"2N1"-"4N

;Return a hyphenless SSN

QUIT $TR(T%SSN,"-","")

The $Normalize accessor requires that the first parameter be a System parameter.
Optional parameters may follow. The first parameter is the value to be normalized. Rules
1, 2 and 3 are applicable.

Input Syntax

 Input:(Value, [P2-Pn,Pn+1…])

 Where Value is the value to Normalized.

 It returns the normalized form of the value.

$Valid Accessor

The $Valid accessor is used when a property is used in a $VALID function. It is used to
determine whether a value is correct before assigning the value to a property. The $Valid
function lets the programmer engage the $Valid accessor.

Message Syntax

The following is the syntax for a $Valid accessor:

 SET Var=$Valid(Object.Property,Value)

 SET Var=$Valid(Object.Property.Value(Parameters),Value)

The following example illustrates how the $Valid function would validate a Social
Security Number. First an instance of Employee is created and bound to the

 Object Lifecycle Issues 34

T%Employee temporary variable. Next, the SSN Value property of the Employee object
is accessed within the context of the $Valid function. The $Valid function returns a truth
value if the SSN is valid. If it is invalid, it returns false and a message is produced.
CREATE T%Employee=Framework$Employee

IF '$Valid(T%Employee.SSN,”123-45-5678”)DO $Env.Assert("SSN Invalid - Try

again!") Q

The following code implements the $Valid accessor.
Input:(T%SSN) ;Value passed in from $Valid function.

;If the SSN is not in external form, then return null.

IF T%SSN'?3N1"-"2N1"-"4N Q 0

;Else return true

Q 1

The $Valid function requires the first parameter be a System parameter. It is the value to
be validated. Optional parameters are permitted. Rules 1, 2 and 3 are applicable.

Input Syntax

 Input:(Value, [P2-Pn,Pn+1…])

 Where:

 Value is the value to validate.

 It returns true if valid, false if not valid.

Using Events
Definition of Events
Event handling in EsiObjects is based upon one object (Object A) taking out a watch on
another object (Object B) for a particular state change using the WATCH command. The
watch initiated by Object A sets up a linkage between Object B and itself. It specifies a
callback entry point for processing the event. Additionally, the watching object can
specify what changes in Object B’s state it wants to detect.

At any point Object B can fire an event using the EVENT command. The event firing
may be a result of a state change or for any other reason. At any point Object B may fire
an event. Whenever an event is fired, all objects watching the specific event fired will be
called at the specified callback point.

When Object A no longer wants to be notified the event, it issues a command to
terminate the event linkage with Object B. The IGNORE command breaks the link.
Also, if either object dies, the event linkage is broken.

See also the topic How to Integrate Objects in this guide for information on using events
to integrate objects.

 Object Lifecycle Issues 35

The Event Cycle
Assume that Object A takes out a watch on an object for a particular event. The watch
specifies what method and label within the method is to be called when the watched
event is fired. The watch command is used to establish the watch.

When Object B fires the event, Object A is notified by calling of the method and label
specified by Object A. The EVENT command sends the notification and causes the
callback to be invoked.

When Object A no longer wants to be notified of the event, it issues a command to
terminate the event watch. The IGNORE command is used to do this.

Also, if either object dies, the event watch is terminated.

How an Object Watches for Events

An object watches another object for an event by using the WATCH command. The
Watch command is used to set up itself to receive a callback to an entry point when an
event occurs. The command specifies the object and event or property being watched,
and the entry point of the callback code.

The following is the syntax of the WATCH command:

WATCH object.eventname:label^methodname

WATCH object.propertyname:label^methodname

WATCH object.$EVENTS:label^methodname

WATCH object.$PROPERTIES:label^methodname

The first two are the syntax for watching for a specific event and property. The last two
are the syntax for watching for all events and all properties.

For more information about the WATCH command, see the EsiObjects Language
Reference Guide.

Examples

The following example watches an object for a PatientName event:
Watch I%NewPat.PatientName:PatName^Events

The following example shows the watching of an object for any event that occurs in the
object. Note that the callback entrypoint specifies a label name, with no method. In this
case, the label must exist in the method where the WATCH command is issued.
Watch I%NewPat.$EVENTS:PatMod

 Object Lifecycle Issues 36

The Callback Entrypoint

The callback entrypoint label specified on Watch commands must exist in the appropriate
method and must accept the correct number of parameters that the event notification will
pass.

An event notification will pass two (2) parameters plus any parameters passed on the
EVENT command.

A property notification will pass five (5) parameters.

For more information about the parameters passed on the event notification, see the
WATCH command in the EsiObjects Language Reference Guide.

How Events are Triggered
An object sends out a notification of the event by using the EVENT command.

The following is the syntax of the EVENT command:

 EVENT eventname

 EVENT eventname(parameters)

In addition, any property that is modified via the Assign or Kill accessor will
automatically generate an event notification.

For more information about the EVENT command, see the EsiObjects Language
Reference Guide.

Examples

The following example notifies the system of a PatientChange event:
Event PatientChange

The following example shows the notification of an event, and the passing of relevant
information on the notification:
IF I%PatientName'=T%NewName DO

. SET T%OldName=I%PatientName

. SET I%PatientName=T%NewName

. EVENT PatientName(T%OldName,T%NewName)

How the Event Notification is Terminated
The IGNORE command is used to break the linkage between an object and the object(s)
it is watching. The object that issued the WATCH command is the one to issue the
IGNORE command.

Also, if either object in the relationship dies, the event linkage is terminated
automatically.

 Object Lifecycle Issues 37

The following is the syntax for invoking a method with the Ignore command:

To break all event relationships with all objects:

 IGNORE

To break all event relationships with an object:

IGNORE Object

To break a linkage with an object for a specific event:

IGNORE Object.eventname

To break a linkage with an object for a specific property:

IGNORE Object.propertyname

To break a linkage with an object for all events:

IGNORE Object.$EVENTS

To break a linkage with an object for all properties:

IGNORE Object.$PROPERTIES

For more information about the IGNORE command, see the EsiObjects Language
Reference Guide.

Examples

The following example terminates the all event linkages with an object:
Ignore I%NewPat

The following example terminates the event linkage with an object for the PatientName
event:
Ignore I%NewPat.PatientName

Using Relationships

Creating and Destroying Objects
Object Life Cycle
The following are the phases in the life of an object:

• Object creation

• Object lifetime

• Object destruction
The phases of an object's life cycle are sequential and are described as follows:

 Object Lifecycle Issues 38

• During object creation, the object is created and initialized.

• During the object's lifetime, the following occurs:

− Message processing responds to requests.

− The object's state is restored from or saved to an archive or file.

− The state of the object is validated.

− Security for object requests is verified.

• During object destruction, the following occurs:

− Verification that all users are done with the object.

− Clean up of any relationships.

For more details about the object life cycle, see Guidelines for Using Objects.

Object Creation
EsiObjects offers you a flexible approach to creating object through the CREATE
command. It initializes the object according to keywords on the command. Additionally,
it provides for object referencing to insure that the object is not destroyed before it has
completed its usefulness to other objects.

CREATE Command

Use the CREATE command syntax to create an object. Refer to the Command section of
the Language Reference Guide for a full syntactic description of the CREATE command.

Examples

The following example shows how to create an Address object in its default state. The
keyword Shared=1 insures that the instance is persistent and available to other objects for
sharing. The keyword Child=1 insures that the object it is a child of the object issuing the
Create. The Base="^PATIENT" keyword changes the storage location of the instance.
All instances will be created under this global root.
CREATE I%CustAddr=Framework$Address:(Share=1,Child=1,Base="^PATIENT")

The following example shows how to create an object using creation keywords.
CREATE I%MyFile=File:(Share=1)

Using the CREATE Method

The CREATE command contains many generic capabilities that are common to the
creation of all objects. Often, however, you may want to add functionality to the
CREATE command, specializing the creation of an object. The CREATE method
performs this function.

 Object Lifecycle Issues 39

The CREATE method resides in the Factory interface of the class. The name must be
defined as uppercase. If it is defined, it will be automatically invoked at object creation
time.

If the CREATE command contains parameters, these parameters are passed to the
CREATE method of the class.

The following example creates an Address object and passes the positional parameters to
the CREATE method of the class.
CREATE T%CustAddr=Framework$Address("Boston","MA"):(Shared=1)

The CREATE method could look like the following example.
Input:(T%City,T%State)

S I%City=T%City

S I%State=T%State

Q

Creating Child Objects

Objects are related to each other in one of the following ways:

• Using Relationship

• Containing Relationship
In both relationships, objects communicate with each other by sending messages.

A Using Relationship occurs when two objects are related externally. In other words,
each object exists apart from the other. An example is a server object that receives
requests from external objects and processes their requests. The collaborating objects are
independent of each other. The server object defines an interface that the client object
messages to invoke its services. The objects, being independent of each other, have
independent lives.

A Containing Relationship occurs when an object is part of (in other words, is
contained in) the internal state of another object. An example is a Customer object
(parent) that contains, as part of its internal state, an Address object (child). The child
object's lifecycle is closely bound to the parent's lifecycle, specifically; the child will be
destroyed when the parent is destroyed.

Creating Private Objects

An object is created as a private object by default. This means that only the creating con-
text can access the object unless it explicitly passes the reference to another object. Also,
once the creating context is destroyed, any objects created within the creating context are
also removed from the system.

In the following example, a private List object is created.
CREATE I%MyList=List:(Share=0)

 Object Lifecycle Issues 40

Creating Shared Objects

An object can be created as a shared object by using the Share keyword on the CREATE
command. If the object is to be shared outside the current context, then use the Share=1
keyword. In this case, the object survives beyond the scope of the calling context and
remains until it is deleted explicitly.

In the following example, a shared List object is created.
CREATE I%MyList=List:(Share=1)

Object Preservation
Within its lifetime, an object may provide services to other objects. The service object
may stay around indefinitely. However, it may often come into being for a short duration
but be available to other objects. The concept of object referencing has been implemented
in EsiObjects to insure that an object is not inadvertently destroyed before its time.

PRESERVE Command

The PRESERVE command is used to increment an objects internal reference count.
Refer to the Command section of the Language Reference Guide for the PRESERVE
command syntax.

The PRESERVE command should be used in conjunction with the DESTROY
command. A using object executes the PRESERVE command to increment the internal
reference count of an object it is using to insure that the object will not disappear before it
has completed its operations. Once finished using the object, the using object can execute
the DESTROY command. The DESTROY command decrements the internal reference
count. When all user objects have issued the DESTROY command, the next destroy
action will delete the object.

Relationship to the DESTROY Command

For every PRESERVE command that is executed on an object, the complementary
DESTROY command should also be executed. Essentially, executing these
complementary commands insures that the object will not be destroyed within the time
duration between their executions.

Object Protection
Often within a working relationship between two objects, one object needs pass its OID (or an
OID of an object that it owns) back to a calling object. To protect itself or the object it owns from
being preservered or destroyed, the object OID should be passed back via the $PROTECT
function (See the $PROTECT function within the Functions section of the Language Reference
Guide). The $PROTECT function modifies the OID such that the DESTROY and PRESERVE
commands have no effect when applied.

 Object Lifecycle Issues 41

Object Destruction

DESTROY Command

To destroy an object with the DESTROY command means to remove it from the system.
Refer to the Command section of the Language Reference Guide for the DESTROY
command syntax.

The DESTROY command accepts a reference to an object or any expression that
evaluates to an object reference.

 Object Lifecycle Issues 42

The following is an example of how to destroy an Address object:
DESTROY I%CustAddr

Protecting an Object from Destruction
There are two ways of protecting an object from destruction.
The first way is to protect it from being destroyed while being used by other objects. Use of the
PRESERVE command permits the object to defer destruction by the DESTROY command until
the last DESTROY is executed, at which time the object will finally be destroyed (See the
PRESERVE command in the Language Reference Guide).
The second approach protects the objects from being destroyed at all times. Using the
$PROTECT command to change the status of the objects OID will protect the object from being
destroyed. Applying the DESTROY command will have no effect.

Using the DESTROY Method

The DESTROY command is used to delete an object. Sometimes it is important to add
functionality to the destruction process. The DESTROY method specialize the
destruction of an object.

The DESTROY method resides in the Factory interface of the class. The name must be
defined as uppercase. If it is defined, it will be automatically invoked at object
destruction time.

The following example illustrates how to destroy an object. Note that if the object bound
to the I%CustAddr instance variable is destroyed, the variable I%CustAddr will remain
defined. The variable must be removed via the KILL command.
DESTROY I%CustAddr

If the DESTROY method exists in the Factory interface it will be executed. The
DESTROY method can be used to terminate the destroy operation based on some
internal or external condition as illustrated below. Assume that the Address object bound
to the I%CustAddr instance variable contains an I%RefCount variable that contains a
count of the number of customer objects using it. If the count is greater than 1, then the
Address object must continue to live. However, if the count is less than or equal to 1, it
can be destroyed. Issuing the QUIT command with a value of 0 (same as setting
$RETURN=0) tells the DESTROY command not to destroy the object. Returning with a
1 (same as setting $RETURN=0) tells the DESTROY command to destroy the object.

; If Address object used by another object, decrement the reference count

; and return false to abort the destroy.

IF I%RefCount>1 SET I%RefCount=I%RefCount-1 QUIT 0

;Else, quit with true - object will be destroyed.

QUIT 1

Testing to See If an Object Has Died

If the DESTROY command results in an dead object, then $TEST is set to 1. The
$TEST special variable is 0 if the object still exists. Note that the DESTROY command
releases any interest the current context has in the specific object. However, the object

 Object Lifecycle Issues 43

may decide to continue to exist because other contexts may still be using the object. If the
DESTROY command is successful, subsequent reference to the destroyed object will
result in an error. If references are made to the object, you should always test for its
existence before making the reference.

 Object Lifecycle Issues 44

In the following example, the object attached to the I%CustAddr variable is issued a
destroy command. The results of the destroy action are stored in the special variable
$Test. If the object was in fact destroyed, $Test will return 1. If the object was not
destroyed, it will be set to 0. In the example below the IF command tests $Test, if true the
Event command is used to fire the AddressDied event.
DESTROY I%CustAddr IF $TEST Event AddressDied

When outside the context of the DESTROY command, you may use the $EXIST
function to test if an object exists. Refer to the Functions section of the Language
Reference Guide for the $EXIST syntax.

If the object exists, the function returns 1. If the object does not exist it returns 0. The
example below tests for the existences of the customer address object, that is bound to the
I%CustAddr instance variable. If it does not exist, a dialog box is asserted with a
message.
I '$EXIST(I%CustAddr) DO $Env.Assert("Customer Address does not exist.")

Additionally, you may use the $INFO to test the existence of an object. Refer to the
Function section of the Language Reference Guide for the $INFO syntax.

The following example accomplishes the same results as the $EXIST example above.
I '$INFO(I%CustAddr,3) DO $Env.Assert("Customer Address does not exist.")

Using Class Libraries
EsiObjects supports Class Libraries. Libraries are used to group classes by some artificial
criteria that is usually based on application or organizational requirements. Libraries
provide a firewall between groups that prevent inadvertent damage to protected classes.

Two types of libraries are supported:

• Absolute

• Virtual

Absolute libraries physically contain classes. Virtual libraries do not physically contain
classes; instead, they can integrate classes contained in one or more absolute libraries. A
virtual library can also view some classes in its absolute libraries by alternate names. It
can even have multiple entries for a single class, each under a different name.

The relationship between virtual and absolute libraries is hierarchical, and never more
than one level deep. A virtual library imports classes from at least one absolute library,
but there is no restriction on the number of classes it can import, and the number of
absolute libraries from which they can come. Some or all of the classes in an absolute
library may be exported to any virtual library. An absolute library can export its class
names to many different virtual libraries. A virtual library is so flexible that it can view
any combination of classes in any absolute libraries by any valid names. The following
diagram illustrates these concepts.

 Object Lifecycle Issues 45

In this figure, there are two virtual and three absolute libraries. Absolute Library C
exports its Bag class to Virtual Library A, while Absolute Library E exports its Bag
class to Virtual Library B. This causes no conflict, but if Virtual Library A wants to
import Absolute Library E’s copy of Bag, it will have to do so under a different name.

Absolute Library D exports its FIFO and FILO classes to Virtual Library B under the
same names. It also exports them to Virtual Library A under different names: FIFO as
Queue, and FILO as Stack. The same class FILO can be viewed by one virtual library
as FILO and by another as Stack. Any number of virtual libraries under any combination
of names can view it.

When creating objects with the CREATE command, the class name specified is relative
to the current default library. By default, if you do not specify the library name along
with the class name in the CREATE command; the master virtual library is used to
resolve the requested class name. Classes should always be referred to using a full name
that includes their library name to avoid any confusion or programming errors. This is
due to the fact that the same class name can be used in different libraries. Therefore,
adding the library name to the class makes it a unique reference since two libraries with
the same name cannot exist.

The format of a full name is as follows:

LibraryName$ClassName

This form of name can be specified anywhere that a class name can be used. The follow-
ing is an example of a full class name:

Base$List

where:

Base is the library name

List is the class name

 Object Lifecycle Issues 46

Absolute and Virtual Libraries
The relationship between virtual and absolute libraries is hierarchical (never more than
one level deep). A virtual library needs at least one absolute library, but it can have more
than one.

Absolute libraries physically contain classes; so all the fields on the Library Browser
have meaning for an absolute library. Virtual libraries do not physically contain classes
but can integrate classes contained in one or more absolute libraries. A virtual library can
also view some classes in its absolute libraries by alternate names. It can even have
multiple entries for a single class, each under a different name.

A virtual library imports classes from at least one absolute library. There is no
restriction on the number of classes a virtual library can import, and the number of
absolute libraries from which virtual libraries can come.

Some or all of the classes in an absolute library can be exported to any virtual library. An
absolute library can export its class names to many different virtual libraries. A virtual
library is so flexible that it can view any combination of classes in any absolute libraries
by any valid names.

Using Virtual Libraries

By default, if a simple class name is used, then the current default virtual library is used
to determine the actual class. It is also possible to reference a virtual library explicitly by
name.

In the following example, a List object is created using the default mechanism and using
an explicit reference to the virtual library called Master. The absolute library that owns
the class, which creates this list, is hidden.
CREATE I%MyList1=List

CREATE I%MyList2=Master$List

Using Absolute Libraries

In most cases it can be required that an object come from a specific absolute library.
When this is the case, using an explicit reference to the source library can create the
object. All references to a class should be explicit.

In the following example a List object is created from the ESI library:
CREATE I%MyList3=Base$List

 Object Lifecycle Issues 47

Integrating Objects
Elements of Integration
Object Contracts
Object contracts are specific interactions and responsibilities that are expected of an
object. Generally a contract can be viewed as the operations and events that a specific
object must support. The object makes a commitment to provide services that calling
objects can use.

Contracts are also used to describe relationships. Each party in a relationship is expected
to fulfill a specific contract. Only those objects that fully comply with the contract associ-
ated with a relationship can be used in that relationship. Depending on how tightly
objects are integrated, the extent of their contract varies.

An example of a simple contract is an object that guarantees that an event is not fired
until a specific condition occurs. For example, the basic contract for a person object is
that it fires a property event only when one of its properties has been modified or deleted.

Object Responsibilities
The responsibilities of an object are defined as the aggregate of all the contracts that the
object must fulfill. For example, a Person object in a healthcare system has a number of
different responsibilities, some of which include the following:

• Maintain the integrity of its state data.

• Manage relationships with other objects it is collaborating with.

• Make known any changes is state that other objects should know about.

• Protect itself from inadvertent destruction or harm.
The responsibilities of an object convey a sense of purpose for an object and help place
an object within the system.

How to Integrate Objects
Grouping Integration

Maintaining Groups

Objects can be integrated by forming groups of objects that obey the same contract.

The following are ways to establish a grouping relationship:

 Object Lifecycle Issues 48

• Common class

• Common interface

• Key property

Objects that share a common class inherit the operations from that class. Therefore, these
objects' responsibilities include the specific operations defined within their owner class
and the operations inherited by the shared class.

The following EsiObjects collection classes all share the same Collection class:

• Set

• Bag

• Dictionary

• Log

• Array

• List

• Map

• MultiMap
Behavior implemented in Collection is inherited by the subclasses and are understood by
objects of those classes. Although the specific subclass can override the implementation
of the behavior, all Collection objects understand the shared operation. For example, the
Collection class defines an operation called InsertElement. All classes that share this
class implement and understand this operation.

Objects can also share a common interface. An example of this is the EsiObjects class
ABS_SECURITY. This is a abstract class that contains one interface called Security.
This class can be used as a mix-in class.

A mix-in class is a detached, standalone class that is used solely as a superclass for other
classes that want to inherit the operations or data defined in the mix-in. ABS_SECURITY
then can be mixed in with other classes. These classes share the Security interface and all
objects created from these classes include the components defined in that interface. Any
objects that need to implement object security can make use of this interface. Therefore,
dissimilar objects can integrate the common functionality defined in the shared interface.

Applying Operations Across a Group

When a group of objects obey the same contract, you can apply operations across the
group by using any of the following methods:

• Using an iterator

• Using ForEach

• Using a callback

 Object Lifecycle Issues 49

If a group of objects are placed in a collection, you can use an iterator to access each
member in the collection and apply the operation to each object.

Event Based Integration

How Events Work

Event-based integration is the most common form of object integration. This form of
integration is used when the state of one object needs to be updated when the state of
another object is changed.

EsiObjects contains 3 commands that implement event based integration of objects. An
event is generated with the EVENT command. Event watches are controlled with the
WATCH and the IGNORE commands. For more information about the EVENT,
WATCH and IGNORE commands, see the EsiObjects Language Reference Guide.

Referring to the diagram above, the Subject is the object that is being watched. The
Subject determines under what conditions an event is fired. A Subject can have more than
one Observer.

The Observer is the object that is watching; it establishes and breaks an event watch. The
Observer decides what objects and events to watch. Any object can be an Observer and a
Subject.

Events are attached to an Event Handler in the Observer object. An Event Handler is a
body of code associated with the Observer and is invoked when any Event is fired. It has
an entry point and accepts parameters. The event handler must accept the parameters
passed in to handle the event properly.

There are three basic types of event handlers:

1. Specific to the object and an event

2. Specific to an event

3. Generic

Setting Up an Event Watch

When doing model (server) side programming, an object is often required to publish
events that are of interest to other objects. As stated above, EsiObjects has three
commands that offer event-handling services.

There are five general steps to publishing an event and subscribing to it. They are:

1. Determine what event to watch.

2. When the event fires, where will it go. An entry point and parameter list must be
defined.

3. Write the code to handle the event.

4. Determine where to establish the event watches.

 Object Lifecycle Issues 50

5. Determine where the watches are to be broken.

To illustrate how to set up a manual event watch, lets apply the steps using a specific
example. Assume that the central computer in a hospital monitors all fire alarms. Smoke
detectors in each room generate an event if smoke is detected. A Floor object watches the
event. The Floor object evaluates the detection and triggers a selected event, which
supplements the original event with the floor number. Also, the floor alarm system is
activated. The hospital watches every floor to see if there are other emergency events and
handles them appropriately.

The following steps illustrate how the Fire detection of the Hospital Fire Detection
application was set up using the steps listed above. Use the Session Browser to display
the event and method code.

1. Using the Session Browser, a new event was defined within the Floor class called
Smoke. This event definition contains a code stub that shows the parameters required
by the actual event handler.

2. Next, the location of the event handler had to be defined. In this case, it resides in the
FireWatch method of the Floor object. This is the same method that is used to set up
an event watch. Upon start-up, this method is invoked by the
ActivateEmergencySystems method of the Hospital for each room in the hospital.
The Watch command is executed which sets up an event watch for each room.

3. The actual event handler Smoke is stored in the FireWatch method of Floor with a
public label. The handler is written as a procedure, therefore it does not return a
value. In this case, the Smoke handler of is specific to the Floor. If executed, it
triggers another event Smoke that is stored in the method FireWatch of the Hospital
class.

4. Next the event watches must be located. In this case, the watch is located in the
FireWatch methods of Floor and Hospital. Refer the EsiObjects Language Reference
Guide to determine the format of the WATCH command.

5. Finally, the watches must be turned off. In the case of the Hospital Fire Detection
application, the DeactiveEmergencySystems method of the Hospital class would be
one place to perform this function. Use the IGNORE command to ignore the event
when you are done with the object. Refer the EsiObjects Language Reference Guide
to determine the format of the IGNORE command.

Destroying an object will force ignores of event watches on the object.

Watching Properties

It is possible to watch for changes to the properties of an object. Currently in EsiObjects,
the only way to watch properties is to set up the watch manually as outlined in the last
section.

The WATCH command uses the property name or $PROPERTIES keyword in lieu of
an event name. The $PROPERTIES keyword specifies that all properties are to be

 Object Lifecycle Issues 51

watched and any change (a set or a kill) to any property in the object will trigger the
callback.

Event Handler

The WATCH command specifies the object to watch, the event or property name to
watch within the object, and the callback label and method to be invoked when the event
is fired. This callback label is also known as the Event Handler. This label is created in
the method specified on the WATCH command and must accept at least 2 parameters for
any event watch and 4 parameters for any property watch. See the WATCH command in
the EsiObjects Language Reference Guide for details on the watch command and the
callback parameters.

The callback label you write must accept the minimum parameters plus any parameters
that the event may pass itself.

If the WATCH command specifies a label for the callback only (no method is specified)
then the label must be created within the method where the WATCH command is
invoked. Additionally, the label must have the Public label keyword as the following
example shows:

 Object Lifecycle Issues 52

Watch T%Patient.$PROPERTIES:PatLab

QUIT

; callback label for patient watch

(Public)PatLab(Obj,Prop,Callfram,Oper,Value)

; property watches must accept five parameters

;callback code goes here

QUIT

If the WATCH command specifies a label and a method, the syntax for the callback label
is the same as above, except the Public keyword is not needed.

Creating a Generalized Event Handler

General Event Handlers

It is possible to establish a watch on all events and properties associated with an object.
You can use the following event names to create a generalized watch on events and prop-
erties:

• $EVENTS

• $PROPERTIES
When you use these event names, the event handler must be able to accept all possible
input.

Under some circumstances the entire state of an object can change. When this occurs, the
generalized handler for a property receives a special event named $PROPERTIES to
indicate that the entire state has changed. When the $PROPERTIES event is sent, it is
sent alone. The general handler does not receive a call for each property.

The following example shows a generalized property change event handler.
Props(Object,Property,Callframe,Oper,Value) ;Generalized property handler

;

;Update value of the property in the property list object

DO I%PropList.Set(Prop:L%Property,Value:L%Value)

QUIT

 Object Lifecycle Issues 53

The following example shows a generalized event handler.
Event(Object,Event,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12)

; Generalized event handler

;

; This generalized handler causes the event to be echoed

; to anyone watching this object

;

; Determine the number of parameters

FOR A=1:1:13 QUIT:'$DATA(@("P"_A))

IF A=1 Event @Event@

IF A=2 Event @Event@(P1)

IF A=3 Event @Event@(P1,P2)

.

.

.

IF A=12 Event @Event@(P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12)

QUIT

Establishing a Generalized Event Watch

The following is an example of watching all events for an object:
; Watch all events, invoke Events label when any event occurs

WATCH Object.$EVENTS:Events

The following is an example of watching all property changes for an object:
; Watch for any property change, invoke the Props Label

; if the property changes

WATCH Object.$PROPERTIES:Props

Dissolving a Generalized Event Watch

You can use the IGNORE command to dissolve a generalized event watch. Use the
event name $EVENTS for events and use the property name $PROPERTIES for
properties. This dissolves the generalized event watch in the requested object. Any
specific events and properties being watched continue to be in effect.

Generalized event watches also are dissolved with the argumentless IGNORE command,
and the IGNORE command specifying just the object.

The following example shows how to dissolve a generalized event watch.
WATCH Object.$EVENTS:Events ; Watch all events

WATCH Object.Name :Name ; Watch the name properties

WATCH Object.$PROPERTIES:Props ; Watch for any property change

.

.

.

Ignore Object.$EVENTS ; Ignore the generalized events

Ignore Object.$PROPERTIES ; Ignore the generalized properties

; At this point still watching the name property

 Object Lifecycle Issues 54

Relationship Integration

Object Relationships

Within complicated applications, objects frequently need to collaborate with other objects
to accomplish tasks they are responsible for. The behaviors that make up a system are
realized by objects that collaborate with each other. The concept of a contract between
objects was discussed in Object Contracts. The relationship between any two objects
encompasses the operations that can be performed between the two, and the behavior that
results. For example, a Patient object enters a relationship with a Provider object in a
medical application.

Objects can be integrated with each other via a Hierarchical Relationship where a
parent object is made up of one or more child objects. These child objects in turn can be
parent objects to one or more objects of which they are made. These hierarchical
structures are often referred to as Composites.

Besides a hierarchical relationship, objects can be related via an Owning Relationship
where one object owns the objects it is related to. The owned object is not a child object,
in that it does not exist within the internal state of the owner object. Instead, the object
can receive messages and can be involved in other relationships with other objects apart
from the owner object. However, the owner object maintains the objects, perhaps creating
and destroying them. In any case, the owner object can exist without the objects it
contains, but the contained objects cannot exist without the owner.

One other type of relationship between objects is a Using Relationship. This is where an
object can use another object, but each object exists as a peer object of the other. Neither
object owns or contains the other.

Parentage

In a hierarchical relationship, parentage is defined and maintained by the parent object.
The child objects are defined as part of the parent object's internal state. The parent object
when created can automatically create the child objects or can create them as needed.
Objects that are parents are responsible for the destruction of their children

Mediation of Requests

In a hierarchical or owning relationship, an object receives a message, and if necessary
delegates the message to the appropriate object. This object can be a child object or a par-
ent object if the object is a child object.

For objects within dissimilar systems that do not know how to communicate with one
another, some mediation must be provided to allow communication to occur. For this
purpose, any object wanting to be advised by another object must support the OnAdvise
operation. The object being watched must support the Subscribe and DeSubscribe oper-
ations. The concerned object can invoke the Subscribe operation on the target object to be

 Object Lifecycle Issues 55

advised of changes within the object. This relationship is closed when the concerned
object invokes the DeSubscribe operation.

Lifetime Issues

When using an object in a relationship, it is essential to ensure that the object used has a
sufficient life span to be used in the relationship. The general rule for determining rela-
tionships is that the object used in the relationship should have a life span of at least that
of the objects to which it relates.

 Object Lifecycle Issues 56

Guidelines for Using Objects
Object Life Cycle
It is important to understand the life cycle of an object to understand what can be done
with an object. There are three major phases in an object's life cycle with which you need
to be concerned:

• Object creation - The phase in which an object's resources are allocated and the
initial state of the object is defined.

• Object lifetime - The phase in which the reaction to specific object requests, event
monitoring, and triggering occurs.

• Object destruction - The phase in which determining appropriateness, breaking
relationships, destroying component objects, and deallocating resources occurs.

An implicit contract is made when you create an object. This contract states that for every
object you create, you must either destroy the object or transfer the responsibility of
destruction to another party (object). Keep in mind that it is possible to have a pointer to
an object that no longer exists.

The following sections describe the phases of the object life cycle in more detail and use
an example class hierarchy that models a hotel. All classes used in the example can be
found as descendants of the class Examples.

Object Creation
An object is created with the CREATE command. The syntax is as follows:

CREATE I%Obj=Classname(P1:Value,P2:Value):(Keyword=Value):(Prop1=Value,Prop2=Value)

The steps the EsiObjects system will following when creating an object are listed below:

Object allocation When you use a class name and creation parameters to create an
object, the system allocates space for the object in the appropriate
area. The system also allocates an Object ID (OID) for the new
object and assigns the object to the new OID. After this is done, the
variable is assigned the OID of the new object. The internal reference
count is set to 1.

CREATE method Once the object has been created as described in step 1, the CREATE
method for the object is run. This method is invoked with the
CREATE method parameters. Note the following about the
CREATE method:

 a. Defines the initial default state of the object.

 Object Lifecycle Issues 57

 b. Establishes the basic relationships for the object. Therefore, any
immutable relationships are often passed as CREATE method
parameters.

 d. Runs like any other method.

 e. Normally chain calls their ancestors.

 In a formal sense, the CREATE method is named Factory::CREATE,
which indicates that the CREATE method is a part of the factory
interface.

 Note: Do not invoke the Factory::CREATE method directly.

Property
assignments

Once the CREATE method is executed, then any property
assignments are applied. All assignments occur from left to right.
Errors during assignment result in a run-time warning. Any
additional property assignments that occur after an error are
processed.

 When assigning a property using the CREATE command, the
Creation accessor is used. If the object has no Creation accessor, then
the Assign accessor is used. Attempts to assign properties that do not
have a Creation accessor or an Assign accessor result in a run-time
warning.

 Note: Some properties can be assigned only at the time of object
creation (properties that have a Creation accessor but no Assign
accessor). It is possible that the Creation accessor can cause the
assignment of the properties to occur during its processing (by using
the ZAPPLY command).

Object Lifetime
An object begins its life once it is created. During the course of an object's life it can
undergo many changes. Each of these changes is the result of the object interacting with
other objects, interacting with the environment, and with the user. All interactions are
based on the following mechanisms:

• Properties

• Events

• Methods (or messages)
These mechanisms are discussed in the following sections.

 Object Lifecycle Issues 58

Properties

Properties Defined

Properties are the parts of an object that are seen by the outside world. Properties are the
way that you can distinguish one object from another. Each property is a logical sense of
some part of what the object is. The actual physical state of the object may not reflect the
property directly, but is instead used to synthesize a value when one is requested. The
opposite is also true. When a user assigns the property of an object, it might entail more
than a simple internal state change.

A Person object can have properties, for example:

• Name

• Date Of Birth

• Social Security Number

Property Assignment

Once an object has been created, it is possible that some of it properties can change over
time. Many assigned after the object has been created. For example, collection iterators
allow the IterationOrder property to be changed at any time.

When a property is assigned, the value assigned to it may have no relationship to what
the property value is on lookup. This is because property assignment logic validates and
transforms the input value.

The following accessors are used in property assignment:

• Assign - Assigns a value after creation.

• Creation - Determines the initial state.

• $Valid - Checks the validity of an assignment.

• $Normalize – Changes the value form an external format to an internal format.

• Kill - Resets the collection to the default state or removes an element from a
collection.

Some properties support the $VALID function, which can be used to determine if it is
valid to assign a certain value to a property. The $VALID function uses the $Valid acces-
sor for the requested property. Attempting to assign a property that does not have an
Assign accessor results in a run-time error.

It is important to provide an Assign accessor when you provide a $Valid accessor. If an
Assign accessor is not provided, attempts to claim that a value is a valid assignment
results in an error.

 Object Lifecycle Issues 59

Property Lookup

A property lookup is a request for some piece of information about an object. Generally
this is some characteristic of the object that is of concern to the object's user. The most
common form of property lookup is the Value accessor, which is used to find out to what
a property is set. The Value accessor returns the current object state in a normalized form
(in other words, suitable for a user and an Assign accessor).

The following accessors are used in property lookup:

• Value - Finds the value of a property.

• $Get - Finds the value if there is a value. If there is no value, the default is
normalized.

• $Order - Checks for the next element in a collection property.

• $Data - Checks if an element exists in a collection property.

Message Processing

Types of Message

The following is a list of the types of messages supported in EsiObjects:

• Inquiry — request for information

• Modification — request for a change in object state

• Instruction — request to perform a task

Inquiry Messages

An inquiry message asks the object something about itself. Messages that ask about iden-
tity, class, protocol membership, and current internal state are inquiry messages. An
example of an inquiry message is a message that asks a collection how many elements it
contains.

Modification Messages

A modification message tells the object to modify its current internal state. An example
of a modification message is one that tells a collection to remove one of its elements.

Instruction Messages

An instruction message tells the object to perform some task. This often results in multi-
ple messages being sent to other objects, which might not have been visible to the
original sender. The ForEach message is an example of this kind of message because it
asks a collection to send some message to each one of its elements.

 Object Lifecycle Issues 60

Generating and Processing Events

Event Commands

Event generation and event processing can play a major role in the life cycle of an object.
Every change to the state of an object is the result of some event (usually a user action).
Events are not limited to user's interface objects. Events can be of even more use when
used in modeling the applications domain.

The main advantage of events is their loosely bound nature. Events provide a mechanism
that allows one object to cause other objects to react to a change. There is no need for the
event generating object to know or care about what objects are receiving the event. In
EsiObjects, the following commands control events:

• WATCH

• IGNORE

• EVENT
For more information about the EVENT, WATCH and IGNORE commands, see the
EsiObjects Language Reference Guide.

Event Generation

The events generated by an object are of two major forms:

• Generic Events

• Property Change Notifications
The EVENT command can be used to generate both types of events. Property Changed
Notifications also occur automatically when a property is assigned or killed. Generally an
event is a notification that something has happened versus an advisement that something
is going to happen.

Generally, the events that are generated by an object can be determined by examining the
interface of the object. The events are listed in the interface. Also, a response template is
provided with each event to describe the parameters passed with the event and the general
intent of any event handler. The nature of the EVENT command is such that it is possible
for an object to generate events that are not in its interface. However, this behavior is
strongly discouraged.

Event Response

Event handlers are methods that have been designed to respond to specific events. The
event handler is task oriented and does not directly support returning any information as a
result of its invocation. The association of an event handler to an event and an object is
made using the WATCH command.

An object can choose to watch for any event (within the bounds of security). A warning
is generated if it is believed that the object does not actually generate the event.

 Object Lifecycle Issues 61

Event watches can be turned off by using the IGNORE command.

Event Delivery

The EVENT command generates an event. When this command returns, the event has
been queued, but necessarily has not been delivered. This means that you cannot use
events as a blocking mechanism on an action.

EsiObjects often batches the delivery of events to a specific object. Therefore, object A
and object B receive events. It is possible that object A handles all of its events prior to
object B handling any events.

Events always are placed in the event queue in a first-in /first-out (FIFO) basis. This
applies to a receiving object. Events always are delivered to a specific object in the order
they were posted to the object. Note the following:

• Events always are delivered in order on a per object basis.

• The timing of events is not guaranteed.

• Events are dequeued by the top-level event loop and the EVENT command.

Object Destruction

DESTROY Command

The life cycle of an object comes to an end when it acknowledges a DESTROY com-
mand. An object's lifetime also can end if it is a child of another object that is destroyed.
Once an object is destroyed, its pointer becomes invalid.

The destruction of an object involves three major phases:

• DESTROY command

• DESTORY method

• Deallocation
Note that objects are destroyed with the DESTROY command or are destroyed by being
in a relationship that causes their destruction. It is possible to lose objects that are not
properly destroyed (this happens when the last pointer to an object is killed).

Caution must be used when using scoped variables or the KILL command to ensure that
any object the variables are pointing at gets cleaned up properly. Unshared objects that
are lost are automatically deallocated at process rundown.

 Object Lifecycle Issues 62

The steps for destroying an object are described below:

DESTROY
command

The DESTROY command is invoked with the object as its
argument. The DESTROY command attempts to identify the
requested object. If it is not a valid object, the request is ignored.
First the internal reference count is decremented by 1. If it is greater
than zero, the destroy process is terminated at this point. Next, the
DESTORY method is invoked (see step 2) if it exists. If this
method returns true, then the DESTROY command proceeds with
deallocation. The $TEST special variable is set to true if the
expression is no longer a valid object. This means that true is
returned if any of the following are true:

• The request did not point to a object.

• The request has a dead object.

• The object had been destroyed.

DESTROY method The DESTROY method is invoked on an object to allow it to
prevent its destruction and to allow it to perform the required
cleanup. The typical DESTROY method consists of four parts:

 Feasibility Determines whether an object should be
destroyed. If the object is not to be
destroyed, $RETURN is set to false and
the method is exited. The feasibility is
often determined by checking a reference
count, or by confirming the request with
relationships.

 Clearing relations Objects can form relationships with other
objects. When an object is destroyed, it is
necessary to break these relationships.
There are two types of relationships:

 Pointer-based relationships use a
protocol for maintenance and
require individual treatment.

 Event-based relationships are
maintained by the system and can
be destroyed by the system (via the
IGNORE command).

 Object Lifecycle Issues 63

 Any relationships that have been formed by the
object need to be broken. This allows the other
object to remove invalid object pointers and
might also cause the related object to decide that
it should cease to exist.

 You must destroy any variables that have been
used to track relationships. This prevents the
system from having to determine if the relational
object should be destroyed.

 Generally it is a good idea to ignore any watches
created by the object you want to destroy. This is
generally done by using the argumentless
IGNORE command. This step is optional
because the deallocation process removes any
watches automatically.

 Component destruction Destroy individual components of the
object explicitly. This is especially
true for those components that are not
child objects.

 Releasing external
resources

All external resources related to the
object must be released. This includes
public structures (such as global and
local variables) and private structures
(such as external objects and heap
memory).

 The full name of the destroy method is
Factory::DESTROY.

Note: Do not call this method directly.

Often the DESTROY method chains to it ancestors to
ensure that everything is cleaned up. There is a possibility
that other users may still attempt to access the object while
this method is executing. Objects should be coded to be
robust during this time period by using the EsiObjects
LOCK command.

Deallocation If the DESTROY method returns a true result, the DESTROY
command activates the deallocation process. This consists of
the following actions:

 Object Lifecycle Issues 64

 Destroying children Any child object is destroyed, which
gives the DESTROY method any oppor-
tunity to execute. Currently, child objects
are always deallocated, regardless of the
return value of the child object's
DESTROY method. Note that this pro-
cess is recursive so that all descendant
child objects are destroyed.

 Canceling watches Any watches that were formed by this
object or formed on this object are
removed.

 Killing the instance
table

The system removes the instance table
structures associated with the object, and
invalidates the object. It is at this point
that the object can no longer be called.

Effects of Object Destruction

The destruction of an object does not remove all pointers to that object. This means that it
is possible to have invalid object pointers. Generally, attempts to use these pointers result
in an error.

In the following example, an attempt to use an object that is dead results in an error.
;T%Acct = an Account Object

;Try destroying the object

DESTORY T%Account

;Try using the object (might work if the object did not go away)

SET T%Bal=T%Account.Balance

Care must be taken when sharing a child object because the child ceases to exist when the
parent object ceases to exist.

The $EXIST function can be used to determine if an object pointer is valid. This function
is used if you doubt that the object still exists.

You can use messaging keywords to ignore an object's existence when sending a message
to it. The keyword to use is existence. If the object no longer exists, the message is a void
operation and returns a null value.

Adding Interfaces to an Object
For a complete description of the interfaces supported by EsiObjects see the Object
Interface subsection of the Using Objects section in this guide.

Often, however, the Primary interface is not appropriate for the definition of all object
services. In many cases you will need to add services to object that you do not want to
expose to the user through the Primary interface. As discussed in the Using Objects

 Object Lifecycle Issues 65

section, the Factory interface is one specialized interface that is very important in the
development of an application. It permits you to group all services that are responsible
for the creation, preservation and destruction of an object in one interface.

Assume that you wanted to add a set of services to the object that was responsible for
security. Given the requirements of security, you certainly would not want these services
exposed to the user.

Adding interfaces to a class can be accomplished in two ways:

1. Using a Mix-In class already defined to add the structure and service templates.

2. Creating an interface through the Library Browser and adding the services as you
would an any other interface.

In the spirit of reusability, EsiObjects provides a number of Mix-In classes found in the
Base library that provide interface service templates for some of the common functions
you would find in an application. They are:

• AbsAttachmentObject

• AbsDebugObject

• AbsLockableObject

• AbsSecurityObject

• AbsSerializationObject
These classes are templates and as such, provide only the abstract definition of the
service, that the implementation. That is up to you.

If you find the class you want to use, simply link it to the class you want the interface to
appear in. Through the multiple inheritance mechanism supported by EsiObjects, the
interface will appear as inherited within your class. At this point you can override the
services defined in the interface and implement the code at your class level.

If you do not find the Mix-In that meets your needs, it is a simple task to create a Mix-In.
It is like creating any other class. However, you simply change the class property to
identify it as a Mix-In.

Object Navigation
One of the basic questions in working with an object is simply how do you get the object.
Throughout this guide, a number of different mechanisms have been used for getting to
and from objects. The following techniques can be used to get to an object:

• Creation - Create the object you want to use.

• Nested access - Find the object as a property of another object.

• Data sources - Request an object from another object that knows were it is.

 Object Lifecycle Issues 66

• Events and messages - Receive an object reference as a parameter on a message or
an event.

• Globals and locals - Retrieve an object from a publicly accessible table.

• Named - Retrieve an object by name within the domain.

Creation
One of the easiest ways to get to an object is to create one. Generally this is done when
the object is used in some task, or when the object is being created to form a model.
When using this form of access the user takes ownership of the object.

The following example creates a new booking object:
CREATE T%Booking=Booking:(Child=0)

The following example gets an iterator from a Collection:
SET T%Int=T%List.CreateIterator

Nesting
Often an object exhibits other objects through a property, which allows the nested object
to be revealed to other users. When working with nested objects, the ownership of the
object remains unchanged. Note that each nested object must exist to prevent an error.

The following example shows how to access the current booking for a specific floor and
room number in the Hospital application:
; Finds current booking for room 99 on sixth floor

SET T%Booking=I%Hospital.Floor(6).Room(99).CurrentBooking

The following example shows how to access the current booking for any room. Object
existence is ignored.
; Verifies nesting and if valid gets current booking

;

; T%Flr = The Floor Number

; T%RmNm = The Room Number

;

SET T%Room=I%Hotel.(Existence)Floor(T%Flr).(Existence)Room(T%RmNm)

IF T%Room'="" SET T%Booking=T%Room.CurrentBooking

Data Sources
Many objects know a number of different objects that they do not directly reveal. Such
objects often contain specialized methods for finding a specific object based on some
user criteria. These methods generally search for objects using the specified criteria and
return objects that match. Generally, the ownership of the found object remains
unchanged.

Some data sources provide support for the transfer of ownership to those objects they
contain. For those data source requests that return a collections of objects that match the

 Object Lifecycle Issues 67

selected criteria, the ownership of the collection (but not the objects that it contains)
become the responsibility of the class.

The following example shows how to find a booking for a specific room on a specific
date. The return result is either Null (not found) or the booking for the room. There is no
change in the ownership responsibility of the booking.

; Purpose: Searches for a reservation, given the full

; room number and time to which it applies

; Returns: the matching reservation or NULL if not found

Input:

(

(Required)FullRoomNumber:P%FRN, ;room #:Floor-Room(10-102)

At:P%At=”” ; timestamp for the reservation - default to NOW

)

; parse out the floor and room numbers

SET T%FloorNo=$PIECE(P%FRN,"-")

SET T%RoomNo=$PIECE(P%FRN,"-",2)

;get the floor object from the floor table dictionary

; will return a List of floors with the specified

; floor number. The set should have only 1 entry

;- quit if it does not

SET T%FloorSet=I%FloorTable.RetrieveElementsByKey(T%FloorNo)

IF T%FloorSet.Cardinality'=1 Destroy T%FloorSet QUIT

; get the floor object

SET T%Floor=T%FloorSet.RetrieveFirstElement

Destroy T%FloorSet

; get the room object(s) associated with the

; specified room number

; The Room property will return a list collection

; of the rooms matching the room number -

; there should only be 1 entry - quit if not

SET T%RoomSet=T%Floor.Room(T%RoomNo)

IF T%RoomSet.Cardinality'=1 Destroy T%RoomSet QUIT

; get the room object

SET T%Room=T%RoomSet.RetrieveFirstElement

Destroy T%RoomSet

; default the timestamp to NOW

I P%At="" Create P%At=Base$TimeStamp

SET $RETURN=T%Room.GetReservationOn(P%At)

QUIT

 Object Lifecycle Issues 68

The following example demonstrates a request made to a Hospital object to generate a list
of all rooms that need cleaning.

; Purpose: Produces a cleaning list. A collection of all rooms in need of

cleaning.

;The collection is passed in as input - if no collection passed, one is

created.

; Returns: The collection object containing the rooms in need of cleaning

;

Input: (

CleaningList:P%List

)

IF $G(P%List)="" Create P%List=Base$List

; Loop through the floors and inquire of each for any rooms that need

cleaning

SET T%FloorObj=""

FOR SET T%FloorObj=$ORDER(I%FloorList(T%FloorObj)) QUIT:T%FloorObj=""

DO

.DO T%FloorObj.GetCleaningList(P%List)

SET $RETURN=P%List

QUIT

Events and Messages
When an object receives a message or is notified of an event, one of the parameters can
be an object. This object can then be used by the service. Note that the ownership of the
object varies depending on the semantics of the service. All events pass the object, which
creates the event as a parameter (without transferring ownership).

In the following example, the method is used to enter a charge into an account.
;Charge for class account

Input:(P%Service,P%Room,P%Amount)

;P%Service is a Service Object

;P%Room is room for which the service was requested.

;

;Returns the Charge (Ownership retained by account)

;Validate the input

.;Validation code not shown

;Create a charge object

CREATE T%Chg=Charge(P%Service,P%Room,P%Amount)

;Add the charge object to the account

DO I%Log.InsertElement(T%Chg)

;Increment the account balance

SET I%Balance=I%Balance+P%Amount

QUIT

 Object Lifecycle Issues 69

Domain Names
All objects are created within some domain and within that domain they can be given
unique names. For objects named within a domain, it is possible to refer to that object
simply by using its name. The format of a domain name is as follows:

O%[Domain::]Name

Domain variables are persistent, they survive a processes lifetime.

In the following example, all hotels with the domain Ritz are named by the city where
they are located.

;The following fragment checks the

;current occupancy for the St. Elizabeth hospital in Boston

;

SET T%Occ=O%Elizabeth::Boston.Occupancy

;

Defining Objects
The Types of Classes
There are four types of classes:

• Abstract

• Concrete

• Nested

• Mix-in
Abstract classes define behavior, but do not create objects. Abstract classes are found in
the higher levels of the class hierarchy and as such, act as placeholders, Methods,
Properties, Events and Variables can be defined at these levels and inherited by lower
levels.

Concrete classes define behavior and are used to create instances. Concrete classes are
actually used in the application. They hold Method, Property, Event and Variable
definitions as well as inherit them from superclasses. Concrete classes are generally
“leaf” classes in the class hierarchy.

Nested classes are classes the reside in their parents name space. Nested classes do not
inherit services from the parent. They define a whole new definitional hierarchy within
the parent class. They can inherit from other nested classes. They are used to define
objects that are private to the parent class.

Mix-in classes are abstract classes that are linked into some point of the class hierarchy
where the set of services they contain can be inherited by all of its descendants through

 Object Lifecycle Issues 70

multiple inheritance. They can hold all definitional components of an abstract class. For
example, the mix-in class Base$AbsLockableObject can be linked in at any level of a
class hierarchy. At that point, its descendants inherit all database locking services offers.

Inheritance
Inheritance is a mechanism by which a class definition can inherit attributes (variables,
methods, properties, or events) from another class.

Inheritance allows you to construct class definitions that include only the specific code
needed for that class. Common attributes can be placed in superclasses and specific items
are placed in the subclasses.

The end result and major benefit is reusable code and not necessarily from the current
project, but previous and parallel projects. Additionally, if the classes have been
implemented before in other applications there is a good chance that errors would have
been worked out already.

The following partial class definition may be used to define a salesperson object in a
sales office application:

Class: Salesperson

Instance vars: Name, DOB, Sex, Address, City, State, Zip, Region, EmployeeNo.,
SalesTotal, Phone, Ext, Salary

Methods: Modify, GetDemographics, CalcBonus, MakeSale

Should we decide to add a second class, a Secretary class, the definition may look like
something below:

Class: Secretary

Instance vars: Name, DOB, Sex, Address, City, State, Zip, EmployeeNo., Phone, Salary,
SkillSet

 Object Lifecycle Issues 71

Methods: Modify, GetDemographics, CalcBonus, AddSkill, HasSkill

Note that both classes, though defining very different types of objects, have much
duplication. In fact, lets assume that the GetDemographics method may be the exact same
code logic on both classes. Do we have to enter in both classes separately and maintain
duplicate code?

Inheritance makes it possible to avoid the duplication.

If we create a third class called Employee and “link” that class to our existing classes, so
that the Employee class is a “parent” of the Secretary and Salesperson classes.

This linkage occurs in EsiObjects by a number of methods. These relationships form a
tree structure referred to as a Class Hierarchy or an Inheritance Tree.

A parent class is called a Superclass and a child class is referred to as a Subclass.

Subclasses automatically inherit all attributes from their parent class(es). Thus we can
move the common methods, and variables from the two child classes into the superclass.
Objects created from these child classes implement all attributes defined in their own
class, and all classes above them in the class hierarchy.

Now there is only one location where the common elements (such as the method
GetDemographics) are stored. We only have to maintain it in one area. As other common
elements are added, they can be added to the Employee class and are automatically
inherited by the subclasses. Additionally, existing objects that were created from the
subclasses implement the newly added attributes. Elements that are specific to the sales
persons or secretaries can be added to those respective classes.

Multiple Inheritance
EsiObjects supports multiple inheritance. This is where a class that has more than one
superclass can inherit attributes from all those associated. (Some OO systems do not
allow more than one superclass.)

 Object Lifecycle Issues 72

An example of using multiple inheritance would be to take our Salesperson class, which
has a superclass of Employee. Let’s say we also have a Manager class as seen below:

Class: Manager

Superclass: Employee

Instance vars: EmployeeList,

Methods: ModifyEmployeeList,

If we decide that we need to add a new employee class, called SalesManager, which is a
combination of a salesperson and a manager, we could us multiple inheritance to
facilitate this construct.

Employee Class

Salesperson SecretaryManager

Sales Manager
The Sales Manger class has two
Superclasses from which to
inherit.

Note that SalesManager inherits attributes from both Salesperson and Manager. Thus,
objects of this class implement both definitions. This is a very powerful capability that
allows for greater flexibility in building class definitions. However, this does not come
without some potential problems. The most obvious being when a class inherits the same
item from both parents. This is known as a multiple inheritance conflict.

 Object Lifecycle Issues 73

Employee Class

Salesperson Manager Engineer

Sales Manager

SkillSkill

The MI conflict arises when the Skill instance variable
can be inherited from either class by the Sales Manager.

In EsiObjects, multiple inheritance conflicts are seen as “Error Items”. This is discussed
further in the Tools Guide under Session Browser.

Overriding
In the example class hierarchy we showed above, let us assume that the standard
employee bonus calculation (stored in the method CalcBonus in the employee class) is
fine for secretaries, but may be different for sales persons. Since Salesperson inherits
CalcBonus, how do we modify the method for salesperson without affecting the
implementation of CalcBonus for the other subclass(es)?
We can override the method in the Salesperson subclass and implement the code as
needed in that class. Now Salesperson objects that receive the CalcBonus message will
run the method defined in the Salesperson class. Secretary objects will invoke the method
in the Employee class. Overriding is accomplished by simply creating the item of the
same name in the subclass.

Message Searching
As you can see from the discussion above about overriding, when an object receives a
message to invoke a particular method or property, a different method may be run
depending on what type of object received the message. A Salesperson object that
receives the CalcBonus message will run the method in the Salesperson class. A

 Object Lifecycle Issues 74

Secretary object receiving the same message will run the CalcBonus method defined in
the Employee class.

An object that receives a message will search for the method or property by following the
inheritance path. This is the path formed by the path of classes in the inheritance tree,
starting from the class that the object belongs to, up to the superclass, and any
superclasses beyond.

For example, the when the CalcBonus message is sent to an object of Secretary, the
object searches first in the class from which it was created. If it cannot find the item
defined there, it follows the inheritance path, up to its superclass Employee. It finds the
method there and executes the code. If the method were not found in that class, the
object would continue searching up the tree to the superclass. Since there is no superclass
of Employee, the system would generate an error because the method could not be found.

To avoid generating an error if the method is not found, you can implement a method
with the reserved name $Unknown. It must be spelled exactly this way. If the specified
method is not found and $Unknown exists, it will be executed in place of the specified
method.

Building the Class Hierarchy
When deciding when to add super or subclasses to your hierarchy, there are some
guidelines you can follow to determine when and how to build the tree.

A class should be made a subclass of another class only if that class can be considered a
“kind of” the superclass. For example, a Salesperson is a “kind of” employee so it would
qualify as a proper superclass. If you had a class that defined a purchase order, called
PurchaseOrder, it would not be appropriate to make that a subclass of Employee - a
purchase order is not a “kind of “ Employee. Basically, when linking classes together in
super and subclass relationships, ask yourself “Is the sub class a ‘kind of’ the
superclass?” If it is, then the relationship is proper. Some cases are not as clear-cut as the
example here. In those cases, you may want to consult other OO specialists or use your
experiences as a guide. If the relationship is wrong, it will most likely show up in your
coding soon enough!

Generic classes are defined at the top of the tree - with more specific class definitions
toward the bottom. The specific class is always a subclass of the more general parent
class.

If you have class definitions that are very similar and they belong to a similar category
(such as Salesperson and Secretary belong to a general category called Employee) that is
an indication that you may want to add a superclass to these classes and move the
common elements into it. The EsiObject Promote option allows you to move attributes up
to a superclass. (Point them to this option.)

Do not create super or subclasses for the sake of it. This is a design decision that must be
made based on solid criteria that indicates that a superclass is needed. Generally a

 Object Lifecycle Issues 75

superclass is called for when you have 3 classes that could benefit from combining
common attributes. 2 classes is a toss up.

The maintenance of the class hierarchy is a critical function and one that can become
cumbersome as the tree grows. Management of this hierarchy should be centralized so
that decisions to add classes are done consistently and within standard guidelines.
Managing the tree to know what’s there is critical.

If a method or property is inherited by more than 1 superclass, the system cannot resolve
which one should be the inherited item. Thus, the item is marked as an error item and is
not implemented by objects of the class.

Avoiding Multiple Inheritance Conflicts
A preferred way to avoid multiple inheritance conflicts is through the use of mix-in
classes.

For example, suppose you wanted to add Export/Import capabilities to a variety of
different classes, allowing objects of those classes to be saved to, or restored from, a
formatted text file. One simple way of adding such capabilities would be to create a mix-
in class called FileExportable, isolating reusable methods and properties in a common
interface called FileExport. All the methods and properties in this interface would be
specifically related to file import/export operations, and you would adhere to the
convention that no class should store unrelated methods or properties in a FileExport
interface.
 This approach would confer two major advantages:

1. Because all methods and properties provided by the FileExportable class would be
isolated together in a common FileExport interface, the danger of multiple inheritance
conflicts would be greatly reduced.

2. In order to make any class of objects become file exportable, all you have to do is link
to FileExportable as a superclass, and possibly implement or override one or two
methods/properties pertaining to the specific details of that class. All the rest could
be reused from FileExportable.

Resolving Multiple Inheritance Conflicts
One approach to resolving multiple inheritance conflicts in EsiObjects requires the user
to override the conflicted item. Now the desired code can be defined for the overridden
item. Users can call to the superclass implementation by using the $SUPER special
variable.

A second resolution is to rename the conflicting item. This approach allows both items to
be used by the class. If two items were in question, only one would need to be renamed in
order to make them both unique.

 Runtime Environment 76

Part 3: ReuseablityPart 3: ReuseablityPart 3: ReuseablityPart 3: Reuseablity

 Runtime Environment 77

Using Collection Classes
What Are Collection Classes?
A collection is a special kind of aggregate object that can contain any number of ele-
ments. The elements of a collection can be M strings or OIDs of objects. EsiObjects
comes with a number of important collection classes in its Base library, each one having
distinct characteristics and behavior:

• Set

• Bag

• Array

• List
The above collections are based on the Object Data Management Group's (ODMG)
specification.

EsiObjects also includes some other important collections classes:

• Map

• MultiMap

• Dictionary

• Log
These collections are not ODMG-specified, although, like all EsiObjects collections, they
are ODMG-compliant.

Collections Protocol
Collections Hierarchy
This section describes the protocol of each class in the Collection hierarchy. The class
hierarchy of the collection classes is shown in the following figure.

 Runtime Environment 78

The root class of all ollection classes is the Collection class. The class hierarchy is
located in the Base Library. The Collection classes are:

• Array

• Bag

• Dictionary

• List

• Log

• Map

• MultiMap

• Set
The CollectionProtector class is used to protect a collection from inadvertant destruction.

The two classes ESI$ClassExtent and ESI$RelationshipFacade are in the ESI library and
they inherit the Collection interface. They are not a part of the Collection set of classes.

The following sections summarize the properties and methods for each collection class.

Collection Class
The Collection class is an abstract class. No instances of this class can be created. The
class is simply a placeholder for data and methods that can be implemented or shared by
its subclasses.

 Runtime Environment 79

The following is a summary of the properties and methods that are part of the Collection
protocol. Many of these methods have no functionality and are intended to be overridden
by the subclasses.

Properties

The following is a list of the properties for a Collection class:

Cardinality Contains the number of elements in the collection.

IsEmpty Returns 1 (true) if the collection contains no elements, 0 (false)
otherwise.

IsOrdered Returns 1 (true) if the collection is an ordered collection.

AllowsDuplicates Returns 1 (true) if the collection allows duplicate objects to be
inserted in the collection.

AutoDestroy By default AutoDestroy is False.

If AutoDestroy is True then when the RemoveAll method is called
or the Collection is destroyed each data item in the collection will in
turn be destroyed.

Note: The collection does not add and remove references
in any other case.

Example:

Create T%Set=Base$Set::AutoDestroy=1

For T%A=1:1:100 Do

. Create T%Tmp=MyLib$MyClass

. Do T%Set.InsertElement(T%Tmp)

. Destroy T%Set

All 101 objects are destoyed.

Methods

The following is a list of the methods for a Collection class:

ContainsElement Returns 1 (true) if the specified element exists in the collection, 0
(false) otherwise.

Copy Replaces the elements in the specified collection with those of the
collection on which the method is performed.

CreateIterator Returns an ID for an iterator object that can be used to traverse the
collection.

InsertElement Adds the specified element to the collection.

RemoveElement Removes the specified element from the collection.

 Runtime Environment 80

RemoveElementAt Removes the element at the location of the specified iterator from
the collection.

ReplaceElementAt Replaces the element at the location of the specified iterator with
the specified element.

RetrieveElementAt Retrieves the element at the location of the specified iterator.

Set Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

Methods

The following is a list of the methods for the Set class:

InsertElement Overrides the inherited method from the collection. The specified
element is added to the set. If the element is already a member of the set,
the method does nothing. No exception is raised.

Union Returns a new Set object whose elements are the union of the elements
in the specified set and the set on which the method is performed.

 The following example creates two Set objects. One set contains all odd
numbers between 1 and 10 and the other set contains all even numbers
between 1 and 10.

 CREATE T%Odds=Base$Set(1,3,5,7,9)

 CREATE T%Evens=Base$Set(2,4,6,8,10)

 The following example invokes the Union method:

 SET A$AllNums=AOdds.Union(T%Evens)

Intersection Returns a new Set object whose elements are the intersection of the
elements in the specified set and the set on which the method is
performed.

 The following example creates two Set objects. One set contains a list of
rooms in a hotel that allow smoking. The other set contains a list of all
rooms on the second floor.

 CREATE T%SmokeRooms(101,105,107,201,208,210,305,401,402)

 CREATE T%Floor2Rooms(201,202,203,204,205,206,207,208,209,210)

 The following example invokes the Intersection method:

 SET T%SmokeFree2=T%SmokeRooms.Intersection(T%Floor2Rooms)

 Runtime Environment 81

 As a result, T%SmokeFree2 is a Set object that contains elements 210,
208, and 210 (the rooms on the second floor of the hotel that allow
smoking).

Difference Returns a new Set object whose elements are the set theoretic difference
of the elements in the specified set and the set on which the method is
performed.

 The following example creates two Set objects. One set contains all
prime numbers between 1 and 20. The other set contains all odd numbers
between 1 and 20.

 CREATE T%PRIMES=Base$Set(1,2,3,5,7,11,13,17,19)

 CREATE T%Odds=Base$Set(1,3,5,7,9,11,13,15,17,19)

 The following example invokes the Difference method:

 SET T%DiffSet=T%Primes.Difference(T%Odds)

 As a result, T%Diffset is a Set object that contains the elements 2, 9, and
15 (the difference between the two sets).

Bag Class
Bags are unordered collections (similar to the Set collection) that allow duplicates.

Methods

The following is a list of the methods for a Bag class:

InsertElement Overrides the inherited method from the collection. The specified
element is added to the bag. If the element is already a member of the
bag, it is inserted a second time.

RemoveElement

Overrides the inherited method from the collection. The specified
element is removed from the bag. If there is more than one of the
specified elements in the Bag, only one of the elements is removed.
Because a Bag is an unordered collection, the actual element removed
from the physical structure is not specified. If the element to be
removed does not exist, the method does nothing. It does not raise an
expectation.

Union Returns a new Bag object whose elements are the union of the elements
in the specified bag and the bag on which the method is performed.

 The following example creates two Bag objects. One contains a
student's list of grades from semester one and the other contains a list of
grades from semester two.

 Runtime Environment 82

 CREATE T%Semester1=Base$Bag(85,85,90,77,93,85)

 CREATE T%Semester2=Base$Bag(91,76,90,90,85)

 The following example invokes the Union method:

 SET T%AllGrades=T%Semester1.Union(T%Semester2)

 As a result, T%AllGrades is a Bag object that contains all 11 grades
from both Bag objects.

Intersection Returns a new Bag object whose elements are the intersection of the
elements in the specified bag and the bag on which the method is
performed.

 The following example creates two Bag objects. One that contains a
student's list of grades from semester one and the other contains a list of
grades from semester two.

 CREATE T%Semester1=Base$Bag(85,85,90,77,93,85)

 CREATE T%Semester2=Base$Bag(91,76,90,90,85)

 The following example invokes the Intersection method:

 SET T%InterBag=T%Semester1.Intersection(T%Semester2)

 As a result, T%InterBag is a Bag object that contains elements 90 and
85.

Difference Returns a new Bag object whose elements are the set theoretic
difference of the elements in the specified bag and the bag on which the
method is performed.

 The following example creates two bag objects. One contains a
student's list of grades from semester one and the other contains a list of
grades from semester two.

 CREATE T%Semester1=Base$Bag(85,85,90,77,93,85)

 CREATE T%Semester2=Base$Bag(91,76,90,90,85)

 The following example invokes the Difference method:

 SET T%DiffBag=T%Semester1.Difference(T%Semester2)

 As a result, T%DiffBag is a Bag object that contains elements 91, 76,
90, 85, 77, 93, and 85 (the difference between the two Bag objects).

 Runtime Environment 83

Array Class
An Array class is a one dimensional dynamically sized grouping of elements. An array is
accessible directly through a 1-based integer position specifier.

Methods

The following is a list of the methods for an Array class:

InsertElementAt Overrides the inherited method from a collection. The specified
element is added to the array at the specified position. The length of
the array is resized to fit the new element. All elements from the
insertion position and beyond are shifted over a cell. Because of
this, insertion into an array can be slow and its use is discouraged.

RemoveElementAt Replaces any current value contained in the cell of the array at the
specified position with null. It does not remove the cell.

ReplaceElementAt Replaces the element stored at the specified position with the
specified element.

RetrieveElementAt Retrieves the element stored at the specified position in the array. If
no element is stored at that cell, null is returned.

Resize Sets the size of the array to the specified length. If the size is made
smaller, any elements stored in cells beyond the new length are
removed.

List Class
A List is an ordered collection that allows duplicates and is implemented as a doubly-
linked list. The elements of a list are ordered by the order of their insertion. A list has a
head and a tail. It is fast to add or remove an element from the head or the tail of the list,
or insert or delete an element from the middle of a list.

Properties

CurrentPosition is a property of the List class. Elements of a list are numbered 1 to n.
This property is set as a side effect of each Insert, Remove, Replace, or Retrieve method
executed on a list. An Insert method sets CurrentPosition to the position after the newly
inserted element. A Remove method sets CurrentPosition to the number of the element
preceding the element removed, unless the element removed was the first, in which case
CurrentPosition is set to 1. Replace or Retrieve methods set CurrentPosition to the
number of the element replaced or retrieved.

Methods

The following is a list of the methods for a List class:

 Runtime Environment 84

InsertElement Overrides the inherited method from the collection. The specified
element is added to the list at CurrentPosition. If CurrentPosition
is not set, the element is added to the end of the list.

InsertElementAfter Inserts the specified element after the specified position.

InsertElementBefore Inserts the specified element before the specified position.

InsertFirstElement Inserts the specified element at the head of the list.

InsertLastElement Inserts the specified element at the end of the list. The element
that was previously at the end of the list points to this new
element.

RemoveElementAt Removes the element at the specified position in the list.

RemoveFirstElement Removes the element in the first position in the list.

RemoveLastElement Removes the element at the end of the list.

ReplaceElementAt The specified element replaces the element at the specified
position in the list.

RetrieveElementAt Returns the element stored at the specified location.

RetrieveFirstElement Returns the element stored in the first position in the list.

RetrieveLastElement Returns the element stored in the end position in the list.

Dictionary Class
A Dictionary is an ordered collection in which the elements are arranged according to the
values of a certain common property. This property is known as the "key" property, and
all the objects inserted into the dictionary must report a value for this property.
Dictionaries watch their elements, so if a property assignment occurs, then the dictionary
will automatically update itself to reflect the new property value. This process is
illustrated in the following simple diagrams.

 Runtime Environment 85

The Dictionary's elements are arranged according to the values of a certain property,
shared by all the objects. The Dictionary's Key property exposes the property name to
external objects.

Whenever a new element is inserted, the Dictionary stores it based on the current value of
this property, and issues a watch on the property in case it changes later.

If any object subsequently assigns the value of this property, then a callback is generated
to the Dictionary, informing it of the change. It then inquires back to the property, and
updates its internal structure accordingly.

Methods

The following is a list of methods implemented by Dictionary:

ContainsElement True if the Dictionary contains a specific OID.

ContainsKey True if the Dictionary contains an object whose Key
property is equal to the specified value.

Copy Copies the elements contained within the current
Dictionary into a second Dictionary.

CreateIterator Returns a DictionaryIterator, tied to the current
Dictionary.

InsertElement Inserts a new OID into the Dictionary. The object can
only be inserted once, and must implement the Key
property. The property value can be null, and multiple
elements can have the same property value.

 Runtime Environment 86

RemoveAll Removes all the elements in the Dictionary, setting its
Cardinality to 0.

RemoveElement Removes the specified OID from the dictionary, if
found.

RemoveElementAt Accepts a DictionaryIterator as a parameter. Removes
the element found at the position specified by the
Iterator.

ReplaceElementAt Accepts a DictionaryIterator as a parameter. Replaces
the element found at the specified position with the
specified replacement value. The replaced element is
removed from the Dictionary.

RetrieveElementAt Accepts a DictionaryIterator as a parameter. Returns
the element at the specified position.

RetreiveElementsByKey Returns a list of elements whose Key property value
equals the specified key value.

RetrieveElementsByPattern Returns a list of elements whose Key property value
matches the specified pattern.

Properties

The following is a list of properties implemented by Dictionary:

AllowsDuplicates True, since Dictionaries allow the same property value to occur
more than once.

Cardinality Returns the number of elements in the Dictionary

IsEmpty True if the Dictionary's Cardinality equals 0.

IsOrdered True, since Dictionaries are ordered by the value of a common
property, which must be shared by all elements.

Key Contains the name of the property used to order the elements
contained within the Dictionary.

Log Class
The Log class is a collection in which the elements are arranged according to date/time
values associated with each one.

Methods

The following table lists the method implemented by Log.

 Runtime Environment 87

ContainsElement Returns true if the Log contains the specified element.

Copy Copies the elements contained within the current Log into a
second Log.

Create Iterator Returns a LogIterator associated with the current Log.

InsertElement Inserts a new element into the Log at the current date and time.

InsertElementAt Inserts a new element into the Log at the specified date and
time.

RemoveAll Removes all elements in the Log.

RemoveElement Removes the specified OID from the Log.

RemoveElementAt Accepts a LogIterator as a parameter. Removes the element
found at the specified position.

ReplaceElementAt Accepts a LogIterator as a parameter. Replaces the element
found at the specified position with the specified replacement
element.

RetrieveElementAt Accepts a LogIterator as a parameter. Returns the element
found at the specified position.

RetrieveTimeStamp Accepts an OID of an object as a parameter. Returns the time
stamp associated with the specified object.

Properties

The following table lists the properties supported by Log.

AllowsDuplicates Returns true, because Logs allow more than one entry to have
the same associated time value. Adding the same object into the
Log has no effect.

Cardinality Returns the number of elements in the Log.

IsEmpty Returns true if the Cardinality of the Log equals 0.

IsOrdered Returns true, since Logs are ordered by date/time values.

Map Class

Overview

A Map collection manages a set of ordered pairs, in which each key is associated with
exactly one value. A Map permits you to easily find the value associated with a
particular key. This collection is similar to MultiMap, which permits more than one
value per key.

 Runtime Environment 88

Creation:
CREATE Variable=Base$MultiMap(Argument)

AllowsDuplicates property

This property returns true, since Maps allow the same value to be inserted more than
once. (Maps only permit one value per key, but the same value can appear under
numerous different keys.)

Example
IF I%Collection.AllowsDuplicates DO I%Collection.InsertElement(T%Key,T%Value)

ContainsElement method

Accepts a value as input, and returns true if that value appears in the Map. This method
may require an exhaustive search of all elements in the Map.

Example
IF 'I%Map.ContainsElement(T%User) DO I%Map.InsertElement(T%Name,T%User)

ContainsKey method

Accepts a key as input, and returns true if that key appears in the Map. This efficient
method uses a simple lookup of the Key.

Example
IF 'I%Map.ContainsKey(T%Name) DO I%Map.InsertElement(T%Name,T%User)

Copy method

Copies the current Map collection into a new target Map. The specified collection must
be a Map. It is illegal to use the Copy method to copy the Map into another,
heterogeneous collection.

Example
DO I%OldMap.Copy(T%NewMap)

CreateIterator method

Returns a new MapIterator object.

Example
SET T%Iter=T%MyMap.CreateIterator

InsertElement method

Inserts the specified key/value combination into the Map. The Cardinality is increased by
one.

Example

 Runtime Environment 89

DO I%MyMap.InsertElement(T%Key,T%Value)

IsOrdered property

True, because MultiMaps are always ordered.

RemoveAll method

Removes all elements from the Map, resetting its Cardinality to zero. All collection
iterators remain stable.

Example
DO I%Multi.RemoveAll

RemoveElement method

Removes any element from the Map collection matching the specified key. May affect
the Cardinality of the collection, and possibly IsEmpty. Any iterators pointing to the
specified position will remain stable.

Example
Do T%MyMap.RemoveElement(T%Key)

RemoveElementAt method

Removes any element from the Map collection matching the specified key or iterator.
May affect the Cardinality of the collection, and possibly IsEmpty. Any iterators
pointing to the specified position will remain stable.

Examples:
DO I%MyMap.RemoveElementAt(T%Key)

DP I%MyMap.RemoveElementAt(T%Iterator)

ReplaceElementAt method

Replaces the item described by the specified iterator with the new specified value.
Requires two parameters, an iterator describing the position to be replaced, and the new
value for that position.

Example
DO T%MyMap.ReplaceElementAt(T%Iterator,T%NewValue)

RetrieveElement method

Returns any item having the specified key. The item's value is returned.

Example
SET T%Value=I%MyMap.RetrieveElement(T%Key)

RetrieveElementAt method

 Runtime Environment 90

Returns any item matching the specified key or iterator position. The item's value is
always returned.

Examples:
SET T%Value=I%Map.RetrieveElementAt(T%Iterator)

SET T%Value=I%Map.RetrieveElementAt(T%Key)

RetrieveElementsByKey method

Returns a list of items matching the specified key. If no key is specified, then the Map's
null position is used. The item's value is always returned.

Examples:
SET T%List=T%MyMap.RetrieveElementsByKey(T%Key)

SET T%List=T%MyMap.RetrieveElementsByKey

RetrieveElementsByPattern method

Returns a list containing all elements whose values match the specified pattern.

Example
SET T%List=I%Map.RetrieveElementsByPattern("1a.29anp")

RetrieveKeysByPattern method

Returns a list containing all elements whose keys match the specified pattern.

Example
SET T%List=I%Map.RetrieveKeysByPattern("1a.29anp")

MultiMap Class

Overview

A MultiMap collection manages a set of ordered pairs, in which each key is associated
with one or more values. A MultiMap permits you to easily find all of the values
associated with a particular key. This collection is similar to Map, which only permits
one value per key.

The keys in the collection are ordered according to the normal sorting sequence. If
multiple values contain the same keys, then no particular ordering among them is
guaranteed.

Creation
CREATE Variable=Base$MultiMap

AllowsDuplicates property

 Runtime Environment 91

This property returns true, since MultiMaps allow the same value to be inserted more
than once.

Example
IF I%Collection.AllowsDuplicates DO I%Collection.InsertElement(T%Key,T%Value)

ContainsElement method

Accepts a value as input, and returns true if that value appears in the MultiMap. This
method may require an exhaustive search of all elements in the MultiMap.

Example
IF 'I%MultiMap.ContainsElement(T%User) DO I%MultiMap.InsertElement(T%Name,T%Use

r)

ContainsKey method

Accepts a key as input, and returns true if that key appears in the MultiMap. This
efficient method uses a simple lookup of the Key.

Example
IF 'I%MultiMap.ContainsKey(T%Name) DO I%MultiMap.InsertElement(T%Name,T%User)

Copy method

Copies the current MultiMap collection into a new target MultiMap. The specified
collection must be a MultiMap. It is illegal to use the Copy method to copy the
MultiMap into another, heterogeneous collection.

Example
DO I%OldMulti.Copy(T%NewMulti)

CreateIterator method

Returns a new MultiMapIterator object.

Example
SET T%Iter=T%MyMultiMap.CreateIterator

InsertElement method

Inserts the specified key/value combination into the MultiMap. The Cardinality is
increased by one.

Example
DO I%MyMultiMap.InsertElement(T%Key,T%Value)

IsOrdered property

True, because MultiMaps are always ordered.

 Runtime Environment 92

RemoveAll method

Removes all elements from the MultiMap, resetting its Cardinality to zero.

Example
DO I%MyMultiMap.RemoveAll

RemoveElement method

Removes all elements from the MultiMap collection matching the specified key. May
affect the Cardinality of the collection, and possibly IsEmpty. If any iterators point to the
affected position, then they will be reset.

Example
DO T%MyMultiMap.RemoveElement(T%Key)

RemoveElementAt method

Removes all elements from the MultiMap collection matching the specified key or
iterator. (A key will remove all references to the given key while an iterator will remove
only the item that the iterator currently points to.) May affect the Cardinality of the
collection, and possibly IsEmpty. If any iterators point to the affected position, then they
will be reset.

Examples:
DO I%MyMulti.RemoveElementAt(T%Key)

DO I%MyMulti.RemoveElementAt(T%Iterator)

ReplaceElementAt method

Replaces the item described by the specified iterator with the new specified value.
Requires two parameters, an iterator describing the position to be replaced, and the new
value for that position.

Example
DO T%MyMultiMap.ReplaceElementAt(T%Iterator,T%NewValue)

RetrieveElement method

Returns a list of items having the specified key.

The first position in the list contains the key specified as an argument, and the remaining
positions contain any matching item values. The values are not ordered in any special
way.

Note that the returned list will always contain at least one element (the specified key).
The second element in the list is the first matching value.

Example
SET T%List=I%MyMultiMap.RetrieveElement(T%Key)

 Runtime Environment 93

RetrieveElementAt method

Returns a list of items matching the specified key or iterator position.

The first item of the list is always the key of the items in the remaining list positions.

If the argument is a key, then all items having that key are added to the list. If the
argument is an iterator, then the single item at that position is added.

Examples:
SET T%List=I%MultiMap.RetrieveElementAt(T%Iterator)

SET T%List=I%MultiMap.RetrieveElementAt(T%Key)

RetrieveElementsByKey method

Returns a list of the items matching the specified key. If no key is specified, then the
MultiMap's null position is used.

The first position in the list contains the specified key, and the remaining positions
contain the associated values.

Examples:
SET T%ReturnList=T%MyMap.RetrieveElementsByKey(T%Key)

SET T%ReturnList=T%MyMap.RetrieveElementsByKey

RetrieveElementsByPattern method

Returns a list containing all elements whose values match the specified pattern.

Example
SET T%List=I%MultiMap.RetrieveElementsByPattern("1a.29anp")

RetrieveKeysByPattern method

Returns a list containing all elements whose keys match the specified pattern.

Example
SET T%List=I%MultiMap.RetrieveKeysByPattern("1a.29anp")

Choosing a Collection Class
The collection that you choose for your particular application depends on a number of
factors. These factors include the following features of a collection:

• Order

• Indexing

• Performance of certain methods

 Runtime Environment 94

The following table describes the characteristics of each collection class. Keep these
points in mind when deciding which collection class to use.

Class Order Indexed Insertion
Speed

Search
Speed

Duplicate
Values

Set None No Fast Fast No

Bag None No Fast Fast Yes

Array Insertion /
index

By integer Slow Slow Yes

List Insertion No Fast Slow Yes

Map By key By key Fast Fast Yes

MultiMap By key By key Fast Fast Yes

Dictionary By property By property Fast Fast No

Log By time By time Fast Fast Yes

In the previous table, the term ordered means the order in which elements are traversed
or removed in the collection, if any. This is discussed below. The term indexed means
that the items in the collection can be retrieved by some associated index value.

Columns 4 and 5 describe the performance of each class. In applications that require
many insertions into the collection, insertion speed is important. In other applications,
lookup speed may be more important. "Insertion" is taken to mean insertion at any
position within the collection—not necessarily at the end, where insertion speed improves
for some collections.

A collection such as a Bag is "unordered," because its elements cannot be relied upon to
come out in any specific order. (Note that an unordered collection is not guaranteed to be
randomly ordered, either.) However, you can rely on there being some arbitrary order,
and this may be useful to you when traversing the elements of the collection. Any
specific assumptions about the order in which elements are sorted is considered invalid.
This means that the ordering is completely arbitrary, and subject to change.

Iterators have a contract regarding traversal of the collection, which varies according to
whether the iterator is ordered. See the section on iterators for more details.

Creating Collection Objects
A collection, like any object, is instantiated with the CREATE command. However, a
collection can be created as a component of a parent object. In that case, it is part of the
class definition for that object and the collection becomes a part of the encapsulated state
of the parent; it is automatically created and destroyed along with its parent. Also, an
application can dynamically CREATE a collection at runtime to store its own elements
or to pass off to an external object.

 Runtime Environment 95

The following are different ways that you can create a collection:

Inline code A method can explicitly contain a CREATE command that creates the
collection. This is a flexible approach: a handle to the collection can be
created in any kind of variable.

Create
Binding

An instance variable can be defined as an automatically-created
collection. In the variable definition editor, set the variable's binding to
CREATE, and its class to the appropriate collection class.

Static Binding An instance variable can be defined as having a static binding, and
created manually in the parent's CREATE method. This is particularly
useful when special setup work is required, such as inserting a number of
elements into the collection when the parent is created.

For more about variable definitions, see the section on the Variable Definition Editor in
the EsiObjects Tools Guide.

All EsiObjects collections can be created with an initial set of elements placed in the
collection. These elements are specified as parameters on the CREATE command. For
example, the following command creates a Set object with six elements:
CREATE I%PrimeNumbers=Base$Set(2,3,5,7,11,13)

There is no explicit limit on the number of elements that you can specify on the
CREATE command. The number is restricted only by the maximum length of a
command line in the underlying M platform. Note that the length of an EsiObjects line is
generally shorter than the length of the resulting M line.

In the following example, a Bag collection is created with five elements:
CREATE I%Grades=Base$Bag(85,93,79,85,90)

The following command creates an array object and places 4 elements in the array:
CREATE I%Heading=Base$Array("Date","Time","Page","Title")

All the collections support insertion of elements during creation.

Manipulating Collection Objects
Collection Life Cycle
Like any other object, collection objects have a life cycle of creation, lifetime, and
destruction. Collections can be destroyed explicitly with the DESTROY command. If
the collection is a sub-component of another object, then the collection is removed when
the object containing it is destroyed.

Destroying a collection has no effect on any objects that are elements of the collection.
To destroy its elements, see the section on Deleting all Objects in a Collection, below.

 Runtime Environment 96

Accessing all Elements in a Collection
The elements in a collection can be accessed manually, or by using an iterator. This
section describes the manual process.

List collections use a position indicator to point to a given position. Array collections
use an index. To manually access all elements in these collections, simply retrieve them
in sequential order at each of the positions in the collection.

The following lines can be placed inside a method, or executed in sequence from the
EsiObjects Xecute Shell or an object browser. They create an Array object, populating it
with values, and then access all members of the array, placing them in the output
window. (Make certain the output window is visible first.)
CREATE I%Array=Base$Array("Monday","Tuesday","Wednesday","Thursday","Friday","S

aturday","Sunday")

FOR T%X=1:1:I%Array.Length DO $ENV.Output(I%Array.RetrieveElementAt(T%X))

DESTROY I%Array

KILL I%Array

Note that the Array implements an unusual Length property, making it possible to
determine how many positions have been allocated. The following example is similar,
except it uses a List. Note that the Cardinality property is used to determine the number
of elements. (All collections have a Cardinality property.)
CREATE I%List=Base$List("Uno","Dos","Trés","Cuatro","Cinco","Seis","Siete","Och

o","Nueve","Diéz")

FOR T%X=1:1:I%List.Cardinality DO $ENV.Output(I%List.RetrieveElementAt(T%X))

DESTROY I%List

KILL I%List

Only List and Array permit manual access to all their elements, because only these
collections use sequential numbers for lookup purposes. All collections use an object
called an iterator to traverse their elements. Generally speaking, the use of iterators is the
preferred way to sequentially access collection elements.

Iterators

What is an Iterator?

All EsiObjects collections use iterators to sequentially traverse their elements. The
iterator is a special object that establishes a unique relationship with the collection,
permitting extra-efficient traversal. Thus, the use of iterators is always the preferred way
for an external object to loop through the elements in a collection, and for many kinds of
collections it is the only way.

 Runtime Environment 97

IterationOrder="Forward"

IterationOrder="Backward"

1 2 3 4 5

Start

Start

End

End

In this diagram, the vertical blue stripes denote iterator positions, while the numbered
boxes represent elements in the collection.

This diagram shows an ordered collection containing five elements. If the iterator's
direction is "Forward", it will proceed sequentially from items one through five. If the
iterator's position is "Backward", then it will proceed from five to one. The iterator is
always considered to be "between" elements, as shown by the thick blue horizontal bars.

The iterator's Next method returns the next item in the collection, and moves the iterator
ahead one position. This is shown in the following diagram.

IterationOrder="Forward"

1 2 3 4 5

Next

Returns element 2

In this diagram, the iterator starts between elements 1 and 2 of an ordered collection such
as a List. The Next method is invoked. The iterator's position is advanced forward one
element, leaving it between elements 2 and 3. The Next method returns the value of
element 2 (without removing it).

Next, the iterator's direction is changed to Backward. The following diagram illustrates
this situation. The iterator is still in the same position, between elements 2 and 3, but the
direction has changed.

IterationOrder="Backward"

1 2 3 4 5

Position

Finally, the Next method is once more invoked. The iterator moves backward one
element, from the point between elements 2 and 3, to the point between elements 1 and 2.
The value of element 2 is returned. This is illustrated in the following diagram.

 Runtime Environment 98

IterationOrder="Backward"

1 2 3 4 5

Next

Returns element 2

Some Simple Iterator Examples

The following example illustrates iterators for the Set class. A set of prime numbers is
created in the instance variable I%Primes, and a special SetIterator object is used to
access elements from the collection. Many of the commands use the output window, so
make sure that it is visible before trying this example.

The lines of code in this example can be entered into a method, or can be typed
sequentially from the Xecute Shell or an Object Browser.

First, a new set is created, and a set iterator is returned.
CREATE I%Primes=Base$Set(2,3,5,7,11,13,17,19,23,29,31,37)

SET I%Iterator=I%Primes.CreateIterator

Next, the first and last elements of the set are displayed in the output

window.

DO $ENV.Output("First: "_I%Iterator.First)

DO $ENV.Output("Last: "_I%Iterator.Last)

Next, the iteration order is set to forwards, and the iterator is reset to the beginning.
(Resetting is necessary because the last element was most recently accessed, above.) All
elements are traversed in forwards order. Note that it is not necessary to tell the iterator
which element to use—it keeps track of that information automatically.
SET I%Iterator.IterationOrder="F" ; Forward (F or 1)

DO $ENV.Output("Order: "_I%Iterator.IterationOrder)

DO I%Iterator.Reset

DO $ENV.Output("----------")

FOR SET T%Item=I%Iterator.Next QUIT:T%Item="" DO $ENV.Output(T%Item)

Next, the iteration order is set to backwards, and all elements are traversed in reverse
order. (In this case, it is not necessary to reset the iterator, because it is already at the end
following the most-recent traversal.)
SET I%Iterator.IterationOrder="B" ; Backwards (B or -1)

DO $ENV.Output("----------")

DO $ENV.Output("Order: "_I%Iterator.IterationOrder)

FOR SET T%Item=I%Iterator.Next QUIT:T%Item="" DO $ENV.Output(T%Item)

IterationOrder Property

The IterationOrder property returns the direction in which the collection will be
traversed by the iterator. Valid assignment values are as follows:

 Runtime Environment 99

• "F" or 1 for Forward

• "B" or -1 for Backward
Accessing the value of the IterationOrder property returns "Forward" or "Backward".

For unordered collections (Bag or Set), the order of iteration is arbitrary, though not
random. For ordered collections (List, Array, etc.), the order is fixed, and backward
traversal should be the opposite of forward traversal. By default, IterationOrder is
Forward.

Example

The lines of code in this example can be entered into the Xecute shell or an object
browser. Alternatively, they can be entered into a scratch method.

This example illustrates the use of the IterationOrder property in a List object. A List
containing five elements is created, and an iterator to the list is returned. The iterator is
used to traverse the first two elements in the List.
CREATE I%List=Base$List("White","Black","Red","Blue","Yellow")

SET I%Iterator=I%List.CreateIterator

DO $ENV.Output(I%Iterator.Next)

The above line returns the first element, White.
DO $ENV.Output(I%Iterator.Next)

The above line returns the second element, Black.

Here is the current status of the iterator, at this point.

IterationOrder="Forward"

1 2 3 4 5

Position

YellowBlueRedBlackWhite

In this diagram, the vertical blue stripes denote iterator positions, while the numbered
boxes represent elements in the collection.

The iterator's position is between elements 2 and 3 of the list. Its direction is Forward,
meaning that the next element is element 3. Invoking the Next method would return the
third element, Red. However, let's instead change the iteration order.

Changing the iteration order affects the direction in which the iterator moves through the
collection. The following line of code changes the order to Backward.
SET I%Iterator.IterationOrder="B"

The following diagram summarizes the status of the iterator, following this change.

 Runtime Environment 100

IterationOrder="Backward"

1 2 3 4 5

Position

YellowBlueRedBlackWhite

Now the iterator is still positioned between elements 2 and 3 in the collection, but the
direction is backward. Thus, the next element would be element 2 (Black.) The
following line of code returns the next element.
DO $ENV.Output(I%Iterator.Next)

Note that element 2, Black, is again returned.

Next Method

The Next method returns the value of the next element in the collection, as defined by the
position of the iterator. It also advances the iterator one element ahead in the collection.

If there is no next element, this method returns null. (Note: because many collections
can contain null elements, testing to see whether a null element is returned may not be a
reliable way to determine whether the collection is empty. See the More method for
further details.)

The direction of iteration depends on the IterationOrder property. If IterationOrder is
Forward, then Next will always move one position ahead in the collection. If
IterationOrder is Backward, then Next will move in reverse.

Example

The lines of code in this example can be entered into the Xecute shell or an object
browser. Alternatively, they can be entered into a scratch method.

This example illustrates the use of the Next method in a List collection. A List
containing five elements is created, and an iterator to the list is returned. The iterator is
used to traverse the first two elements in the List.
CREATE I%List=Base$List("White","Black","Red","Blue","Yellow")

SET I%Iterator=I%List.CreateIterator

DO $ENV.Output(I%Iterator.Next)

The above line returns the first element, White.

The following diagram shows what happens next. The iterator is positioned between the
first and second list elements. Invoking the Next method moves the iterator one position
forward, to the point between the second and third elements. The diagram illustrates this.

 Runtime Environment 101

IterationOrder="Forward"

1 2 3 4 5

Next

Returns element 2

YellowBlueRedBlackWhite

In this diagram, the vertical blue stripes denote iterator positions, while the numbered
boxes represent elements in the collection.
DO $ENV.Output(I%Iterator.Next)

The above line returns the second element, Black, as shown in the diagram.

Now the iterator's position is between elements 2 and 3 of the list. Its direction is
Forward, meaning that the next element is element 3. Invoking the Next method would
return the third element, Red. However, let's instead change the iteration order.

Changing the iteration order affects the direction in which the iterator moves through the
collection. The following line of code changes the order to Backward.
SET I%Iterator.IterationOrder="B"

Now the iterator is still positioned between elements 2 and 3 in the collection, but the
direction is backward. Thus, the next element would be element 2 (Black.) The
following line of code returns the next element. The diagram illustrates this.

IterationOrder="Backward"

1 2 3 4 5

Next

Returns element 2

YellowBlueRedBlackWhite

DO $ENV.Output(I%Iterator.Next)

Note that element 2, Black, is again returned.

First Method

This method returns the first element in the collection, based on the current iteration
order. The iterator is positioned after the returned element.

 Runtime Environment 102

IterationOrder="Forward"

IterationOrder="Backward"

1 2 3 4 5

First

First

In this diagram, the vertical blue stripes denote iterator positions, while the numbered
boxes represent elements in the collection.

• if the iteration order is forward, then the first element in the collection is returned

• if the iteration order is backward, then the last element in the collection is returned

This method is equivalent to invoking the Next method immediately after the Reset
method.

Last Method

This method returns the last element in the collection, depending on the iteration order.
The iterator is positioned at the end of the collection. The following diagram illustrates
this method.

IterationOrder="Forward"

IterationOrder="Backward"

1 2 3 4 5

Last

Last

In this diagram, the vertical blue stripes denote iterator positions, while the numbered
boxes represent elements in the collection.

The Last method makes it possible to position the iterator at the end of the method. This
can be accomplished by invoking the Last method, while ignoring its return value.
DO T%Iterator.Last ; Sets position to end.

More Method

This method returns true if there are more elements to be traversed in the collection, as
defined by the iterator's position. The following diagram summarizes the ending position
of an iterator in an ordered collection. Note that the end position follows the last element
of an ordered collection if the iteration order is forward, but precedes the first element if
the iteration order is backward.

 Runtime Environment 103

IterationOrder="Forward"

IterationOrder="Backward"

1 2 3 4 5

End

End

In this diagram, the vertical blue stripes denote iterator positions, while the numbered
boxes represent elements in the collection.

This method returns a true or false value, based on the following conditions:

• if the iterator's position is at the end of the collection, false is returned

• otherwise, true is returned.

Example
The lines of code in this example can be entered into the Xecute shell, an object browser,
or into a scratch method.

First, a Bag collection is created, containing twelve different elements: the names of the
months of the year.
CREATE I%Months=Base$Bag("January","February","March","April","May","June","Jul

y","August","September","October","November","December")

Next, an iterator is created for the Bag collection.
SET I%Iter=I%Months.CreateIterator

Finally, a FOR loop is used to list the collection's elements to the output window.
FOR QUIT:'I%Iter.More DO $ENV.Output(I%Iter.Next)

Reset Method

This method resets the iterator to the starting position of the collection. Depending on
the iteration order, this position can either precede the first element, or follow the last
element, of an ordered collection. The following diagram summarizes the iterator's
starting position.

IterationOrder="Forward"

IterationOrder="Backward"

1 2 3 4 5

Start

Start

In this diagram, the vertical blue stripes denote iterator positions, while the numbered
boxes represent elements in the collection.

 Runtime Environment 104

Immediately after the Reset method has been invoked, both the Next and First methods
would return the same value (the first element in the collection, as determined by its
current iteration order.)

Using Iterators

Iterating a Collection

Iterators work the same ways for all collections. They can be used to conveniently loop
through (or iterate) the elements in the collection.

The code in this example is intended to be used in a scratch method. If you would like to
try it out, then just create your own temporary class in a User library (do not use one of
the system-level libraries, such as ESI or Base) and create a new method of that class.
This example will assume that a class called Test in the User library is created, and that
the method IterationTest is added to this class.

 Runtime Environment 105

The method's code is shown below. Note that this code can be copied and pasted directly
into a method editor.

; Method - User$Test.Primary::IterationTest

Input:() ; This method accepts no parameters.

; First, create a List collection containing the days of the week.

CREATE T%Collection=Base$List("Monday","Tuesday","Wednesday","Thursday","

Friday","Saturday","Sunday")

; Next, obtain an iterator to the collection.

SET T%Iter=T%Collection.CreateIterator

; Display the collection's last item.

DO $ENV.Output("Last item: "_T%Iter.Last)

; Display the collection's first item.

DO $ENV.Output("First item: "_T%Iter.First)

; Now, we'll set the iterator to work backwards.

SET T%Iter.IterationOrder="B"

DO $ENV.Output("Iteration order: "_T%Iter.IterationOrder)

; Reset the iterator, to ensure it's at the beginning position.

DO T%Iter.Reset

; The following loop displays a report to the output window.

; Appropriate information is displayed for all collection elements.

DO $ENV.Output("Days of week report:")

FOR QUIT:'T%Iter.More DO

. ; Get next day...

. SET T%Day=T%Iter.Next

. ; Weekend or weekday?...

. SET T%Type=$select($extract(T%Day)="S":"Weekend",1:"Weekday")

. ; Display relevant information, indented 2 sp...

. DO $ENV.Output(" "_T%Day_" <"_T%Type_">")

DO $ENV.Output("(end of week)")

; Cleanup work follows...

DESTROY T%Iter,T%Collection

QUIT ; End of method.

This method creates a collection containing the days of the week. It then creates an
iterator to the collection, and puts the iterator through the paces by invoking every one of
its behaviors (methods and properties). The results are displayed in the Output window,
so it's a good idea to make certain this window is visible before executing the method.

From the Xecute shell, enter the following two commands:
CREATE I%Scratch=User$Test

DO I%Scratch.IterationTest

The following text should appear in the output window:

Last item: Sunday

First item: Monday

Iteration order: Backward

 Runtime Environment 106

Days of week report:

 Sunday <Weekend>

 Saturday <Weekend>

 Friday <Weekday>

 Thursday <Weekday>

 Wednesday <Weekday>

 Tuesday <Weekday>

 Monday <Weekday>

(end of week)

Iterators generally work the same way for all collections, with two exceptions:

• each collection has different characteristics, and this is reflected in the iteration order

• some collections have special capabilities, and their iterators have been enhanced to
provide supporting functionality

Multiple Iterators

One collection can have multiple iterators. This may occur when several different objects
are iterating through the same collection in different ways, or when a single object has
more than one reason to iterate the collection. Generally speaking, the iterators will
always remain stable under these circumstances. For example, multiple iterators do not
directly affect each other's position within the collection, and will not cause problems.

Removal of Elements

Sometimes, the removal of an element may affect an existing iterator whose current
position is at the removed element. Even in this case, the iterator's behavior is stable.
For example, invoking the Next method simply returns the next element after the deleted
element.

Two principles apply to the state of the iterator:

• Any behaviors that depend on the iterator's current position will reflect a "snapshot"
of the collection, the last time it was accessed;

• Any time the iterator's position is moved, its new position will be based on the
collection's current state at the time of iteration.

Destroying the Collection

For example, if a collection is destroyed, the iterator's internal state does not change until
the next iteration occurs. At that time, the iterator will notice that the collection has been

 Runtime Environment 107

destroyed. From then on it will behave as though all collection elements had been
exhausted.

Example

The following example illustrates the use of multiple iterators. The first iterator is used
to traverse the collection forwards, and the second iterator is used to traverse the
collection backwards.

The commands in this example may be entered from the Xecute shell, or an object
browser, or they may be entered into a scratch method.

Note: this simple example uses the days of the week, in German. You don't need to
understand German in order to understand this example.
CREATE I%List=Base$List("Montag","Dienstag","Mittwoch","Donnerstag","Freitag","

Samstag","Sontag")

SET I%IterOne=I%List.CreateIterator

SET I%IterOne.IterationOrder="F"

SET I%IterTwo=I%List.CreateIterator

SET I%IterTwo.IterationOrder="B"

Thus far, we have created a list containing the days of the week, in German. There are
two iterators. The first will move forward through the list, the second backward. The
following FOR loop causes values to be sent to the output window, so make sure it is
visible.
FOR QUIT:'I%IterOne.More DO $ENV.Output(I%IterOne.Next_"/"_I%IterTwo.Next)

The output window should reflect the following values:

Montag/Sontag

Dienstag/Samstag

Mittwoch/Freitag

Donnerstag/Donnerstag

Freitag/Mittwoch

Samstag/Dienstag

Sontag/Montag

Note that the first iterator produces the days of the week in forward order, while the
second produces them in reverse order. Neither iterator affects the other.

Iterating a Set

Because Sets have no specific order, iteration order through a Set is arbitrary. It is also
subject to be changed in the future. Thus, any programming decisions made about
iteration order through sets (except as described below), could possibly be invalidated by
future releases of EsiObjects. In fact, during the past few years the internals of the Set

 Runtime Environment 108

class have been restructured several times to make the collection more robust—the
iteration order of Sets has changed as a result, and may continue to do so in the future.

Iteration begins at the start of the Set, and returns every element in the Set as the Next
method is repeatedly invoked. If elements are removed during the iteration process, then
they will not be visited after their removal from the Set. Any elements inserted into the
Set are guaranteed to be traversed if iteration continues exhaustively.

Changing Iteration Order

When iterating through a Set, changing the IterationOrder property causes the direction
of the iteration to change and returns elements in the reverse direction. (However, since
the collection is unordered, it is impossible to generalize further). Iteration ends at the
point where the iteration order was initially changed.

In this example, the numbers 1 through 10 are inserted into a Set in random order.
CREATE I%NumSet=Base$Set(8,2,7,1,10,4,6,3,9,5)

An iterator is next created.
SET I%Iterator=I%NumSet.CreateIterator

Now five more elements are traversed. (Since there is no guarantee about Set order, it is
impossible to say which items will be returned—different versions of EsiObjects may
produce different behaviors.)
FOR T%X=1:1:5 SET T%Value=I%Iterator.Next DO $ENV.Output(T%Value)

Next, the iterator's order is changed to backwards, and a dividing line is sent to the output
window.
SET I%Iterator.IterationOrder="B"

DO $ENV.Output("----------")

Now all of the elements in the Set are iterated, in reverse order. Notice that all the
elements are now seen in the output window.
FOR QUIT:'I%Iterator.More DO $ENV.Output(I%Iterator.Next)

If elements are added to the set after the iteration process has commenced, then you can
safely assume that the iterator will still encounter those elements. The following
statements illustrate this.

We'll reset the iterator and output another dividing line, in order to start over.
DO I%Iterator.Reset

DO $ENV.Output("----------")

Next, we'll iterate through the first eight elements.
FOR T%X=1:1:8 DO $ENV.Output(I%Iterator.Next)

Now we'll add a new element to the set.
DO I%NumSet.InsertElement(1.5)

 Runtime Environment 109

Continuing the iteration process to the end, notice that the newly-added element is also
returned.
FOR QUIT:'I%Iterator.More DO $ENV.Output(I%Iterator.Next)

Iterating a Bag

Because Bags have no order, the order of elements returned in iterating through a Bag is
arbitrary. It is also subject to be changed in the future, except as described below.

Think of a Bag collection as a large sack into which items are carelessly tossed. There
is no particular order to the items, and no guarantee that two of the items will not look
exactly the same. Think of a bag iterator as a sack-management consultant that you
must hire to shuffle through the items in the sack. You will be shown one item after
another, without actually removing the items from the sack. If anyone else happens to
add items to the sack during this process, then the consultant is responsible for making
sure that you don't miss out on those items.

If you want to make any assumptions about their order, even assuming they are
randomized, then use a different kind of collection instead. If you insert ten things into a
bag and iterate through it, you will get the same things back in some arbitrary order. If
you reverse direction, you will get the same things back in a different order. If items are
inserted into the bag partway through iteration, then the iterator will definitely return
them if you continue to Next through the collection exhaustively. You can trust the
iterator to perform robustly, and to remain continuously stable, no matter what
happens to the bag during the iteration process.

When iterating through a Bag, changing the IterationOrder property causes the direction
of the iteration to change. Also, iteration continues until it reaches the position where the
iteration order was changed. You will not get back the same value twice, unless the same
value was inserted into the bag more than once.

The following example creates a Bag object containing the numbers 85, 76, 90, 85, and
100, and creates an Iterator object to traverse the bag:
CREATE I%Grades=Base$Bag(85,76,90,85,100)

SET I%Iterator=I%Grades.CreateIterator

Now we'll invoke the Next method twice to see the first two elements in the

bag.

DO $ENV.Output(I%Iterator.Next)

DO $ENV.Output(I%Iterator.Next)

Now, we'll turn the iterator Backwards.

SET I%Iterator.IterationOrder="B"

DO $ENV.Output("----------")

Finally, we'll use a FOR loop to traverse all the elements in the bag. Note that none of
the elements are skipped—the iterator reaches the start of the bag, then starts over from
the end and continues until it reaches the point at which the direction was reversed.

FOR QUIT:'I%Iterator.More DO $ENV.Output(I%Iterator.Next)

 Runtime Environment 110

If elements are added to the bag after the iteration process has commenced, then you can
safely assume that the iterator will still encounter those elements.

Iterating an Array

An Array is an ordered collection having numeric indexes. Arrays have a fixed number
of cells: failure to populate an array cell will result in a null value being returned for that
cell. Iteration begins at cell number 1, and continues forward to the last cell in the array.
The value of each cell is returned.

In the following example, an Array is first created containing four elements…
CREATE I%Array=Base$Array(10,20,30,40)

Next, a new 8th element is inserted…
DO I%Array.InsertElementAt("Inserted",8)

An iterator for the array is created…
SET I%ArrayIter=I%Array.CreateIterator

Finally, a loop is used to traverse the array. Notice that, since the fifth through seventh
cells are empty, they will report null values.
FOR QUIT:'I%ArrayIter.More DO $ENV.Output(I%ArrayIter.Next)

Iterating a List

Lists are ordered collections. Their indexes are numeric—the first element is numbered
1, the second is numbered 2, and so on. New elements are generally added to the end of
the list, but it is always possible to insert elements before this point.

In the following example, a List is first created containing four elements…
CREATE I%List=Base$List(10,20,30,40)

Next, a new 3rd element is inserted, causing the subsequent elements to be bumped back
in the list.
DO I%List.InsertElementBefore("Inserted",3)

An iterator for the list is created…
SET I%ListIter=I%List.CreateIterator

Finally, a loop is used to traverse the list. Notice that the 4th and 5th elements were
originally in the 3rd and 4th positions, respectively.
FOR QUIT:'I%ListIter.More DO $ENV.Output(I%ListIter.Next)

Iterating a Dictionary

Dictionaries are ordered by the value of a common property shared by all elements
inserted into the Dictionary. This common property is known as the dictionary's Key
property. The dictionary issues a Watch on the key property of all elements. Any time
an element's key property changes, the dictionary receives a callback, and updates itself
accordingly.

 Runtime Environment 111

The following lines are intended to be entered into the Xecute shell, or an object browser.
They may also be typed into a scratch method.

A Dictionary is created to store Date objects by their TextMonth property.
CREATE I%Dict=Base$Dictionary("TextMonth")

Next, Date objects are created for a number of different day values, beginning with the
current day. Each Date object is inserted into the dictionary.
FOR T%Day=$H:-4567:1 CREATE T%Date=Base$Date(T%Day) DO I%Dict.InsertElement(T%D

ate)

An Iterator is created for the dictionary.
SET I%DictIter=I%Dict.CreateIterator

The iterator is used to traverse all Dictionary elements. The TextDate property of each
element is placed in the output window.
FOR QUIT:'I%DictIter.More DO $ENV.Output(I%DictIter.Next.TextDate)

Iterating a Log

Logs order their elements based on a date/time value associated with each element.
Elements can be inserted for the current time, or at some specific time in the past or
future. For example, a Log could be used to keep track of events in the order that they
occur, or it could be used to sort a number of elements with associated dates (such as date
of birth) in chronological order.

In the following example, a Log is created…
CREATE I%TimeLog=Base$Log

Next, a time stamp object is created to specify a time at which the elements will be
inserted…
CREATE I%Before=Base$TimeStamp

The HANG command is used to make certain that at least one second goes by before the
next command is executed…
HANG 1

The first element is inserted at the current date and time.
DO I%TimeLog.InsertElement("Inserted First")

Next, a second element is inserted at the earlier date and time.
DO I%TimeLog.InsertElement("Inserted Second",I%Before)

An iterator for the log is created…
SET I%LogIter=I%TimeLog.CreateIterator

Finally, a loop is used to traverse the array. Notice that, since the fifth cell is empty, it
will return "" as its value.
FOR QUIT:'I%LogIter.More DO $ENV.Output(I%LogIter.Next)

 Runtime Environment 112

Iterators and Collections that Change

Unordered Collections

When traversing an unordered collection (Set or Bag) using an iterator, the iterator object
obeys a contract which is order independent. The elements in the collection will be
returned in an arbitrary order. Any items inserted into the collection before the iterator
reaches the end are guaranteed to be visited, at some point.

This makes iterators complex. Suppose that two iterators, F and B, are traversing a Set
collection. F is moving forward, and B is moving backward. At some time before either
iterator has reached the end, a new element X is inserted into the Set. If both iterators
continue undisturbed to the end of the collection, and element X is not removed, then
both iterators are guaranteed to eventually reach element X. The following example
illustrates this.
CREATE I%Set=Base$Set("Red","Orange","Yellow","Green","Blue","Violet")

A set is created, containing six of the seven colors of the rainbow.
SET I%F=I%Set.CreateIterator

SET I%B=I%Set.CreateIterator

SET I%B.IterationOrder="B"

Two iterators, F and B, are created to iterate the set. F will move Forward, and B will
move Backward.
DO $ENV.Output(I%F.Next_" / "_I%B.Next)

DO $ENV.Output(I%F.Next_" / "_I%B.Next)

This shows the first two elements, in both the forward and backward directions.
DO I%Set.InsertElement("Indigo")

DO $ENV.Output("----------")

The seventh color, Indigo, is finally added.
FOR QUIT:'I%F.More DO $ENV.Output(I%F.Next_" / "_I%B.Next)

The remaining elements are displayed, both forward and backward. Note that Indigo is
encountered in both directions. (Remember, the Set collection is unordered.)

Ordered Collections

An ordered collection makes certain promises about the order of items—in a List, the
items are arranged according to sequential numeric positions. Iterators may or may not
traverse newly-added elements. The iterator forms a contract that the elements will be
visited in a certain order; thus it is not possible for it to visit newly inserted elements that
have already been passed.

This example is similar in concept to the above example for unordered collections.
Instead, however, a List is used. Because the List is ordered, the iteration process is
different.
CREATE I%List=Base$List("Red","Orange","Yellow","Green","Blue","Violet")

 Runtime Environment 113

A list is created, containing six of the seven colors of the rainbow.
SET I%F=I%List.CreateIterator

SET I%B=I%List.CreateIterator

SET I%B.IterationOrder="B"

Two iterators, F and B, are created to iterate the list. F will move Forward, and B will
move Backward.
DO $ENV.Output(I%F.Next_" / "_I%B.Next)

DO $ENV.Output(I%F.Next_" / "_I%B.Next)

This shows the first two elements, in both the forward and backward directions.
DO I%List.InsertElement("Indigo")

DO $ENV.Output("----------")

The seventh color, Indigo, is finally added to the List.
FOR QUIT:'I%F.More DO $ENV.Output(I%F.Next_" / "_I%B.Next)

The remaining elements are displayed, both forward and backward. Note that Indigo is
encountered in the forward direction, but not backward. (Remember, the List collection
is ordered.)

Collection Operations

Deleting all Objects in a Collection

To delete all objects in a collection, without deleting the collection, use the iteration tech-
niques described previously to get to each element. If the element is an object, you can
send it a DESTROY message. In any case, you invoke the RemoveElementAt method
to remove the element from the location in which it is stored.

Sending a DESTROY message to a collection destroys the collection. However, if the
elements are objects, the objects are not deleted physically from the system. The
DESTROY command has no effect on the objects contained in the collection. Only
references to the objects in the collection are removed. Physical destruction only can
occur by referencing the object directly and by sending it a DESTROY message.

The commands in these examples can be entered into the Xecute shell, or an object
browser, or into a scratch method.

Case I: Also Destroying the Collection

First, we'll create a Set collection, containing a couple of non-object values.
CREATE I%TheSet=Base$Set(99,"Hello",32.765,"")

Next, we'll insert five objects into the set.
FOR T%X=1:1:5 CREATE T%Obj=ESI$Object DO I%TheSet.InsertElement(T%Obj)

Next, we'll create an Iterator for the collection.
SET I%Iter=I%TheSet.CreateIterator

Just to verify, we'll now examine the collection's contents.

 Runtime Environment 114

FOR QUIT:'I%Iter.More SET T%Obj=I%Iter.Next DO $ENV.Output(T%Obj)

We'll now illustrate the process of destroying a collection along with all the elements it
contains. The following FOR loop iterates the collection, destroying every object it
contains.
DO I%Iter.Reset

FOR QUIT:'I%Iter.More SET T%Obj=I%Iter.Next IF $exist(T%Obj) DESTROY T%Obj

Notice that collection elements that are not objects, never need to be destroyed. Hence
the use of the $EXIST function above.

Finally, the collection itself is destroyed.
DESTROY I%TheSet

Note that it was not necessary to remove the elements from the collection, since the
collection was being destroyed anyway.

Case II: The Collection is Not Destroyed

Just as above, we'll create a Set containing five objects as well as some non-object
values, and an Iterator for the collection.
CREATE I%TheSet=Base$Set(99,"Hello",32.765,"")

FOR T%X=1:1:5 CREATE T%Obj=ESI$Object DO I%TheSet.InsertElement(T%Obj)

SET I%Iter=I%TheSet.CreateIterator

Just to verify, we'll examine the collection's elements.
FOR QUIT:'I%Iter.More SET T%Obj=I%Iter.Next DO $ENV.Output(T%Obj)

Next, all elements in the collection are destroyed. (See Case I above for an explanation.)
DO I%Iter.Reset

FOR QUIT:'I%Iter.More SET T%Obj=I%Iter.Next IF $exist(T%Obj) DESTROY T%Obj

Finally, all collection elements are removed.
DO I%TheSet.RemoveAll

Case III: Remove and Destroy Objects Only

In this case, the collection is not destroyed. Furthermore, only objects need to be
removed from the collection—any non-object value does not need to be removed. The
objects being removed also need to be destroyed.

We'll begin by using the same setup lines as in the above examples.
CREATE I%TheSet=Base$Set(99,"Hello",32.765,"")

FOR T%X=1:1:5 CREATE T%Obj=ESI$Object DO I%TheSet.InsertElement(T%Obj)

SET I%Iter=I%TheSet.CreateIterator

Before going on, we can examine the contents of the collection.
FOR QUIT:'I%Iter.More SET T%Elem=I%Iter.Next DO $ENV.Output(T%Elem)

Now the elements that are objects are removed and destroyed, while the other elements
are left intact.

 Runtime Environment 115

DO I%Iter.Reset

FOR QUIT:'I%Iter.More SET T%Obj=I%Iter.Next IF $exist(T%Obj) DO I%TheSet.Rem

oveElementAt(I%Iter) DESTROY T%Obj

DO $ENV.Output("----------")

Now we'll look at the collection's contents again, making sure that only the objects were
all removed.
DO I%Iter.Reset

FOR QUIT:'I%Iter.More SET T%Elem=I%Iter.Next DO $ENV.Output(T%Elem)

Creating a "Stack" Collection

EsiObjects does not include a Stack collection class. However, it is possible to use the
List collection to implement the behavior of a last-in/first-out (LIFO) stack. The
following methods are used to achieve this behavior:

InsertFirstElement used to add a new item to the head of the list

RetrieveFirstElement used to obtain the value of the element at the head of the
list

RemoveFirstElement used to delete the element at the head of the list

IsEmpty used to determine whether any items remain in the list

Thus, using a List, the classic Stack "Push" operation would be equivalent to
InsertFirstElement, while the classic Stack "Pop" operation would be equivalent to the
combination of RetrieveFirstElement and RemoveFirstElement.

The following three lines of code may be typed into a method, or entered from either the
Xecute shell or an object browser. First, a list is created to emulate a stack.
CREATE I%Stack=Base$List

Next, five items are "pushed" onto the stack using InsertFirstElement.
FOR T%X="first","second","third","fourth","fifth" DO I%Stack.InsertFirstElement

(T%X)

Finally, the items are "popped" from the stack using the combination of
RetrieveFirstElement to obtain the value of each item, and RemoveFirstElement to delete
the item. Each item is placed in the output window.
FOR QUIT:I%Stack.IsEmpty SET T%Item=I%Stack.RetrieveFirstElement DO I%Stack.R

emoveFirstElement,$ENV.Output(T%Item)

Notice that the items appear in the reverse of the order in which they were inserted: they
come out backwards. This is entirely in keeping with the LIFO order of stacks.

Creating a "Queue" Collection

EsiObjects does not include a Queue collection class. However, it is possible to use the
List collection to implement the behavior of a first-in/first-out (FIFO) queue. The
following methods are used to achieve this behavior:

 Runtime Environment 116

InsertLastElement used to add a new item to the tail of the list

RetrieveFirstElement used to obtain the value of the element at the head of the
list

RemoveFirstElement used to delete the element at the head of the list

IsEmpty used to determine whether any items remain in the list

Thus, using a List, the classic Queue "EnQueue" operation would be equivalent to
InsertLastElement, while the classic Queue "DeQueue" operation would be equivalent to
the combination of RetrieveFirstElement and RemoveFirstElement.

The following three lines of code may be typed into a method, or entered from either the
Xecute shell or an object browser. First, a list is created to emulate a queue.
CREATE I%Queue=Base$List

Next, five items are "enqueued" onto the stack using InsertLastElement.
FOR T%X="first","second","third","fourth","fifth" DO I%Queue.InsertLastElement(

T%X)

Finally, the items are "dequeued" from the queue using the combination of
RetrieveFirstElement to obtain the value of each item, and RemoveFirstElement to delete
the item. Each item is placed in the output window.
FOR QUIT:I%Queue.IsEmpty SET T%Item=I%Queue.RetrieveFirstElement DO I%Queue.R

emoveFirstElement,$ENV.Output(T%Item)

Notice that the items appear in the same order in which they were inserted: they come
out forwards. This is entirely in keeping with the FIFO order of queues.

 Runtime Environment 117

Using Immutable Classes
What are Immutable Classes?
Immutable classes are classes that produce instances whose values cannot change. Date
and time values are classically immutable. For example, a persons birth date and time are
immutable.

For a detailed discussion of virtual objects read the section at this path: Using Objects,
Building Objects, Virtual Objects.

Immutable classes supplied with EsiObjects can be found in the Base library under the
abstract class Immutable. They are:

• Date

• Interval

• MVariable

• NameValuePair

• TimeRange

• TimeStamp
To learn the details of the services each class provides, use the Session Browser to
migrate the structures. Make sure you Documentation Window is visible.

Immutable Protocols
Immutable Hierarchy

Immutable Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

Date Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

Interval Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

Mvariable Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

 Runtime Environment 118

NameValuePair Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

Time Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

TimeRange Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

TimeStamp Class
Sets are unordered collections (similar to the Bag collection) that do not allow duplicates.

 Runtime Environment 119

Using the DataManager Class
What is a DataManager Class?
The concrete base class DataManager is an aggregate object containing unique,
homogeneous objects arranged according to zero or more key property values.

DataManager

Element
Age=27
Name="Smith"

Element
Age=49
Name="Jones"

Element
Age=38
Name="White"

Element
Age=38
Name="Higuera"

Keys: - Name
- Age

Name Dict.:
- Higuera
- Jones
- Smith
- White

Age Dict.:
- 27
- 38 (2)
- 49

Two other collection classes are used to implement the DataManager. They are:

• Dictionary is collection class used to organize key property values. Dictionaries
have the unique ability to maintain themselves when an object it knows about is
altered. EsiObjects event handling makes this possible.

• Set is used to maintain the master index of objects the DataManager knows about. A
Set is used since the DataManager's elements are unique.

DataManager is used for complex organization of homogeneous data in ways that would
not be possible with a simple Dictionary, or other collection. The objects in a
DataManager are assumed to be of the same class, but this is loosely enforced. However,
the objects must be homogeneous. For example, it is technically possible to insert a
number of different collection objects (i.e. Bag, Set, List, Array, Dictionary and Log), as
long as the DataManager will only use them in ways that are appropriate for any kind of
Collection.

Creating and Destroying a DataManager Object
Creating a DataManager
The CREATE command supports a creation parameter for the Class property. This
property can only be defined at runtime, so it is required. Also, note that the Share

 Runtime Environment 120

creation keyword can be used to specify whether the DataManager is persistent (1) or
transient (0). In order to be available across multiple EsiObjects sessions, the
DataManager must be persistent.

Example

The following CREATE command creates a DataManager in the instance variable DM.
The DataManager is persistent, and the objects inserted into it will be of class "Patient."
CREATE I%DM=Base$DataManager:Share=1:(Class="Patient")

Destroying a DataManager
If data control is turned on, then DESTROY will specifically destroy all the items in the
DataManager and flush all the dictionaries. Otherwise the data manager is simply
destroyed as a normal object.

Example
DESTROY I%DM

The DataManager Interface
Class Property
Returns the name of the base class: items inserted into the data manager are presumed to
be of this class. This class will be used whenever new items are created, and any items
inserted into the DataManager must implement all of its key properties.

Access:

Create, Value

Format:

Class returns a string, the class name of the elements.

Examples:

Create:
CREATE I%DM=Base$DataManager:Share=1:(Class="Patient")

Value:
SET T%DMClassName=I%DM.Class

ControlsData Property
True if the items inserted into the data manager will be treated as components. In that
case, the data manager will destroy all items when they are removed, or when the data

 Runtime Environment 121

manager itself is destroyed. If ControlsData is false, then the data manager will treat its
elements as non-component objects, and will not destroy them.

Access:

Assign, Value

Format:

ControlsData returns 1/0 (1 for true, 0 for false).

Example

Assign:
SET I%DM.ControlsData=1

Value:
IF 'I%DM.ControlsData DESTROY T%ThisElement

CreateElement Method
Creates a new element of the data manager's base class (defined by the Class property).

Input:

none.

Return value:

the newly created object.

Side effects:

the new object is also inserted into the data manager.

Example
SET T%NewItem=I%DM.CreateElement

SET T%NewItem.Name="Jane Doe"

InsertElement Method
Adds an element to the Data Manager, which also causes it to be added to all the
dictionaries in the dictionary list.

Input:

The element to be inserted.

 Runtime Environment 122

Return:

none.

Side effects:

none.

Example
DO I%DM.InsertElement(T%ThisPatient)

RemoveElement Method
Removes the specified element from the data manager (and its associated dictionaries).
Destroys the element if data control is turned on.

Input:

The specific element to be removed.

Returns:

none.

Side effects:

The element may also be destroyed, if instance control is turned on.

Usage:

This method is invoked when a specific element needs to be removed from the data
manager. It is not a way to find and remove a specific element. Finding elements
requires the SelectMatches method.

Example
DO I%DM.RemoveElement(T%DelPat)

Cardinality Property
Returns the number of elements in the data manager.

Access:

Value

Format:

Cardinality returns a non-negative integer; the number of elements in the data manager.

 Runtime Environment 123

SelectMatches Method
Returns the set of elements matching the specified criteria.

Input:

Criteria to be applied to each element in the Data Manager. The input value is a single
criterion; note that if complex criteria need to be satisfied, then simple criteria may be
combined by using AndCompoundCriteria and OrCompoundCriteria to produce a single
complex criterion.

Return Value:

A set of matching elements.

Side effects:

A set object is created, containing the elements that match the criteria.

Example
SET T%Matches=I%DM.SelectMatches(T%FemalesOver65)

Keys Property
An array of keys suitable for $ordering. Subscripted by key property name.

Access:

$order

Format:

Keys(propertyname)

Example
SET T%Prop=""

FOR SET T%Prop=$order(I%DM.Keys(T%Prop)) QUIT:T%Prop="" DO T%KeyList.AddEleme

nt(T%Prop)

AddKey Method
Adds a new key property to the data manager. If the specified property is not already
being tracked, it will create a new dictionary for that property and copy the items into that
new dictionary.

 Runtime Environment 124

RemoveKey Method
Removes a key from the data manager's list of key properties.

Input:

The key property name to remove.

Return:

none.

Side effects:

none.

Example
DO I%DM.RemoveKey("SSN")

 Runtime Environment 125

Using Criteria Classes
What are Criteria Classes?
Each Criteria member class represents a true/false criterion, determining whether or not
some object matches a certain requirement (or possibly a set of requirements.) This class
and its descendants were designed for windowing, to be repeatedly applied to each object
in a group such as a DataManager, in order to evaluate which of them meet a given set of
requirements.

Member Classes:

RangeCriteria ; Falls within a certain range

FilterCriteria ; General Filtering

Related Classes:

DataManager ; Contains objects to evaluate using criteria.

Interfaces:

Primary

 IsRange True if the criterion is a RangeCriteria, false if not.

 Matches Tests a given object to see whether it meets the criterion.

 Properties Returns the object properties that must be implemented for the
criterion to be applied to the object.

Usage:

Criteria are frequently used together with the DataManager class. DataManager
implements a method called SelectMatches, which accepts any single criterion as input.

 Runtime Environment 126

DataManager
SelectMatches

Criteria
Matches

Set

input

returns

In the above diagram, the SelectMatches method of a DataManager object is being
invoked, and a Criteria object is being passed to it as input. The SelectMatches method
returns a Set containing the elements (if any) that match the specified criterion.

Example

Let's suppose that we have a DataManager object in the instance variable DM, and that
the Patient objects in this DataManager implement two relevant properties, Sex ("M" or
"F") and Age (integer.) Let's further assume that our intent is to obtain a collection
containing all the female patients over the age of 65. An ExactHitCriteria object is used
for the sex, a RangeCriteria for the age, and an AndCompoundCriteria is used to combine
the two.

CREATE T%Female=Base$ExactHitCriteria("Sex","F")

CREATE T%Over65=Base$RangeCriteria("Age",65,999)

CREATE T%FemaleOver65=Base$AndCompoundCriteria

DO T%FemaleOver65.AddCriteria(T%Female,T%Over65)

SET I%MatchList=I%DM.SelectMatches(T%FemaleOver65)

Criteria Protocol
Citeria Hierarchy
This section describes the protocol of each class in the Criteria hierarchy. The class
hierarchy of the criteria classes is shown in the following figure.

 Runtime Environment 127

The root class of all Criteria classes is the Criteria class. The class hierarchy is located in
the Base Library. The two subclasses of Criteria are:

• FilterCriteria

• RangeCriteria

The following sections summarize the properties and methods for each Criteria class.

Criteria Class
The Criteria class is an abstract class. No instances of this class can be created. The class
is simply a placeholder for data and methods that can be implemented or shared by its
subclasses.

The following is a summary of the properties and methods that are part of the Criteria
protocol. Many of these methods have no functionality and are intended to be overridden
by the subclasses.

FilterCriteria

The FilterCriteria class is an abstract class that provides no services to the hierarchy. It is
a placeholder for its subclasses which are:

• CompoundCriteria

• ExactHitCriteria

• RelationalCriteria
CompoundCriteria and ExactHitCriteria are concrete classes that implement services.
RelationalCriteria is an abstract class that specializes the FilterCriteria for relational
criteria checks.

 Runtime Environment 128

A general grouping of Criteria classes specifically devoted to filtering objects. Each
object is evaluated according to a specific criterion (or compound set of criteria).

Methods

Matches Returns true if the specified object matches the criteria.

Input: An object, to which to apply the criterion.

Return value: 1/0 (true if the object matches the criterion, false if it
does not or the criterion is not fully specified.)

Side effects: None.

Example
IF T%ThisCriter.Matches(T%ThisObject) DO T%List.InsertElement(T%

ThisObject)

Properties

Properties Returns a collection containing the properties affected by the criterion.
An object must implement these properties in order to be used by the

 Runtime Environment 129

Matches method for this class.

Access: Value

Subscripts: None.

IsRange Returns true if the criteria are based on a range (exposing RangeStart
and RangeEnd properties), false if not. Returns false in this case.

Access: Value

Subscripts: None.

CompoundCriteria Class

The CompoundCriteria class is an abstract class that has two subclasses shown in the
diagram below.

A compound criterion contains multiple component criteria, and returns true or false
based on the truth or falsity of its component criteria.

DESTROYing a CompoundCriteria explicitly destroys all of its individual component
criteria.

This abstract class implements several services inherited by its subclasses.

Methods

Matches Returns true if the specified object satisfies the criteria.

Input: An object, to which to apply the component criteria.

Return value: 1/0 (true if the object matches the criterion, false if
it does not or if the criterion is not fully specified.)

Side effects: None.

Example
IF T%ThisCriter.Matches(T%ThisObject) DO T%List.InsertEleme

nt(T%ThisObject)

AddCriteria Adds one or more new criteria as a component of the
CompoundCriteria.

 Runtime Environment 130

Input: The criteria to be added (multiple).

Return value: None.

Side effects: None.

RemoveCriteria Removes one or more criteria from this compound criteria.

Input: The criteria to remove. (multiple)

Return Value: None.

Side effects: None.

Properties

Properties Returns a collection containing the properties affected by the
criterion. An object must implement these properties in order to
be used by the Matches method for this class. Since a
CompoundCriteria may contain any number of individual Criteria,
many different properties may be referenced by it.

Access: Value

Subscripts: None.

IsRange Returns true if the criteria are based on a range (exposing
RangeStart and RangeEnd properties), false if not. Returns false
in this case.

Access: Value

Subscripts: None.

AndCompoundCriteria Class

Overview

A conjunctive compound criterion, returning TRUE when all of its component criteria are
true, and FALSE if any of them is not true (or if it does not contain any criteria.)

DESTROYing an AndCompoundCriteria explicitly destroys all of its component criteria.

Methods

AddCriteria Adds one or more new criteria as a component of the
AndCompoundCriteria.

Input: The criteria to be added (multiple).

Return value: None.

 Runtime Environment 131

Side effects: None.

RemoveCriteria Removes one or more criteria from this AndCompoundCriteria.

Input: The criteria to remove. (multiple)

Return Value: None.

Side effects: None.

Matches Returns true if the ALL of the specified criteria are true, or false if
any are false. Also returns false if there are no criteria.

Input: An object, to which to apply the criterion.

Return value: 1/0 (true if the object matches the criteria, false if it
does not or no component criteria are specified.)

Side effects: None.

Example
IF T%ThisCriter.Matches(T%ThisObject) DO T%List.InsertEleme

nt(T%ThisObject)

Properties

IsRange Returns true if the criteria are based on a range (exposing
RangeStart and RangeEnd properties), false if not. Returns false
in this case.

Access: Value

Subscripts: None.

Properties Returns a set containing the properties affected by the criterion.
An object must implement these properties in order to be used by
the Matches method for this class. Since an
AndCompoundCriteria may contain any number of individual
criteria, many different properties may be referenced by it.

Access: Value

Subscripts: None.

OrCompoundCriteria Class

Overview

A disjunctive compound criterion, returning TRUE when any of its component criteria
are true, and FALSE if all of them are false (or if it does not contain any criteria.)

DESTROYing an OrCompoundCriteria explicitly destroys all of its component criteria.

 Runtime Environment 132

Properties

IsRange Returns true if the criteria are based on a range (exposing RangeStart
and RangeEnd properties), false if not. Returns false in this case.

Access: Value

Subscripts: None.

Properties Returns a collection containing the properties affected by the
criterion. An object must implement these properties in order to be
used by the Matches method for this class. Since a
CompoundCriteria may contain any number of individual criteria,
many different properties may be referenced by it.

Access: Value

Subscripts: None.

Methods

AddCriteria Adds one or more new criteria as a component of the
OrCompoundCriteria.

Input: The criteria to be added (multiple).

Return value: None.

Side effects: None.

RemoveCriteria Removes one or more criteria from this OrCompoundCriteria.

Input: The criteria to remove. (multiple)

Return Value: None.

Side effects: None.

Matches Returns true if ANY of the component criteria are true, false only
if ALL are false. Also returns false if there are no component
criteria.

Input: An object, to which to apply the criterion.

Return value: 1/0 (true if the object matches the criterion, false if
it does not or if the criterion is not fully specified.)

Side effects: None.

Example
IF T%ThisCriter.Matches(T%ThisObject) DO T%List.InsertEleme

nt(T%ThisObject)

 Runtime Environment 133

ExactHitCriteria Class

Overview

This criterion returns true if an object's property is exactly equal to a certain value. The
services are described below.

Methods

Matches Returns true if a certain property of the specified object is equal to
a certain value. The certain property is defined by the
ExactHitCriteria's Property property, and the certain value is
defined by the ExactHitCriteria's Value property.

Input: An object, to which to apply the criterion.

Return value: 1/0 (true if the object matches the criterion, false if
it does not or if the criterion is not fully specified.)

Side effects: None.

Example
IF T%ThisCriter.Matches(T%ThisObject) DO T%List.InsertEleme

nt(T%ThisObject)

Properties

Property The property affected by the ExactHitCriteria. The Matches
method will reference this property to determine whether it equals
the value.

Access: Assign, Value

Subscripts: None.

Value The exact value that will be compared to an object's property by
the Matches method.

Access: Assign, Value

Subscripts: None.

Properties Returns a collection containing the properties affected by the
criterion. An object must implement these properties in order to
be used by the Matches method for this class.

Access: Value

Subscripts: None.

IsRange Returns true if the criteria are based on a range (exposing
R S d R E d i) f l if R f l

 Runtime Environment 134

RangeStart and RangeEnd properties), false if not. Returns false
in this case.

Access: Value.

Subscripts: None.

RelationalCriteria

ContainsCriteria

GreaterThanCriteria

LessThanCriteria

PatternCriteria Class

Overview

A criteria that returns true if a specified object's property matches a certain pattern, or
false if it fails to match (or no pattern is defined.)

CREATE Command

Creates a PatternCriteria object.

Input:

 Property

 Pattern

Example
CREATE T%StateAbbrev=Base$PatternCriteria("State","2U")

Methods

 Runtime Environment 135

Matches Returns true if the value of the specified object's property matches
the specified pattern. Returns false if the property does not match
the pattern, or if no pattern is defined.

Input: An object, to which to apply the criterion.

Return value: 1/0 (true if the object matches the criterion, false if
it does not or if the criterion is not fully specified.)

Side effects: None.

Example
IF T%ThisCriter.Matches(T%ThisObject) DO T%List.InsertEleme

nt(T%ThisObject)

Properties

Pattern A pattern to be applied by the Matches method.

Access: Assign, Value

Subscripts: None.

Property Returns the property affected by the criteria. This property will be
referenced when an object is passed to the Matches method.

Access: Assign, Value

Subscripts: None.

Properties Returns a collection containing the properties affected by the
criterion. An object must implement these properties in order to
be used by the Matches method for this class.

Access: Value

Subscripts: None.

IsRange Returns true if the criteria are based on a range (exposing
RangeStart and RangeEnd properties), false if not. Returns false
in this case.

Access: Value

Subscripts: None.

RangeCriteria Class

RangeCriteria determines whether a specific property of an object falls between a pre-
defined starting and ending value (non-inclusive).

CREATE Command

 Runtime Environment 136

Creates a range criteria object.

Input:

 Property

 Start

 End

Methods

Matches Returns true if the value of the specified object's range property is
between the RangeStart and RangeEnd properties (non-inclusive).

Input: An object, to which to apply the criterion.

Return value: 1/0 (true if the object matches the criterion, false if
it does not or if the criterion is not fully specified.)

Side effects: None.

Example
IF T%ThisCriter.Matches(T%ThisObject) DO T%List.InsertElem

ent(T%ThisObject)

Properties

IsRange Returns true if the criterion is based on range (exposing
RangeStart and RangeEnd properties), false if not. Always true
for RangeCriteria.

Access: Value

Subscripts: None.

Properties Returns a collection containing the properties affected by the
criterion. An object must implement these properties in order to
be used by the Matches method for this class.

Access: Value

Subscripts: None.

Property Returns the property affected by the criteria. This property will
be referenced when an object is passed to the Matches method.

Access: Assign, Value

Subscripts: None.

RangeEnd Returns the range's non-inclusive ending value.

 Runtime Environment 137

Access: Assign, Value

Subscripts: None.

RangeStart Returns the range's non-inclusive starting value.

Access: Assign, Value

Subscripts: None.

 Runtime Environment 138

Using Mix-In Classes
What are Mix-In Classes?
Mix-in classes are abstract classes that are linked into some point of the class hierarchy
where the set of services they contain can be inherited by all of its descendants through
multiple inheritance. They can hold all definitional components of an abstract class. For
example, the mix-in class Base$AbsLockableObject can be linked in at any level of a
class hierarchy. At that point, all database locking services it offers are inherited by its
descendants.

Adding Interfaces Using Mix-In Classes
The general user of an object uses a simplified view of an object. This view is presented
through the primary interface. Each object can have any number of different interfaces.
Each interface has a specific purpose and audience.

EsiObjects has a direct syntactic support of interfaces. It is important to know the differ-
ence between an EsiObjects interface and the abstraction notion of an interface. An
EsiObjects interface consists of a namespace of services (events, properties, methods and
relationships) supported in a class. Each class can have multiple EsiObjects interfaces.

The abstract interface is the sum of all services supported by a class and is the combina-
tion of all EsiObjects interfaces for that class.

The term interface is often used to refer to a specific set of services and not necessarily
all the services. This can make the term interface confusing. To avoid confusion, the term
abstract interface is used to refer to the entire set of services supported by an object. The
term protocol group is used to refer to a specific subset of services. The term interface
refers to the EsiObjects interface.

Interfaces provide a simple mechanism for controlling the complexity of an object. They
allow the developer of the object partition services into private and public groups. Public
services are generally made available to the object user through the Primary interface. All
other interfaces are generally internal or private to the object.

Accessing Interfaces
When working with object services, the syntax of the service name is as follows:

Object.[Interface::]Method

Object. [Interface::]Property

Object. [Interface::]Event

Object. [Interface::]Relationship

 Runtime Environment 139

If the interface name is omitted, then the current default interface name is used (the
Primary interface).

In the following example, the internal state is verified by using the validate method found
in the factory interface:
;

IF 'T%Room.Factory::Validate DO $ENV.Assert("Invalid")

;

Major Interface

List of Interfaces

By default, whenever a class is created, the Primary interface is automatically created. It
is used to expose all external or public services to the object user.

The Factory interface can be added to the class by the programmer. It generally contains
private services that are used in the creation, validation and deletion of instances of the
class. The Factory interface may contain methods that have reserved names, namely,
CREATE, DESTROY, InitSysVars and InitClassVars. CREATE and DESTROY may be
created by you. They must be spelled correctly and totally in uppercase. InitSysVars and
InitClassVars are reserved and are created by the system. You cannot use these names.

The Primary and Factory names are reserved by EsiObjects. They must be spelled
correctly when used.

Other interfaces can be added to a class either by adding it directly or by linking in a
Mix-In class. EsiObjects contains some common Mix-In classes in the Base library.
Some of these classes are complete and others act a templates where you override the
interface and services with a specific implementation.

 These Mix-In classes are provided by EsiObjects in the Base library:

• Attachment — append information to an object.

• Lockable — add database locking services.

• Security — control object access.

• Serialization — save or restore object from serial media.
You can also create your own Mix-In classes. They are no different from a normal class.
They simply have a property that identifies them as Mix-In. They are visually identifiable
as Mix-In by this icon:

Primary Interface

The Primary interface is the main interface to an object and is automatically created when
the class is created. It must be spelled correctly and contains the public services you want
to expose to the object user.

 Runtime Environment 140

Factory Interface

The factory interface may assist in the the life-cycle services needed to create, maintain
and destroy object of the class that inherits the interface. The class used to add the factory
interface to your class is AbsFactoryObject. It adds an interface called Factory.

Once you link the AbsFactoryObject into your class, you can override the interface in
your class and add the services you need. The following table describes the type of
services that can be added.

Type of Service Description Service Service Type

Object Creation If the CREATE method exists,
it is invoked by the system
when you use the Create
command. It is used to assist in
the creation of the object. It
must be spelled in uppercase.

CREATE System method

Object
Destruction

If the DESTROY mthod
exists, it is invoked by the
system when the user invokes
the Destroy command. It is
used to clean up behind the
object. The ObjectDead event
is automatically invoked by the
system when the object dies. It
can be watched by other
objects.

DESTROY

ObjectDead

System Method
Event

Identification Used to access name and
identify information.

ID
Name
Class
ClassName

Domain

Property (R)
Property (RW)
Property (R)
Property (R)
Property (R)

Validation Used to verify or validate
contents of the object.

Validate Method

 Runtime Environment 141

Referencing Provide reference counting
services. When an object is
created, it is automatically
given a reference count of 1.
This can be accessed via the
$Reference special variable.
When it is destroyed via the
Destroy command, the objects
reference count is decremented
by one. If it is less than one,
the object is literally
destroyed. The Preserve
command can be used to
increment the reference count
in order to keep that object
alive. This capability is usefull
when objects are used in a
multi-user environment.

AddRef
ReleaseRef

Method
Method

Browsing Find internal state information. CopyInstanceTable Method

Security Interface

The Security interface can be used to control access to an object. The base class for the
security interface is AbsSecurityObject.

The following table describes some of the types of services that can be offered by the
Security interface.

Type of Service Description Service Service Type

Secure Used to Change the security
state of the object.

Secure Method

Validate Access Validate destruction and clean
up the object.

VerifyAccess Method

Information Find information about the
access requirements to an
object.

GetACL Method

Initialization Create initial security
information.

CREATE Method

Cleanup Clean up and security
information.

DESTROY Method

 Runtime Environment 142

Serialization Interface

The Serialization interface allows objects to be saved and restored from serial media.
The base class for the serialization interface is AbsSerilizationObject.

The following table describes some of the services that may be offered by the
Serialization interface.

Type of Service Description Service Service Type

Object
Interchange Input

Restore the object from a serial
source in the EsiObjects Object
Interchange format.

RestoreFormatted Method

Object
Interchange Output

Save the object into a serial
destination in the EsiObjects
Object Interchange format.

SaveFormatted Method

Diagnostic output Present a diagnostic serial
dump of an object.

Dump Method

Attachment Interface

The Attachment interface allows other objects to attach data to the object. This allows
the object to carry the baggage that can be associated with it from other contexts. The
base class for the Attachment interface is AbsAttachmentObject.

The following table describes the services offered by the attachment interface.

Type of Service Description Service Service Type

Object Specific Local to calling object. Object Property
(RWD)

Context Shared by token. Token Property
(RWD)

Class Shared across class. Class Property
(RWD)

Cleanup Clean up the associated store. DESTROY Method

 Runtime Environment 143

Using the XML ParserUsing the XML ParserUsing the XML ParserUsing the XML Parser
The EsiObjects XML parser conforms to the SAX2 specification. It is not a full implementation
of this specification.

Overview
Base library components are:
1. Base$XMLReaderImpl,
2. Base$AttributesImpl, and
3. Base$XMLContentHandler

Interface

A Simple Example

 Runtime Environment 144

Part 4: External InterfacePart 4: External InterfacePart 4: External InterfacePart 4: External Interface

 Runtime Environment 145

External Call Interface
EsiObjects can access legacy M code and data just as any M program can. Additionally,
legacy M code can access EsiObjects code via a program interface known as the
External Call Interface.

Many times you may have written an object to do some work, but need to access that
object from legacy M code. The API contained in the routine VESOEX allows you to do
this.

By invoking various tags and passing in the proper parameters to these tags, you can
create and destroy objects, invoke methods and property accessors on those objects.

Initialization
To use the external call interface, in your M routine you must first initialize your M stack
to be able to use the object services. This is done by calling the INIT tag.
Do INIT^VESOEX

No return value is returned and no inputs needed. This now initializes your M stack for
object services.

The table below describes each service currently available in the API. Other services
may be added in the future.

Service Tag # Inputs Return Value

Create Object CREATE^VESOEX 4 Object Id

Invoke method INVOKE^VESOEX 3+ Method return

Set Property SETPROP^VESOEX 4+ 1 or 0

Get Property GETPROP^VESOEX 3+ Property Value

Destroy Object DESTROY^VESOEX 1 None

Initialize INIT^VESOEX 0 None

API Inputs
Each set of input parameters for the tags is discussed below.

CREATE
CREATE^VESOEX(classname,inputs,object_type,.errcode)

classname: the fully qualified (library and class name) name of the class

inputs: an array for passing in parameters. The format of the array is as follows:

 Runtime Environment 146

 array=n (the number of input parameters)

 array(1)=value of first parameter

 .

 .

 .

 array(n)=value of nth parameter

object_type: a code for what type of object being created,. For all except “S”,
object_type(1) should be set to the appropriate global specification.
 “S” = shared object

 “F” = fixed location

 “B” = base location

 “C”= child object

errcode: not currently used

Example:

If we are creating a Patient object at a base location ^PAT, passing in an MRN on the
CREATE, we would invoke the API as follows:
; Set the object to be based at ^PAT

Set objfix=”B”,objfix(1)=”^PAT”

; Set the 1 input parameter

Set input=1,input(1)=123456

Set ObjId=$$CREATE^VESOEX(“User$Patient”,input,objfix,0)

INVOKE
INVOKE^VESOEX(ObjId,MethodName,InputCnt,input_1...input_n)

ObjId: Object Id

MethodName: the name of the method. If invoking a method in an interface other than
Primary, use the syntax: Interface::MethodName

InputCnt: The number of parameters being passed into this method

input_1: The value of the first parameter

 .

 .

 .

input_n: The value of nth parameter

 Runtime Environment 147

Example:

If we were invoking the Admit method on the Patient passing in a Location code we
would invoke the API as follows:
Set Value=$$INVOKE^VESOEX(ObjId,“Admit”,1,“ER”)

Note that ObjId was gotten from a previous CREATE call as described above.

SETPROP
SETPROP^VESOEX(ObjId,PropertyName,PropValue,InputCnt,input_
1...input_n)

ObjId: Object Id

PropertyName: the name of the property. If invoking a property in an interface other than
Primary, use the syntax: Interface::PropertyName

PropValue: the value of the property

InputCnt: The number of parameters being passed into this method

input_1:The value of the first parameter

 .

 .

 .

input_n: The value of nth parameter

Example:

If we were assigning the DOB on the Patient we would invoke the API as follows:
Set RetValue=$$SETPROP^VESOEX(ObjId,“DOB”,“10/12/1960”,0)

GETPROP
GETPROP^VESOEX(ObjId,, PropertyName, InputCnt
,input_1…input_n)

ObjId: Object Id

PropertyName: the name of the property. If invoking a property in an interface other than
Primary, use the syntax: Interface::PropertyName

InputCnt: The number of parameters being passed into this method

input_1:The value of the first parameter

 .

 .

 Runtime Environment 148

input_n: The value of nth parameter

Example:

If we were getting the DOB on the Patient we would invoke the API as follows:
Set DOB=$$GETPROP^VESOEX(ObjId,“DOB”,0)

DESTROY
DESTROY^VESOEX(ObjId)

ObjId: Object Id

Example:

If we were destroying the Patient object we would invoke the API as follows:
Do DESTROY^VESOEX(ObjId)

	Introduction
	Document Convention
	EsiObjects Overview
	Class Development Environment
	Application Runtime Environments

	Using Objects
	What is an Object?
	Object Interface
	Primary Interface
	Factory Interface
	VariableFactory Interface

	Building Objects
	Creating, Preserving and Destroying Objects
	Creating an Object from a Class
	Requirements for Building an Object from a Class
	Issues When Creating an Object from a Class

	Virtual Objects
	Virtual Object Creation and Destruction
	Requirements for Building a Virtual Object
	Virtual Objects Example

	Prebuilt Objects
	Issues When Building Objects

	Accessing Objects
	Using Methods
	Definition of Methods
	Delegating Responsibility to another Object
	Delegating Responsibility using the GOTO Command
	Delegating Responsibility using the $DELEGATE Function

	Using Methods with the DO Command
	Methods and Evaluating Expressions
	Using Static Methods

	Using Properties
	Properties and Accessors
	Accessor Input Specification
	Generated Events
	Using Accessors
	Value Accessor
	Assign Accessor
	Create Accessor
	Kill Accessor
	$Get Accessor
	$Order Accessor
	$Query Accessor
	$Data Accessor
	$Normalize Accessor
	$Valid Accessor

	Using Events
	Definition of Events
	The Event Cycle
	How an Object Watches for Events
	The Callback Entrypoint

	How Events are Triggered
	How the Event Notification is Terminated

	Using Relationships
	Creating and Destroying Objects
	Object Life Cycle
	Object Creation
	CREATE Command
	Using the CREATE Method
	Creating Child Objects
	Creating Private Objects
	Creating Shared Objects

	Object Preservation
	PRESERVE Command
	Relationship to the DESTROY Command

	Object Protection
	Object Destruction
	DESTROY Command
	Protecting an Object from Destruction
	Using the DESTROY Method
	Testing to See If an Object Has Died

	Using Class Libraries
	Absolute and Virtual Libraries
	Using Virtual Libraries
	Using Absolute Libraries

	Integrating Objects
	Elements of Integration
	Object Contracts
	Object Responsibilities

	How to Integrate Objects
	Grouping Integration
	Maintaining Groups
	Applying Operations Across a Group

	Event Based Integration
	How Events Work
	Setting Up an Event Watch
	Watching Properties
	Event Handler
	Creating a Generalized Event Handler
	General Event Handlers
	Establishing a Generalized Event Watch
	Dissolving a Generalized Event Watch

	Relationship Integration
	Object Relationships
	Parentage
	Mediation of Requests
	Lifetime Issues

	Guidelines for Using Objects
	Object Life Cycle
	Object Creation
	Object Lifetime
	Properties
	Properties Defined
	Property Assignment
	Property Lookup

	Message Processing
	Types of Message
	Inquiry Messages
	Modification Messages
	Instruction Messages

	Generating and Processing Events
	Event Commands
	Event Generation
	Event Response
	Event Delivery

	Object Destruction
	DESTROY Command
	Effects of Object Destruction

	Adding Interfaces to an Object
	Object Navigation
	Creation
	Nesting
	Data Sources
	Events and Messages
	Domain Names

	Defining Objects
	The Types of Classes
	Inheritance
	Multiple Inheritance
	Overriding
	Message Searching
	Building the Class Hierarchy
	Avoiding Multiple Inheritance Conflicts
	Resolving Multiple Inheritance Conflicts

	Using Collection Classes
	What Are Collection Classes?
	Collections Protocol
	Collections Hierarchy
	Collection Class
	Set Class
	Bag Class
	Array Class
	List Class
	Dictionary Class
	Log Class
	Map Class
	MultiMap Class

	Choosing a Collection Class
	Creating Collection Objects
	Manipulating Collection Objects
	Collection Life Cycle
	Accessing all Elements in a Collection
	Iterators
	What is an Iterator?
	Some Simple Iterator Examples
	IterationOrder Property
	Next Method
	First Method
	Last Method
	More Method
	Reset Method

	Using Iterators
	Iterating a Collection
	Multiple Iterators
	Iterating a Set
	Iterating a Bag
	Iterating an Array
	Iterating a List
	Iterating a Dictionary
	Iterating a Log
	Iterators and Collections that Change

	Collection Operations
	Deleting all Objects in a Collection
	Creating a "Stack" Collection
	Creating a "Queue" Collection

	Using Immutable Classes
	What are Immutable Classes?
	Immutable Protocols
	Immutable Hierarchy
	Immutable Class
	Date Class
	Interval Class
	Mvariable Class
	NameValuePair Class
	Time Class
	TimeRange Class
	TimeStamp Class

	Using the DataManager Class
	What is a DataManager Class?
	Creating and Destroying a DataManager Object
	Creating a DataManager
	Destroying a DataManager

	The DataManager Interface
	Class Property
	ControlsData Property
	CreateElement Method
	InsertElement Method
	RemoveElement Method
	Cardinality Property
	SelectMatches Method
	Keys Property
	AddKey Method
	RemoveKey Method

	Using Criteria Classes
	What are Criteria Classes?
	Criteria Protocol
	Citeria Hierarchy
	Criteria Class
	FilterCriteria
	CompoundCriteria Class
	AndCompoundCriteria Class
	OrCompoundCriteria Class

	ExactHitCriteria Class
	RelationalCriteria
	ContainsCriteria
	GreaterThanCriteria
	LessThanCriteria
	PatternCriteria Class
	Matches

	RangeCriteria Class

	Using Mix-In Classes
	What are Mix-In Classes?
	Adding Interfaces Using Mix-In Classes
	Accessing Interfaces
	Major Interface
	List of Interfaces
	Primary Interface
	Factory Interface
	Security Interface
	Serialization Interface
	Attachment Interface

	Overview
	Interface
	A Simple Example

	External Call Interface
	Initialization
	API Inputs
	CREATE
	INVOKE
	SETPROP
	GETPROP
	DESTROY

