Meeting the healthcare challenge in a world of complexity!

Tools Reference Guide

EsiObjects V4.1

ESI Technology Corporation
5 Commonwealth Road
Natick, MA. 01760

www.esitechnology.com

Information in this document is subject to change without notice. Companies, names and data
used in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of ESI Technology Corporation.

(1 2000 - 2003 ESI Technology Corporation. All rights reserved.

EsiObjectsis aregistered trademark of ESI Technology Corporation.
GT.M isaregistered trademark of Sanchez Inc.
DSM, Cache, MSM are registered trademarks of InterSystems Corporation.

Microsoft, Visual Basic, Windows and Windows NT are registered trademarks of Microsoft
Corporation.

Table of Contents

[[TOOL S REFERENCE GUIDE e ereseeees oo T]
[ESIOBIECTSVALBETA ..cooooooeeeeeeeeeeeeeeeeeeeseeeeeeeseeereeeeeeeaesenaeseeaesenaeseeaesneeseesssnesssneseenesnenesnsnes 1
L raBl EOF cONTENTS 3]

| INTRODUGCTIONciueiiteeieieieietieieeeeeeeteseeeeeetesessesessesesseseeseseesessesensesessesessesessesessesessesessesessesensesessesessens 5|
[DOCUMENT CONVENTIONS 5]
[BVERVIEW OF ESTOBJIECTS ..o 1]
M ODEL -V IEW-CONTROLLER . ..eeuesssessesesesrsesesessessessssssssessssosessssssssessssssesssssasesssssssessssssssssssssssssassssssasasens 1

ES| OBJECTS CLIENT ENVIRONMENT OVERVIEWccoiiiieeeeeeeeee ettt ettt ettt e et e et e e et nananana e 2

[EESTOBJIECTS SERVER ENVIRONMENT L i rrirrerrreeeseesereseeeeseeeseeeeseesseenseseesseeneeseeeseeneeseeeseeeeseeeseenes 3

[CLASSDEVEL OPMENT ENVIRONMENT QVERVIEW 4
LMAIN VWINDOW AND COMPONENTS ...ceitiieeeeeeeeeeeetetetteeteteteseteeesatesatseetatatetasaseteteteteteeeteteteseeetererereserereeeeeees 4
—mmmm Z

IS ng the Main YWindow 5
YT 7
OULPUE WINAOW. ...ttt ettt ettt nnen et e e et eneeeeeeees 18
OCUmentaton Yindow 20

The SeSS0n Browser 73
BESSION CONTROL oo 24
Session Control EXPIAINGA............o.ooeeoeoeoeoeeeeeeoeerees 24
Using Session Control 30

lllQFR QPTIONS 22
User Options EXPIAINEA ..ot s s e s i e e s e e e sreereeresreeneesresreesrssreenneas 32

USING the USEN OPHIONS.......ccuiiuieiiiiiciectectieteetecee et eteeetesteeaeeetesaeeteeseeeesseeseessesseensessesseassesseessessenenns 33

[MECTO SIDSITUTON ToReN LISt 36

TION 20

Help DocUMENtatiON EXDIAINEM ...vvisirsiseesieesseesieeiseeeresserssesssressesesessesssesssssssessessesessesessessssesssssssesnss 38

UsiNg the HEIP DOCUMBNTALION ... 40|
CCASSDEVELOPMENT ENVIRONMENT TOOL S e 7]
TOOLS OVERVIEW ...ttt 41
BrOWSE S, oo a1

ITors and Property SV Z7

Eearch [ogls 42]
Eebuéﬁer TO0] ettt ettt et ettt et eeeeneeeeeeenseeeeeanseeeteanseestanneteeeenseeeteenneeetean ettt eannt et earreseaanrreeeaarres 43
RS e AL o F 43
$ESSION BROWSER EXPLAINED pivi

on Sructiires 45|

SOSS ON BIOWWSET T OO0 S, ittt ettt ee et ettt tee ettt e ettt eeee ettt et eeeee et eeeeeiaee e teeeetanaieees 50

WSING THE SESSION BROWSER.......cuituitittesst ittt ettt ettt 56

| rary ppra Lons ho

older ﬁpprntlnnc /0

FFinding Library Objects and FOIAEN'Sccoiiiiiiiiieiicisi s

FEOLDER CONTENT EDITOR ..vvovoooseoiseeissssssesnsnsssnssssnsssnessnssssnssssnsssesssssssnssssesnssessssnssssnssnssnsnsssnes

[k 1A (S O I
ARIABLE DEFINITION EDITOR .1t iuttittiitititttiiesieseastssstesssssussisssassesssasseessssssesssssasssasssasesssessesssssassesssees
arrable Definition EAITOr EXPIAINGoooiereeiieeeeeeeeeeeseeeessssreeessssre e s s sreeeessneeeessnneeeessnnnnessanes
Oong e variapie petnmon caor oo
1 ETHOD FOITOR
MethOd EAITOr EXDIQINGooieeeeeiiiieeiiiiee ettt e et e s et esseseeassssresesansresesasresasssseressssseras
JSING TNE MEINOT QIO ... oo sesesemeneresseeeseeseesesessnsnnsnsnsnensnsnenssssssnsnensesesnsesesennsennees
ITPD'PERTY‘ELM TOR ooeerooioioerrrreresoooooerrrrrerrooeooroererreeerooeeeererrreerooeieeerrreeeeooieeeeerrrzeerioeieeeerrressissireeeerreeesssoes
[USING the Property EQITOr ..o oo seessssssessessssesessssesssesesseseeesessseeseeseeseeseeeseesseseeeeeseseeeseeasreas 103
[FEVENT TEMPLATE EDITOR rcoirercrersrrsssrss s s s st s sens s s 107
] 107
JSngihe Fvent Template Faifor 103}
[IRELATIONSHIP WIZARDuuiisisisiisisis ettt 110
[Rationship WIZard EXPIAINETccvoveverrceeeererereesesenerersnessesssnensnsseeesesnsnsnnseenesesssesenenenens 110
[Osng e Reatonsmpswizad TT0
| SEARCHAND FOIT T
| 1Search and Edit EXPlAINE.ottt ettt 112
I R e A e L= LT o 117
[[PEBUGCING TOOLS 118
L_interachive Denugger Ll
XECULE SNEI it et e 130
[O B0t B OV ...ttt s 132
o IQIANQPORT 00l S 141
| ﬂ'r;mepnrf 100ls prlnlnpd 141
|_UJsing Definitional Object Transport TOO0IS. ouxsxssrsssnnnas 145

Using Instance and Legacy TranSport TOOIS............ccuvcueeeueeieeeesteeeeeieeteeeeeereeneeetesreesesreeeeesesneessesses 154

Introduction

This guide covers all of the EsiObjects development tools needed to develop an
application. These tools are an integral part of the Class Development Environment

(CDE).

Document Conventions

Esi Objects documentation uses the following typographical conventions:

For more information on
this subject please refer to
the BREAK Command
section of this manual.

Underlined text is used to highlight areference to
another section of this manual or another manual.

Property In text, italicized words indicate defined terms that
are usually used for thefirst time. Words are also
italicized for emphasis.

CREATE Words in bold and capitalized are EsiObjects

commands or keywords.

Set T%lest =l %Pat . Nane

Thisfont isused for code examples.

Overview of EsiObjects 1

Overview of EsiObjects

Model-View-Controller

The Model-View-Controller concept is a common design pattern used to implement
modern applications. EsiObjects itself isimplemented using this pattern. As an
EsiObjects programmer, you should strive to implement you applications using this
pattern.

Views
/ﬁ Name; Doe, John fﬁ
M odel Controller
. Male
e
) 1 Window
(o] [cona)
Patient: Doe, John
Sex: Male Bri
) rinter
. DOB: 4—Feb—1942// Controls
Objects w

The diagram above illustrates the pattern when applied to a client server database
application. Simply put, this concept enforces a separation of data (the model), from the
interface primitives (the controller). These two sides are brought together into views.
These views reflect different ways of looking at the same data.

In the example above, displaying the Name, Sex and DOB of a patient creates a Window
view. The window components are a part of the controller. The patient data is extracted
from the database and displayed using the controller components. Another view is
created on paper of the same model side data. In this case the Printer Controls are used to
create the view.

The EsiObjects development environment contains tools for creating and maintaining al
class (model side) structures and code including workflow tools that increase your
productivity.

Overview of EsiObjects 2

EsiObjects Client Environment Overview

For atop-level overview of EsiObjects, see the EsiObjects Overview section of the
EsiObjects Programmer Reference Guide.

The EsiObjects Class Development Environment (CDE) contains al the tools needed
to develop the definitional components of an object oriented database application. These
tools can be grouped functionally into the following categories:

» Workflow tools that increase your productivity.
» Class development tools that create all the definitional components of an object.
* Tools needed to test and debug your application.

* Import and export tools needed to transport the application components to external
systems for sharing or backup.

In terms of the Model-View-Controller paradigm described in the previous section, the
CDE provides the tools needed to develop the model side of an application.

The client side of the Class Development Environment is based on Microsoft

Windows[] . Fundamental to the EsiObjects environment is the Main Window. It contains
amenu that lets you access the components listed below. It also gives you access to
printing and help services. The Main Window contains several child windows that
support the CDE set of tools or any other tool set that may be developed in the future.
These windows are:

* Session Browser — Thiswindow contains tab sheets that contain graphical
representations of library and folder structures associated with a particular session
connection. Library and folder structures are visually displayed and provide a point
and click approach to migrating to the desired services. Additionally, tools exist to
automatically go any classin the hierarchy if you know its name or, if you are
working in afolder, you can go directly to an object whose pointer is stored in the
folder.

* Output — Thiswindow contains three tab sheets. The Build sheet is used by the
system to display information about compiles, syntax checks, etc. The Debug sheet is
used by the system to display system information. The Output sheet is available to
you for displaying application level information. It provides a convenient way to
track execution when testing your application among other things.

* Documentation — Thiswindow is used by the system to display documentation for
the currently selected object. The text is stored in Rich Text Format to be compatible
with other Microsoft tools such as Word[.

* Session Control — Thiswindow allows you to establish connections to one or more
EsiObjects servers.

» User Options— Thiswindow contains three tab sheets that allow you customize your
development environment.

Overview of EsiObjects

EsiObjects Server Environment

When the EsiObjects client is started up on a PC and a session connection is made to a
process that is started up on the server by the TCP redirector, an environment object is
created in the server process. It is an instance of the class ESI$WindowsEnvironment.
The client owns and is connected to the environment object on the server. The
environment is always active as long as a session connection is maintained and can be
referenced viathe SENVIRONMENT special variable.

The environment object is always instantiated as part of the EsiObjects session
connection. Thereis only one environment object associated with a session. EsiObjects
supports multiple development sessions. That is, a programmer can have multiple
sessions defined and have an EsiObjects environment associated with each session. This
provides a flexible approach to development since browsers and editors can be brought
up simultaneously while attached to separate sessions.

EsiObjects Environment 4

Class Development Environment Overview

Main Window and Components

Main Window Explained

Thisisthe main window of the EsiObjects environment. It appears whenever the system
islaunched, and serves as the primary EsiObjects work area.

Main
Window
Toolbar

e e P R P R BTl | AP RCT RE SiE es T
e rojE===E]&*s el == s ¥ Ea| 5 EEE
Documentation
Toolbar

ET
Workspace
Window

5%

= [
=l

A Dupur {TEGE , Dakug 7
S N

. Output
Statug Window
Bar

The Main Menu contains cascading menus of al the functions available in EsiObjects.
The menus will always look the same to the programmer. Only those commands that are
applicable to the currently selected item will be highlighted and activated. All others will
be grayed out. The Main Menu contains all commands that are applicable to a selected
object where popup menus generally contain only the most frequently used commands.

Documentation
Window

The window's Client Area iswhere EsiObjects places all visual objects launched from a
browser or menu such as the method editor, property editor, etc.

The Session Browser contains tab sheets that display library and folder structures for the
currently connected sessions. The Session Browser and all of its functionality are used to
migrate through all the available library and folder structures.

EsiObjects Environment 5

The Main Window Toolbar provides quick accessto a variety of important functions
that also appear on the Main Menu.

The Documentation Window always contains the documentation for the item selected in
the Client Area.

The Output Window contains the Output, Debug and Build tab sheets. The Output sheet
isavailable to you as an area to output information via the $ENV .Ouptut message. The
Debug areais used by EsiObjects to display errors and the Build sheet is used by
EsiObjects to display compile and syntax checking information.

The Status Bar on the bottom of the main window provides information on the current
status of EsiObjects. It can be displayed toggling the main window's View|Status Bar
command.

Indicates the
current date.

Indicates NUM
if NumLock ig
currently active.

Indicates the
name of the
default session.

Displays information about what's
happening at the moment; sometimes it
containg information about the currently
active menu item, or the object beneath
the mouge cursor.

[, [0eA2A0 [BOGPM 4

[Default

i

Ready

Indicates the
current time.

Indicatex SCRL
if ScrollLock iz
currently active.

Indicates CAP if
CapsLock is
currently active.

Indicates the
session EsiObjects
is working in.

Using the Main Window

Keyboard Shortcuts
Certain Main Window operations can be accessed via accelerator keys. They are:

* Alt+F4 shuts down EsiObjects, and closes the main window.

» Ctrl+F4 closes any currently active child window.

EsiObjects Environment

Main Window Toolbar

The Main Window Toolbar provides quick accessto avariety of important functions.
Most of these functions can be performed in other ways; the toolbar is one of the most
convenient ways to get at them. It can be shown or hidden from the Main Window's View

menu, by selecting the Toolbar item.

Pastes the
clipboard contents,
ingerting it at the
cursor position or
replacing a selected
segment of text.

Brings up the
Open Library
dialog.

Cuts the selected
text or code within
any editor pane. The
text is deleted from
the pane and saved
to the clipboard.

Digplays and
Hides the
Workspace
Window.

Digplays and
Hides the

Documn entatio
n Window.

7

I,

[EEEE e E = E
]

Prints the
active pane

containing text
or code.

Saves the
currently
active library
to a.opl file.

Will Copy the
selected text or
code within any
editor pane. The
text is simply
saved to the
clipboard. It
remains in the
pane.

Bringsup a
dialog that
letz you
create a New
Library.

Digplays and
Hides the

Output
Widow.

éisplays the Abour\

EsiObjects dialog
box that containg
the current version
number, copyright
message, available
physical memory

v andfree disk space.

To see the names of each button, position the mouse pointer over the button and wait

about one second. A tool tip will appear with the name of the button.

The toolbar is detachable, and can be torn off smply by dragging its margin area
(without pressing one of the buttons). It can then be docked back to one of the four edges
of the main window by dragging it over to the desired edge. Note that its orientation is
horizontal when it is docked to the top or bottom of the window, and vertical when it is at
the sides. While dragging, you can toggle its orientation by holding down the Shift key.
Y ou can also prevent it from docking at the edges of the main window by holding down
the Ctrl key when moving it. When it isfree-standing, it is possible to move the toolbar

outside the EsiObjects main window.

EsiObjects Environment 7

Main Window Menu

Main Menu Commands

The Main Menu of EsiObjects is designed to display all functions available to EsiObjects
no matter what object is currently selected. In other words, the Main Menu will always
look the same and have the same commands on them. Only those commands that are
active for the selected object will be highlighted. All other commands will be grayed.
Good object oriented systems present a common view to the user, hiding the complexity
from them.

The following diagram illustrates and explains the general orientation of each main menu
item.

The File menu

The Help menu

= = Esilhjects

contains confaims
commands that File Edit ‘“iew Browse Object Too: ‘Window Help commands that
apply to high F g | } display

level operations documentation

within the
EsiObjects
gy sten.

within the
Acrobat Reader.

The Window menu
containg commands that
organize or close
windows in the client
gpace.

The Edit menu
containg command
that let you edit an

object or the text of
the object.

The Toels menu contains general
tools such as M utilities, search and
importing of exported fil es.

The View menu contains toggle
commands that let you hide or
digplay the Main Window
components and toolbars.

The Object menu containg
commands that will operate on the
currently selected object as a whole.

The Browse menu contains
conunands that apply to the
operation of the Object Browser.

All commands on the Main Menu will be explained in general at this point. The
descriptions will apply to the object selected. Within this guide, each section that
describes functional areas of EsiObjects will contain alist of active commands.

Main File Menu

Command

New|Session

New|Routine
New|Library

New|Class

New|Interface

New|Method

New|Property

New|Relationship

New|Event

New|Instance Variable

New|Class Variable

New|Folder

EsiObjects Environment

Description

Invokes the New Session form that prompts for
the name of the session and the type of
connection: TCP or COM. A new session will be
created if you choose to continue.

Creates a new M routine.

Invokes the Create Library form that prompts for
the required information needed to create a new
library. If you proceed, the library will be created
and its icon will be displayed in the Session
Browser.

Invokes the Create Class form that prompts for
the required information needed to create a new
class within the selected library. If you proceed,
the class will be created below the selected
library or class icon.

Creates a new interface within the selected class
named Interface n where n is a sequential
number.

Invokes the Add to Interface form that prompts
for the service name and lets you select the type
of service: Method, Property, Relationship or
Event.

Invokes the Add to Interface form that prompts
for the service name and lets you select the type
of service: Method, Property, Relationship or
Event.

Invokes the Add to Interface form that prompts
for the service name and lets you select the type
of service: Method, Property, Relationship or
Event.

Invokes the Add to Interface form that prompts
for the service name and lets you select the type
of service: Method, Property, Relationship or
Event.

Invokes the Add Variable form that prompts for
the variable name and lets you select the type of
variable: Instance or Class.

Invokes the Add Variable form that prompts for
the variable name and lets you select the type of
variable: Instance or Class

Adds a new folder to the session. If a folder is
selected, the new folder will be made a child of
the selected folder. If any part of a library
structure is selected, it will create a root folder.
Folders can be dragged to other folders.

New|Version

New|Object...
Save
Revert

Rename

Delete

Print...

Print Setup...

Connections|Show

Connections|Connect
Connections|Disconnect

Exit

Main Edit Menu

Menu Command
Edit
Undo
Redo

EsiObjects Environment

When a code body has been selected (or any
object that supports versioning), executing this
command will create and save a new version of
it.

Not Implemented Yet.
Saves the selected object to persistent storage.

When several edits have been made to the text
or code of the object, executing this command
will restore the object to its original state unless
you have saved it in the interim.

Lets you rename a object. The selected object is
put into edit mode and all the text is selected.
Any edit operation at this point will delete the
selected name, replacing it with the typed or
pasted characters. If you want to simply modify
the existing name, move your cursor to the
position and perform the edit. Clicking at the
point of edit with your mouse will also put you in
insert mode.

Deletes the selected object or the selected text if
in edit mode. When deleting an object you will
usually be prompted to continue or not.

Invokes the print dialog and then prints the
selected object or text to the selected printer if
you choose to proceed.

Invokes the Printer Setup form and lets you
change the printer setup parameters. If you
choose to proceed, the printer and printing
options will be changed.

Displays the Session Control Window. Sessions
can be created, deleted, modified, connected
and disconnected from this window.

Connects the selected session in the Session
Control Window.

Disconnects the selected session in the Session
Control Window.

Prompts to continue and then shuts the
EsiObjects system down if you answer in the
affirmative.

Description

Executing this command will undo the last
operations performed against a selected object.

Executing this command will redo the last undo
operation.

Cut

Copy

Paste

Delete

Select All
Find

Find Next

Replace

Main View Menu

Menu

Command

Toolbars|Main

Toolbars|Class

Toolbars|Browser Actions

Toolbars|Symbol Types

EsiObjects Environment 10

This command will remove the selected item or
text and place it on the clipboard for future use.

This command will copy (not remove) the
selected item or text and place it on the clipboard
for future use.

Executing this command will cause the contents
of the clipboard to be inserted at the cursor
position if in text editing mode or replace a
selected region.

Executing this command will delete the selected
text or object. Generally, when the delete
operation is performed on an object, you will be
queried as to whether you want to proceed.

This command will select all objects or text.

Invokes the Find dialog box to appear. After
specifying search criteria, it will search for that
criteria and stop for you to perform edit or
replace operations.

This command will continue the Find operation,
continuing the search for the criteria established
in the original search.

This command operates in conjunction with the
Find and Find Next operations. Executing it will
replace the found instance with a specified
instance.

Description

This command is a toggle command that toggles
the Main EsiObjects toolbar off and on. When the
toolbar is toggled on, a v will appear before
command. When toggled off, the toolbar will not
be displayed. When toggles on, it will be
displayed either docked or not.

This command is a toggle command that toggles
the Class toolbar off and on. When the toolbar is
toggled on, a v will appear before command.
When toggled off, the toolbar will not be
displayed. When toggles on, it will be displayed
either docked or not.

When the Object Browser is active in the Client
Area, this command will toggle the Browser
Actions toolbar in the browser off and on.

When the Object Browser is active in the Client
Area, this command will toggle the Symbol Types
toolbar in the browser off and on.

EsiObjects Environment 11

Toolbars|Documentation This command is a toggle command that toggles
the Documentation toolbar off and on. When the
toolbar is toggled on, a v will appear before
command. When toggled off, the toolbar will not
be displayed. When toggles on, it will be
displayed either docked or not.

Find in Tree This command is used to find a service that is
actively being edited within the library or folder
tree structures. It is used to synchronize the
Session Browser tree selection with the current
service being edited.

Debugger This command will activate the Debugger
window. The Debugger window is a separate
window that is used to display the code, stack
and symbols of the object being debugged. It has
its own menu and is independent of the Main
Window.

Documentation This command is a toggle command that toggles
the Documentation Window between a hide and
display state. When the command is toggled on,
a v will appear before command. When toggled
off, the Documentation Window will not be
displayed. When toggled on, it will be displayed
as docked.

Output This command is a toggle command that toggles
the Output Window between a hide and display
state. When the command is toggled on, a v will
appear before command. When toggled off, the
Output Window will not be displayed. When
toggled on, it will be displayed as docked.

Session Browser This command is a toggle command that toggles
the Session Browser between a hide and display
state. When the command is toggled on, a v will
appear before command. When toggled off, the
Session Browser will not be displayed. When
toggled on, it will be displayed as docked.

Status Bar This command is a toggle command that toggles
the Main Window Status Bar between a hide and
display state. When the command is toggled on,
a v will appear before command. When toggled
off, the Main Window Status Bar will not be
displayed. When toggled on, it will be displayed.

Main Browse Menu

Menu

Browse

Command

Look Into

Look In Subscript

Pull Out

Watch
Show Descendants
Refresh

Show History

Edit Value

Goto Definition
Class
Evaluation
Recycle

EsiObjects Environment 12

Description

Within the context of the Object Browser, if a
variable is selected that has a OID associated
with it, executing this command will force the
Object Browser to migrate that link and display
the context of the object pointed to by the
subscript OID.

Within the context of the Object Browser, if a
variable is selected that has a OID as a
subscript, executing this command will force the
Object Browser to migrate that link and display
the context of the object pointed to by the
subscript OID.

Executing this command will force the Object
Browser to return to the object it came from and
redisplay its context.

Not Implemented Yet.
Not Implemented Yet.

This command, when executed, will totally
refresh the Object Browsers display of an object
state (variables and values).

The Object Browser keeps track of the objects it
migrates through. Executing this command will
force a List History list box to appear, displaying
the migration history.

When you have selected a variable within the
Object Browser that has a string value bound to
it, executing this command put you into edit
mode. The value of the variable can then be
modified.

Not Implemented Yet
Not Implemented Yet
Not Implemented Yet

You have control over whether a completely new
Object Browser is instantiated every time you
migrate to a new object. The Recycle button on
the browser’s toolbar controls this. If the button is
depressed, that means that only one instance of
the browser will exist for all migrations. This
command will indicate that by a v in front of it.
Executing this command toggles the Recycle
button between the recycle and no recycle
states.

Auto Refresh

Main Object Menu

Menu

Command

Properties...

Edit

Import

Export

Override

Promote

EsiObjects Environment 13

If you are changing the state of an object using
the Object Browsers embedded Xecute Shell,
you can use this toggle command to turn auto-
refresh on and off. When on (indicated by a v in
front of the command), changing the state of the
object being browsed will automatically cause the
display to refresh. Toggling the Auto Refresh
command causes the equivalent Auto Refresh
button on the Object Browsers toolbar to pop in
and out.

Description

Invokes the property sheet for the currently
selected object. The property sheet will display
all the public properties of the object and their
values.

Invokes the editor for the selected object if it has
one. For example, if you have a variable selected
in the Session Browser, the Variable Editor will
be brought up in the client area.

Invokes a common file dialog that lets you select
a file that is the same type as the object selected
in the Session Browser. This command is used
to directly import the exported object into the
selected object; therefore, the objects must be
the same type.

This command will export the selected object to
an external file on the EsiObjects workstation
client. The common file dialog will let you select
the file and directory to save the file in. It will also
let you store all object relationships if applicable.
The contents of the selected object will be stored
in ASCII format that is readable.

When an object is selected in a subclass such as
an interface, service or variable and the object is
inherited from a superclass, this command will
copy the actual object into the currently selected
object. It is through this mechanism that you can
specialize the behavior of an object.

When an object is selected in a subclass such as
an interface, service or variable and the object
exists at the selected level and not at the
superclass level, executing this command will
copy the selected object to the superclass. It is
through this mechanism that you can generalize
an interface, service or variable, making it
available to all subclasses of the superclass.

Goto Ancestor

Compile|Release

Compile|Debug

Compile|Both

Compile|]Advanced

Compile|Syntax Check

Purge

Remove Debug

Unlink

Link

EsiObjects Environment 14

When you have a service selected in a subclass
and it exists there as well as in a superclass,
executing this command will prompt EsiObjects
to transfer control to that superclass service.

This command will compile the selected item or
all items for a release execution. The release
compile is what normally runs when the code is
executed. The compilation results are displayed
in the Build tab sheet of the Output Window.

This command will compile the selected item or
all items for debug execution. This is the code
that the Debugger uses in a debugging session.
The compilation results are displayed in the Build
tab sheet of the Output Window.

This command will compile the selected item or
all items for release and debug execution. The
compilation results are displayed in the Build tab
sheet of the Output Window.

This command is only active when a class is
selected within the Session Browser. A dialog will
display that lets you include all subclasses and/or
nested classes in the compile range as well as
the type of compile (Release or Debug).

This command will syntax check the selected
method or property accessor. The results of the
check are put out to the Output Window.

Executing this command will cause a dialog box
to appear requesting the number of code body
versions you want to keep. After specifying the
number to retain, the EsiObjects structure from
the selected point down will be iterated and all
lower versions exceeding this number will be
deleted, leaving the highest numbered versions.

This command causes the EsiObjects structure
to be iterated from the selected point down. All
debug compiles associated with encountered
code bodies will be deleted.

This command applies to classes. When a class
is selected and it has superclasses (single or
multiple inheritance), the selected class will be
unlinked from its superclass. If the selected class
multiply inherits from two or more superclasses,
a dialog will appear, letting you make a choice as
to which class to unlink from.

This command applies to classes. When
executed it causes the Link to Superclasses
dialog to appear. It queries for a class to be
linked to. A full Library$Class reference should
be given.

Xecute Shell

Main Tools Menu

EsiObjects Environment 15

This command invokes the Xecute Shell in the
context of the selected object. That is, if the
Xecute Shell is invoked in the context of a
selected method, you will have access the that
objects internals (state).

All the commands listed in italics are Add-in commands. A programmer who
understands how to create an Add-in .dll file can add commands. See the next section for
amore detailed explanation of the Add-in concept.

Menu Command

Tools
Global|Directory

Global|Save
Global|Restore

Routine|Directory

Routine|Save
Routine|Restore

Routine|Selective Restore

Routine|Editor

Search|All

Search|Selected

Description

Invokes the Global selector letting you select a
range of globals for display. Only the global
name is displayed.

Invokes the Global selector letting you select a
range of globals for export to an external file.

Invokes the Global file selector letting you import
a set of globals from an external file.

Invokes the Routine selector letting you select a
range of routines for display. Only the routine
name is displayed.

Invokes the Routine selector letting you select a
range of routines for export to an external file.

Invokes the Routine file selector letting you
import a set of routines from an external file.

Invokes the Routine file selector letting you
import a selected set of routines from an external
file.

Invokes the Routine selector letting you select a
routine to edit.

Invokes the Search dialog that queries for search
criteria. Once you provide the information, the
search engine will be invoked. It will search all
levels within the EsiObjects library structure for
the criteria specified. When it gets a hit, it stores
the reference to the object in a workbox. You can
tear the workbox off and use this information to
perform operations on.

Invokes the Search dialog that queries for search
criteria. Once you provide the information, the
search engine will be invoked. It will search the
selected structure object and all lower levels for
the criteria specified. When it gets a hit, it stores
the reference to the object in a workbox. You can
tear the workbox off and use this information to
perform operations on.

Goto Class

Generic Import

Options...

Main Windows Menu

Menu Command

Windows
Close

Close All

Next
Previous
Cascade

Tile Horizontally

Tile Vertically

Main Help Menu

Menu Command

Help

EsiObjects Environment 16

Invokes a dialog that queries for the name (or
partial name using wildcard characters * and ?)
of a class. If it finds multiple classes matching the
search criteria, they are displayed in a list for you
to select from. Double clicking on the desired
class reference will prompt the system to transfer
control to that class in the Session Browser. The
class will be opened up, exposing the supported
interfaces, nested classes and subclasses if they
exist.

Invokes a common file selection dialog that lets
you select an export file that contains a
supported files extension. The generic import will
automatically import the contents of the file to the
correct object. For example, if a method was
exported into a file having a .opm file extension,
the Generic import would import the contents of
that file into the correct method.

Invokes the EsiObjects Options dialog. This
dialog contains User, Format and Preferences
tab sheets. The User tab sheet lets you enter
your name and initials to be used to identify code
bodies. Additionally, macrocode can be entered
that will expand when a new code or
documentation body is created.

Description

When invoked the selected window in the client
area of the main window will be closed.

When invoked, all windows in the client area will
be closed.

Selects the next window in the client area.
Selects the previous window in the client area.

Arranges all windows in the client area into
cascading order.

Arranges all windows in the client area
horizontally.

Arranges all windows in the client area vertically.

Description

Getting Started

Administrator’'s Guide

Language Reference
Guide

Programmer’s Reference
Guide

Tools Guide

About EsiObjects

Main Menu Add-in Programs

EsiObjects Environment 17

Activates the Acrobat Reader and displays the
Getting Started Tutorial. This tutorial is designed
to teach you some fundamental object oriented
concepts. It is primarily designed to teach you
how to use the EsiObjects tool set.

Activates the Acrobat Reader and displays the
Administrator’'s Guide. This guide contains all the
information needed to start and shutdown the
EsiObjects system as well as how to install and
set up the servers for the supported M systems.

Activates the Acrobat Reader and displays the
Language Reference Guide. This guide contains
all the information you will need to use the
EsiObjects language. Each language element is
explained in detail.

Activates the Acrobat Reader and displays the
Programmer’s Reference Guide. This guide
contains all the information you will need to know
about objects and how to use them within your
application.

Activates the Acrobat Reader and displays the
Tools Guide. This guide contains extensive
information about the EsiObjects tool set. Each
GUI object is described in detail along with
instructions on how to use it.

Invokes a dialog that displays current status
information about the EsiObjects Class
Development Environment.

Add-ins are supplemental programs that extend the capabilities of EsiObjects by adding
custom commands and specialized features.

Y ou can write your own Add-in programs. Writing your own is outside the scope of this

guide.

To use an add-in, you must install the add-in program in the EsiObjects root directory and
then register it. If the program has been implemented properly, it will appear asa

command in the Tools menu.

To take it off the menu, all you have to do is unregister it.

In the previous section, all the traditional MUMPS utilities are defined as an Add-in

program.

EsiObjects Environment 18

Output Window

Output Window Explained
Components of the Output Window

The output window appears as a resizable window. It can be resized and docked to any
of the four edges of the Main Window.

This button hideg
the window

This button
expands the
window to the
full width (or
length) of the
window
collapsing other

This is the display area
of the tab sheet. It iz
record oriented.

windows that _
may be docked iﬁ ALompiling method: Base$Setherator.Factony::InitClassVars v |
along the same = Compiling method: BaseS5etherator.Factory::InitSysYars we
edge. Once il

H { |
f:’:l“(eled“ gi Compiling interface: Primary
Clicking on it §§ Compiling indexes for the interface: Primary
will retum the |
window to its %; Tatal errors in the class:0 warnings:0 -
original size. i [A12 T ouput s, Build { Debug

Thig elevator

scrolls the This tab This tab This tab This elevator
content of the brings the brings the brings the scrolls the content
tab sheet left Output sheet Build sheet Debug sheet of the sheet up
and right. forward. forward forward and down.

Output Window Popup Menu

The Output Window popup menu is invoked by right clicking anywhere on the output
window.

EsiObjects Environment 19

@em'ss the contents out of the active tab sheet.

Gﬂl}ies the selected text t& EIE!-ET DE'E—'tE!
Copy Crl+C

E?uts the selected region to the clipboard. _J/_— Cut Cirle

Select Al Chrl+d
fﬁ’l/ﬁ/// Prit CilP

Gends selected content to the default printer.

Docking the Output Window

The output window may be docked to any of the four edges of the main window. The
Output Window can only be docked - it cannot be undocked. However, you can freely
reposition it along any of the four edges of the Main Window. When you are first getting
used to the output window, it is easy to make the mistake of accidentally docking it while
repositioning. By holding down the Ctrl key while repositioning the output window
prevents it from docking, thereby avoiding this problem.

To reposition the Output Window, simply place the mouse pointer on the grab bar and
press and hold the left mouse button down. Now drag the Output Window to any edge of
the main Window and drop it. The window should dock to the edge. At this point you
may want to resize the window. Simply grab the edge and expand it.

Using the Output Window
Debug and Build Tab Sheets

The Debug and Build tabs sheet are used by the EsiObjects system. All tab sheetsin the
Output Window are record oriented and output only. Y ou can perform standard cut and

paste operations individual or multiple records. A popup menu invoked by right clicking
on the tab or on a selected item provides these operations as well as the main Edit menu.

EsiObjects Environment 20

Output Tab Sheet

The Output tab sheet, however, is available to you for use. It can be used to display
status information and is also convenient for displaying trace information when
debugging your application.

If you are not familiar with the concept behind the EsiObjects specia variable
$ENVIRONMENT, refer to the EsiObjects Server Environment section of this guide.

The EsiObjects environment object, accessed viathe SENVIRONMENT variable,
contains a method called Output. It takes one parameter - astring. The following example
illustrates who to put aline of text out to the Output Window.

Do $Env. Qutput(“This is a line of text”)

Documentation Window

Documentation Window Explained
Components of the Documentation Window

The Documentation Window iswhere al documentation is entered and displayed for the
object currently selected. For example, if amethod is selected in the Session Browser, the
documentation for that method will automatically be displayed in that window. All text-
editing operations are common to operations commonly found in aword processor. The
text is stored in Rich Text Format (RTF). Associated with the window is a Toolbar and
Popup Menu that let you perform fundamental operations.

Documentation Pane

This button is used to hide the
documentation window.
Documentation button of the
main window toolbar can be
used to display it again.

Tlus title contams the EsiObjects path to
the selected object. In this case the
documentation for the More method. in the
Primary interface of the ListTterator class
which ig in the Bage library is displayed.

Base$Listlterator - Primary:More

Description; =]

More returns a truth value indicating if there are more elements in the

list in the iteration direction from the position passed in.

This button is Input value: position to start at
[detaults to the current position)

used to expand N
. ! Side effects: none
the window ot v e

completely out
along the edge it
ig docked on. The
button will This is the text area. You click in here with your mouse

S

N

reverse at that to select it and then enter the text. Using the
pomt. Clicking on Documentation Toolbar, you can rendition the text with
it will resize back bold, italics, underline, colored font and style as well as

to its original size. position it (left, center or right justify).

Tool Bar

EsiObjects Environment

Thig is the Ttalics
button. When
depreszed, all text
typed or selected in
the documentation
window will be
italicized.

This is the Bold
button. When
depreszed, all text
typed or selectedin
the documentation
window will be

Teut\ Tools

Thig ig the Center
Justify button.
When depressed. all
text in the
documentation
window will be
justified on center.

toolbar. To ch
welect the

bolded

This is the Underline
button. When depressed, all
textt typed or welected in the
documentation window
will be underlined.

This is the Font
button. Wlen
depressed it will
mvolke the system
font selection
dialog,

Popup Menu

This iz the Left
Justify button. When
depressed, all text in
the documentation
window will be
justified to the left.

text in the

the right.

Thig button will hide the

View|Toolsbars|Document
ion menu command.

gplay it again

This is the Color
Selection button.
Clicking on the
button will bring
up a color palette.
Selecting a color at
that point will
render the text that
color if selected or
all text typed if not
selected

Thiz is the Right Justify
button. When depressed. all

documentation

window will be justified to

21

The Documentation popup menu is invoked by right clicking in any documentation pane.
Each command of the popup menu is explained in the illustration below.

This i the Paste command.
Clicking on it will paste the
clipboard contents starting at
the position of the cursor.

This the Delete command.
Clicking on it will delete the
selected region of text in the
documentation window.

This is the Undo command. Clicking
on it will vndo the last operation.

This is the Find command.Clicking on it
will bring up the Find window that can be
uged to do elaborate gearches within the
documentation window.

This ig the Find Next conunand.
Clicking on it will tell the Find
finction to find the next occurrence of
what i being searched for.

This i the Replace command. Clicking on
it will replace the found occurrence with
the specified replace text.

Thiz i the Copy
command. Clicking
on it will copy the
velected region to
the clipboard.

Thig ig the Cut
on it will cut the

the clipboard.

command. Clicking

selected region to

Cut Cirl+#
LCopp Cirl+C
Paste Cirl+
Delete Delete
nda Clrl+=
Find... Al+F3
Find Mext F3
Replace. .. Chrl+F3
Hide “Windaw

This is the Hide Window command. Clicking
on it will hide the D ocumentation window.

"]

EsiObjects Environment 22

Docking the Documentation Window

The Documentation Window can be docked to any of the four edges of the main window.
The Documentation Window can only be docked - it cannot be undocked. However, you
can freely reposition it along any of the four edges of the Main Window. When you are
first getting used to the output window, it is easy to make the mistake of accidentally
docking it while repositioning. By holding down the Ctrl key while repositioning the
output window prevents it from docking, thereby avoiding this problem.

To reposition the Documentation Window, simply place the mouse pointer on the grab
bar and press and hold the left mouse button down. Now drag the Documentation
Window to any edge of the main Window and drop it. The window should dock to the
edge. At this point you may want to resize the window. Simply grab the edge and expand
it.

Using the Documentation Window

Using the documentation window is comparable to using aword processor such as
Word or WordPad[. Associated with the Documentation Window is atool bar
(described above) that can be used to format text.

EsiObjects Environment 23

The Session Browser

The Session Browser Explained

The EsiObjects development environment is designed to provide all the necessary tools
needed to develop an object oriented application.

The Session Browser component isawindow that contains tab sheets. Each tab sheet
may contain a graphical representation of EsiObjects library and folder structures.
Browse operations are permitted on each structure. These operations let you find objects
quickly and easily. The following is a picture of the EsiObjects Session Browser.

:j x
Thig button 12 uged to ln'(leq\
..[Bl BusinessFramework the Workspace window. It

Hierarchi cal worl fol ders
can be created within the

workspace to hold [l BusinessObjecls igusedin concert with the
min;’ei"" oaviee /| & [BusinessRules Main Window Toolbar

Po i Ll o Gliw Base Workspace button. /
within the main LJ% BusinessFramewaork

EsiObjects structure.
Double clicking on the

ci-gu BusinessObijects

-3 Address —— _——h/:f_'ln\ example of the

folder will digplay a &-E& Organization |~ BusinessObjects library
window containing all =-& Person illustrates all of the classes
the pointers. All menu - =§ Nesicd £S contained in the library.
operations are permitted EIDE Variables

ce . i -l Factory .
on these selected work \KTI_I& Person clags iz _\

expanded showing all of its

component: Nested Claszes,

Variables, Factory and
\El‘illlal'}' interfaces. -

wﬂns.

Name
% Organization
PersonalEMail
PersonalTitle
- WorkEMail
&3 Record

&1@ Role

&3 SharedObject

[1; = SharedObjectFactory
The tab iz used to select a - B8 TimePeriod

tab sheet by clicking on w-Fa BusinessRules

it. Placing your cursor & i ESI

over the tab will prompt a E“ﬂ Master

tool tip to appear gt User

identifyingit.
Cache i

The Person classes Primary
interface is expanded
showing its services.

Using the Session Browser

Two operations are fundamental to the Session Browser. They are:
1) Docking
2) Displaying and hiding.

Docking the Session Browser

The Session Browser window must be docked to any of the four edges of the main
window. The Session Browser can only be docked - it cannot be undocked.

EsiObjects Environment 24

Displaying and Hiding the Session Browser

The Session Browser window may be hidden or displayed at your convenience. The Hide

or Display the window, pop out or depress the Session Browser button izt on themain
window toolbar with your mouse pointer. The Session Browser will appear where it was
when it was hidden. Y ou may also hide the window by clicking on the hide button = in
the upper right hand corner of the window.

Session Control

Session Control Explained

Asillustrated below, Session Control alows the EsiObjects client to connect to a
supported M database viaa T CP bridge connection. Access to multiple databases on
different servers through different sessions can be established on one client.

510bjecty
TCPAP I
3 a Euntitne
atew ay, I o
Idodule

Session
510bjecty
TCFIFP I
o Euntitne
atew ay, I o
Module

Control
1 E

CHCS

e
o[rise o

EPMS

L
e Blw B
F

Class Development Environmen

[E.siObjects
TCF/IF
o Euntime
atew ay, I d
Module

1T\]

Client Tier EsiObjects Server Side

Session Control lets you maintain connections to multiple servers. When you connect to a
session, all library and folder structures available in that session are displayed on atab
sheet within the Session Browser. The session name is displayed on the tab. The tab sheet
that has focus identifies the session that is active. Clicking on a session tab lets you
quickly switch between sessions.

EsiObjects Environment 25

Session Control Window

The Name is the
name of the sesgion.
The gegzion can
also be renamed
here.

Comments displays
the text that you can
agsgociate with the
session to further
identify it.

The Status indicates
whether the session
iz Connected or
Digconmected.

[Session Control

i Comments 1 Auta Start | Status i
CHCS Database TCRAP Mo Disconnected
Local Cache TSF'/"IF' Mo Disconnected

Mame
Zues
Cache

Ghe Session Type
indicates whether the
session is registered
as private (P).and
stored in the registry
under the current user
directory or Common
(C) and stored under

Y the local machine. /

The Type
indicates what
type of
comnection the
session is
using.

The Time column
displays the time of
connection.

The Auto Start identifies
whether the session will
automatically connect to
the zerver when
Es=iObjects iz started

Session Control Menus

There are two menus that are available for executing session control commands: the Main
Menu and the Session Control Window Popup Menu.

Session Control Main Menu

When the Session Control is displayed in the client area of the Main Window and is
selected, the Main Menu will highlight those session control commands that are active.
Each active command is described below.

EsiObjects Environment 26

The File|Connections Commands

The File|Connections commands are used to display the session control window as well
as connect and disconnect to the EsiObjects server.

AW Edit “iew Hrowse DObject Tools Window Help

e]
The Conne ctions| Show
L command actives the Session
g Control window in the Main
Hevert Window client area.
Hemane At
=t

efete The Conmections| Conmect \

A command is highlighted if the

it . -
it currently selected session in

F'[ir‘lt g etup... the Segzion Ccrntrj:rl \.vin(lmw.' I
not connected. Clicking on it
will connect the session to the

m server if the EsiObjects
b rechrector ig rming.
1 Cache Canhest ’5//\ - 4

: [NiEzonrecs —
E st \/Tl_le Connections| Dismlmect\

command ig highlighted if the
currently =elected gesgion in
the Sesgion Control window is
comnected. Clicking on it will
disconnect the session.

S

EsiObjects Environment

The File|[New|Session Command

The File[New|Session command is used to create a new session.

= = Esilibjects - Seszion Control

E:Iit “Wiew Browse DObject Toolz Window Help

P
: The New|Session command displays a

Save Houftite dialog that cueries for the session
Flewert Libran: name and type of connection. If the
o bk Elasi OK button is pressed, a new session is
iy created in the Session Control
[Delet= Intethace window.
2rirt rethod
Print 5 etup... Eroperty
7 Eelationsip
Lonnections r
Event
1 Cache :
= [netance Yarnable
Enit [Elgss Yariable
Erlrler
LRSI

[ihech.

Session Window Popup Menu

EsiObjects Environment 28

Right clicking on the session icon will display the session control popup menu. Each

command is described below.

The Rename command
permits you to rename
the name of the selected
session directly in the
Sezsion Control window.

The New command displays a dial og
that queries for the session name and
type of connection. If the OK button i
pressed, a new session is created in the
Session Control window.

The Default command toggles
the default indicator on and off
for the currently selected
zeszion in the Segzion Control
window.

/:IIFle Cut command copies the New
currently selected session Hename The Conmect command is
onto the clipboard removing highlighted if the currently
it from the Segzion Control efaul 4 selected seszion in the Segsion
window. Connect Control window ig not
/\ b commected. Clicking on it will
The Copy command copies connect the session to the
the currently selected Cut Clrl+ server if the EsiObjects
. " . rechrectoris ne.
session onto the clipboard Copy Ctrl+C redirector is running
leaving itin the Session Eite [Etrle
Control window. Dl

/ EIDQ\erties Ctrl+Enter

The Disconnect comimand is
highlighted if the currently

The Paste command paste
the session on the clipboard
into the Session Control
window.

The Delete command deletes
the currently selected session.
It does not ask you if you want
to delete.

Session Control Properties

zelected zeszion in the Seszion
Control window iz connected.
Clicking on it will di sconnect
the session.

The Properties command
invokes the property sheet for
the gelected session in the
Session control window.

See the EsiObjects Overview section in the Es Objects Programmer’ s Reference Guide
for an overview of Session Control in EsiObjects.

A sessions properties can be edited via the a property sheet that is brought up viathe
File|Object|Properties command of the main menu or the Properties command on the
session window popup menu.

General Tab Sheet

EsiObjects Environment

29

The General tab sheet shown below is general to all connection types.

Name is the name of
the session gelected
The seggion can alzo be
renamed here ag well.

the session named above.
This can be Connected or
Disconnected. Read only.

Status of the connection for ‘

Awuto Conmection if checked
will automatically connect
this session to the server ‘

when EziObjects is started.

.

Properhies for Cache

Gened I Connection I

Lomments: ILocaI Cache

Status ID isconnected

Connected Since: I

[Auto connsction [~ Comman Seasian

’,AdaplerTyDe' [rcrap

Adapker Locatior: ID"\esiDhiectsz,D\T CRAdapterl). DLL

UuID: |{1 1780B47-FC9A-11d0-9E CF-004 024 CR0BAE}

Adapter Type, Adapter
Location and UUID

/QIHS’-

Comments: Allow the
user to add comments
about the seszion, such ag

- a detailed name.
T

Connected Since
digplays the time of
| connection. This ig read

_,/Commcm Session \

indicates whether session
properties stored in the
registry are conunon to
all users or private to the

current user. /
— Tn

1e Help button is

ot | caee | sy | Hen H
75 T

used to interactively

define what type of and
where the adapter is
located. The UUID
defines the Uniform
Unique Identifier of the
adapter. These values
are supplied by the
system and are read
only.

The OK button
isusgedto
terminate the
dialog and file
any changes
made to the
property sheets.

The Cancel
button 1 uged to
terminate the
dialog. Any

changes made to
the property
sheets will not be
filed.

invoke documentation.

The Apply button is
uged to terminate file
any changes made to
the property sheets and
apply them. The
editing session will not
be terminated.

Connection Tab Sheet

EsiObjects Environment

The Connection tab sheet shown below is specific to a TCP/IP connection.

Server Addressis
the actual Name or
IP address of the

server being
connected to.

General Connection I

Puort: I 9500 —=i___—___

Properties tor Cache []

Port iz the port on
the above named
server being
connected to.

Evwent Scan Frequency

Event Scan
Frequency sets how = | ' :
often the client will el L
1/2 Second 60 Seconds
poll the server for
. . Ones per 2.00 seconds:
events during idle
time.
Ok I Cancel QpEly Help \l

A

The Cancel
button 12 uged to
terminate the
dialog. Any
changes made to
the property
sheets will not be
filed.

The OK button
iz uged to
terminate the
dialog and file
any changes
made to the
property sheets.

Using Session Control

The Apply button

15 uged to terminate The Help
file any changes button is
made to the used to
property sheets and interactively
apply them. The ivolke this
editing session will documentati
not be terminated. on.

30

When the EsiObjects client isfirst brought up, it may or may not automatically connect to
asession. If itisthefirst time you started EsiObjectsit will not start a session. Y ou must

create a session. However, this means that EsiObjects must reside on the server you are

connecting to. To find out how to install EsiObjects on the server, please refer to the
appropriate read mefile for the M system you will beinstalling it on. .

Creating a New Session

If the Session Control window is not open, use the File|Session|Show menu option to

display it in the client area.

Once the session control window is open, right click in the open window region to open

the popup menu.

Select New to create a session. Thiswill invoke a New Session dialog.

EsiObjects Environment 31

Enter the Name of the session to be created. The name is only used to reference the
session and does not require any special naming conventions.

Select the connection Type from the pull down menu list. Currently the only supported
connection types are TCP/IP.

Click the OK button to save or the CANCEL button to exit the dialog without saving.

Now that a new session has been created and the type of connection indicated, it is
necessary to define the connectivity information.

Select the session just created by left clicking on the item once and then right click to call
the popup menu. Select Properties from the menu.

A dialog appears with the tabbs General and Connection. (See the Session Control
Properties under the Session Control Explained section above for explanations of the
property sheets).

Once al the appropriate information has been entered in the Properties dialog, right
click on the session. Select Connect from the popup menu (or main menu) to start the
session. (Note that if AutoConnect is enabled, the session will connect when EsiObjects
is started without this step.)

The status of the session will change from Disconnected to Connected and all libraries
and folders available within that session will be available on atab sheet of the Session
Browser.

In the event that a connection cannot be established refer to the section on
Troubleshooting Session Control below.

The Class Development Environment (CDE) cannot be accessed on a server until a
session has been connected. It should be noted that more than one session can be opened
at the same time to different servers and databases using different connections.

Create a Session by Copying and Renaming

A convenient way to create a new session isto Copy an existing session and rename.
Right click on the session to be copied and select Copy on the pop-up menu.

Next, move the mouse pointer over the blank window and right click. Select Paste from
the pop up menu. Notice a*“copy” of the session appears next to the original session. This
copy has al of the exact characteristics and settings of the copied session and may need
to be edited to meet the users needs.

Right click on the new session copy and select Rename from the pop up menu. Rename
the session.

EsiObjects Environment 32

Disconnecting a Session

To disconnect an EsiObjects session, right click on the session and select Disconnect
from the pop-up menu. The status of the session in the session control window will
change to Disconnected and it’ s tab sheet in the Session Browser window will disappear.

Additionally, when the EsiObjects client is shut down, accordingly, the session(s) are
disconnected.

Deleting a Session

Select the session from the Session Control window that you want to delete.
Right click on the session name to bring up the popup menu.

Select the Delete command. The Session will be removed from the Session Control
window without confirmation.

Troubleshooting Session Control

If auser has trouble connecting to a server with session control, there are possible steps
that can be taken to isolate and correct the problem.

The Properties of the session being used to connect to a server should be reviewed first,
specifically the Connection tab settings.

1. Make surethe IP Address and Port name are correctly entered and correct.

2. Verify the server being connected to is started and that the TCP/IP listener is running
at this address and port.

User Options

User Options Explained

EsiObjects offers you numerous alternatives to customizing your development
environment.

Y ou can personalize your environment by storing your user name and initials. Y our
initials are associated with all code bodies you create or modify. Y our initials can be one
of the key search strings used by the EsiObjects Search engine.

Y ou can store macro templates that can stamp out new source code objects (methods,
properties and events) with text and code that is specific to the code body. These
templates can save agreat deal of time.

Y ou can a'so control the font and size of al text and code displayed in each of the
documentation and source code editing windows.

Finally, numerous options can be checked on or off fit your workflow patterns.

EsiObjects Environment 33

Using the User Options

From the T ools menu, choose the Optionsitem. A dialog box appears that contains three
tab sheets: User, Format and Preferences. The User sheet |ets you create template
information for documentation and source code associated with each method, property or
event. The Format sheet lets you select how the text is rendered to you, that is, the font
and size of the text. The Preferences sheet lets you tailor your EsiObjects operating
environment to your needs.

User Tab Sheet

The User sheet isinvoked by clicking on the User tab. Theillustration below describes
al components of the User tab of the Options property sheet. The Name and I nitials
fields identify you as a user. These fields are important in that they are used to stamp
objects created by you. Also, the Search engine uses your initials as one type of search
criteria.

The Initial Text section lets you create macrocode for each source code and
documentation objects in the system (methods, property accessors, events, routines). The
macrocode is expanded whenever you create a new object. Y ou can use the macrocode to
set up default code and documentation templates for your project. For more information
on the avail able macros, see the section Macro_Substitution Token List.

The name of the
progranuner.

The programmer's
initials.

The type of code
body to which the

iitial text below it
applies.

Procuces a cascading
memu that
automatically
generates the macro
code at the cursor
position in the list box
below. Elinunates
uging the
documentation.

Macros are ingerted Initials [1 |
here either manually
by typing them in
(See alzo: Initial
Text: Macro
Substitution Guide)
or by using
automatic selection
and inzertion via the
Macro button.

This code ig
expanded at the time
anew code body is
created.

- Iritiatfeat

Sectioh itoa}ﬂefault ;I M#ﬂ

() Copyright (] %Y ESI Technalogy Corp. Natick, Hﬂ
[{uk %L

i b Created: Hc Zp by Zu
!TPUL W[4 %5

EIKJ| I Eahcelk Ll | Help +

Fil} \

Involes help
associated with this
dialog box.

Apply applies any
changes immediately,
without closing the
dialog.

Cancel closes the
dialog, causing any
changes to be
digcarded.

OK closes the
dialog, causing any
changes to be
applied.

EsiObjects Environment 34

Format Tab Sheet

The Format sheet isinvoked by clicking on the Format tab. Illustrated below isthe
Options property sheet Format. The Format sheet allows you to alter the text font and size
for the various text components of EsiObjects.

The name of the font
in whi ch the text will
appear.

Identifies the point
size for the text.

Describes the
category of text
body for which the
formatting will
apply: Code Body
refers to source code

User Format | Prefersrces

Shows sample text,
so the user can see

Categoy Fonl

;&L‘i‘:ﬁiﬁ;ﬁm Iss_ﬁtem j what ﬂlis .fmnt-'size
refers to the gi?i::\!\.fin o e 12 = c_ombmatmn looks
dockable i Sample gt [like.
documentation AaBbCcDd

window; Output
‘Window refers to
the dockable output
window; General
refers to other text Og, I Ca”'ﬁe‘ Bl Help ‘4i
appearing in i it
EsiObjects windows.

Involces help
asgociated with this
dialog box.

Apply applies any
changes
immediately,
without closing the
dialog.

Cancel closes the
dialog, causing any
changes to be
dizcarded.

OK closes the
dialog, causing any
changes to be

applied.

EsiObjects Environment 35

Preferences Tab Sheet

The Preferences sheet isinvoked by clicking on the Prefer encestab. This sheet allows
specific options to be activated by checking the appropriate check box. Options that are
checked are enabled. Options that are not checked are disabled.

Lets vou specify the
number of Undo
levels permitted in
EsiObjects.

Ueer Imeat F'leferencesl

Option 7

Containg all the uger
preference options
available ag check
boxes. See the list
below for a more
detailed description.

[Futa Mew Yarsion
[lAuto Open

[J&uto Dizplay Output
[J&uto Size

mpile on Save

/

Co
Hadisnlan ;I
Murmber of Unda Levels: I'I oo Tvokes help
[
agzociated with this
y s EF\”CE' | el I hEE 1: dialog box.

OK closes the
dialog, causing any
changes to be

applied.

The following table contains
shest.

Iltem
Auto Display Output

Allow Delete of Folders

Auto New Version

Apply applies any
changes
immediately,
without closing the
dialog.

Cancel closes the
dialog, causing any
changes to be
dizcarded.

adescription of each option available on the Preferences

Description

If checked, the Output window will automatically appear if
hidden, when the results of a compile are sent to the Build tab
sheet.

If checked, the Delete command will appear in the folder
popup menus (and the main menu Edit|Delete command).
Since all actions within the Folder are directed to the object in
the library structure, unintended use of the delete command
can have damaging consequences. Therefore, use of it is left
up to the programmer as a personal preference.

When prompted to save source code, the New Version check
box on the Save dialog will default to what is set here. When
checked, the default action on saving source code will be to
create a new version of the source code on every save.

EsiObjects Environment 36

Auto Open If checked, adding a new method, property, event or
relationship in the Session Browser will automatically open the
appropriate editor for that object.

Compile On Save When prompted to save source code, the Compile check box
on the Save dialog will default to what is set here. When
checked, the default action on saving source code will be to
compile the source code after saving.

Redisplay When checked, EsiObjects will search for an open editor or
search result window to reuse and bring forward, rather than
always creating a new window. This applies to the method,
property, event editors as well as the search results windows.

Reuse Search Window When a search is done, a search dialog box is displayed that
lets you identify search criteria and range. Checking this box
will ensure that it is reused if you specify another search.
Unchecked means a new dialog will be used every time a
search is done.

Verify Application Close If checked, EsiObjects will prompt you for verification of shut
down. If not checked, EsiObjects will simply shut down without
verification. It is advised to leave this checked all the time.

Macro Substitution Token List

The following special formatting tokens are available for use in the Initial Text field of
the User Options dialog. They can be typed directly into the Initial Text list box or they
can by automatically entered via the Macro button on the User tab sheet.

Using the Macro button and cascading menus lets you quickly create a template without
the burden of knowing what each token stands for.

Token Meaning

94 Properties — Input Specification

R Properties — Body

%a Abbreviated weekday name.

YA Full weekday name.

% Abbreviated month name.

98 Full month name.

% Date and time representation appropriate for locale.

%tc Long date and time representation, appropriate for locale. For example,
"Wednesday, January 17, 1996, 12:34:56".

% Day of month as decimal number, leading zeros included (01-31).

%td Day of month as decimal number, no leading zeros (1-31).

% Hour in 24-hour format, leading zeros included (01-24).

%#H Hour in 24-hour format, no leading zeros (1-24).

% Hour in 12-hour format, leading zeros included (01-12).

98¢ Hour in 12-hour format, no leading zeros (1-12).

% Day of year as decimal number, leading zeros included (001-366).

0] Day of year as decimal number, no leading zeros (1-366).

%m Month as decimal number, leading zeros included (01-12).

%#tm Month as decimal number, no leading zeros (1-12).

9 Minute as decimal number, leading zeros included (00-59).

%M Minute as decimal number, no leading zeros (0-59).

% Current locale's AM/PM indicator for 12-hour clock.

%6 Second as decimal number, leading zeros included (00-59).

%#S
%J

%#U

v
%N

%W

4
OBtx

X
%
oY
4
%0
%
%
%
L0

\ 't
\n

\'r

Crl +Enter

\\

EsiObjects Environment

Second as decimal number, no leading zeros (0-59).

Week of year as decimal number, with Sunday as first day of week,
leading zeros included (00-51).

Week of year as decimal number, with Sunday as first day of week , no
leading zeros (0-51).

Weekday as decimal number with Sunday as 0 (0-6).

Week of year as decimal number with Monday as first day of week,
leading zeros included (00-51).

Week of year as decimal number with Monday as first day of week, no
leading zeros (00-51).

Date representation for current locale.

Long date representation appropriate for current locale, e.g. "Wednesday,
January 17, 1995"

Time representation appropriate to current locale.

Year without century, as decimal number, leading zeros included (00-99).
Year without century, as decimal number, no leading zeros (0-99).

Time zone name or abbreviation, if known - No characters, if not known.
Percent sign (%) appears in target text.

User name, from Options dialog.

User initials, from options dialog.

Name of entity to which the text applies.

Full title of entity to which the text applies.

Inserts a tab character (ASCII 9).

Inserts a newline character (ASCII 10). These generally don't appear in
source text, except in a CR+LF combination at the end of each line.
Inserts a carriage return character (ASCIl 13). These generally don't
appear in source text, except in a CR+LF combination at the end of each
line.

Inserts carriage return, line feed combination. Same as \r\n, but easier to
see visually.

Inserts a backslash (\) in the target text.

Setting The Initial Text

To set theinitia text for any code body, follow the step outlined below.

1. Select the Options... option from the T ools menu.

3) Inthe Section combo box, select the type of code body you wish to enter initial text

37

for. Code Default will apply to all method types. In the example below, M ethod was

selected.

2. Place the cursor where you want the macro to expand. Enter the macro and/or text

you wish to have expand in a new code body. Alternatively, use the Macro button to
popup a cascading menu to insert the macro automatically. Existing methods are not
affected by any changes made here. Y ou can enter text or any of the macro
substitutions described in the table above.

See the following topic for an example of setting initial text using macro substitution.

EsiObjects Environment 38

Initial Text Example

The following example illustrates how to set initial text for methods. It also shows how
macro substitution works, by showing the initial text asit appears before macro
substitution, and as the actual text might appear in a given example.

(Note that these examples can be cut out of this document and pasted into the Initial Text
list box.)

Initial Text

The returns in the following text were achieved by pressing Ctrl+Enter in the Initia
Text field of the User Optionsdialog. A less visually ambiguous alternative would be to
insert the text \r\n for each return; however, thisisless visually appealing.

\t;;(c) ;Copyright (c) 1997-% ESI Technol ogy Corp. Natick, NA

\t; %

\t; Created: % % by %

| nput : \ 't (%4

\t)

\t; 9% nethod code begins here

\VtQUIT
Default Source Text

The following default source code text is produced for a method, when the preceding
macro text is used.

;;(c) ; Copyright (c) 1997-1998 ESI Technol ogy Corp. Natick, MA
; Framewor k$Error Broker - Primary:: GetError
; Created: 12/19/98 09:59:21 AM by Terry L. W echmann
| nput : (
)

met hod code begi ns here.

QT
Help Documentation
Help Documentation Explained
The EsiObjects Help documentation is available as Acrobat .pdf files. There are 4 guides

and one tutorial that are designed to cover all aspects of using the EsiObjects system. The
guides and tutorial are described in the following sections.

EsiObjects Environment

Administrator’s Guide

Assumptions about reader:

 Have administrative skills at the OS and M levels.
« Have PC user skills.

Goals of this guide are:

» Explain the EsiObjects Client Server Environment.
» Describe how to use MSM’s RV G capability.

» Describe how to setup and use EsiObjects for each of the supported M systems:
MSM, DSM, GT.M and Cache.

Language Reference Guide

Assumptions about reader:

* Knows object oriented concepts.
» Hasprogrammed in other languages.
Goals of this guide are:

» Explain al code body structures.

» Describe the syntax of the language.

* List and describe all Commands.

» List and describe all Functions.

» List and describe all Specia Variables.
» List and describe al Operators.
Programmer’s Reference Guide

Assumptions about reader:

* Knows object oriented concepts.
* Knowsthe MUMPS language plus the EsiObjects extensions.
Goals of this guide are:

* Givean overview of EsiObjects.

» Describe how to use Objects.

» Describe how to Integrating Objects.

* Ouitline the Guidelines for using Objects.

» Describe Client Server Programming using EsiObjects.

39

EsiObjects Environment 40

Tools Guide

Assumptions about reader:

» Knows object oriented concepts.
» Knows how to use PC applications.
Goals of this guide are:

* Givean overview of EsiObjects Environment.
» Describe each component of the EsiObjects Environment and how to use them.

» Describe each component of the Class Development Environment and how to use
each one.

» Describe the Transport tools and how to use each one.
Getting Started Tutorial

Thistutorial is delivered with EsiObjects. It covers OO concepts and teaches you how to
use the EsiObjects tools by actually constructing a small application.

Using the Help Documentation

EsiObjects documents are accessible in three ways:

1. Through the EsiObjects Help menu. Simply click on the desired guide or tutorial and
the Acrobat Reader will be launched and the document displayed.

2. Viathe EsiObjectsinstallation subdirectory Help. All EsiObjects help documents
reside in the Help subdirectory. Access this directory and simply double click on the
desired document. Acrobat Reader will be launched and the document displayed.

3. Launch the Reader directly and open the desired file.

Class Development Environment 41

Class Development Environment Tools

Tools Overview

The EsiObjects object model is based on the classification system. The CDE environment
contains all the tools needed to develop and test these classes. Class devel opment tools
available in the CDE fal into the following 5 categories:

* Browser tools designed to let you migrate all components within an EsiObjects
session. You use browsersto find the definitional object you want to work on.
EsiObjects provides multiple views into definitional structures, either directly through
the library structure or indirectly through folders. Folders can be private to your
session or shared with other programmers connected to the same session.

» Editorsaretoolsthat let you modify an object found through the Browser.

» Search tools are used to search across arange of objectsin the EsiObjects library
structure for specified criteria. The results of the search can be used to activate the
associated editor, wizard or property sheet for the object double clicked on.

» Debugger isaninteractive tool that |ets you step through the execution sequence of
your application. It automatically displays the stack and symbol table states after each

step.
* Transport tools are used to transfer definitional level and instance level data and

code between environments via external files. The transport tools can be used to share
your work within a project or to back up it up for safekeeping.

Browsers

The EsiObjects CDE contains Browser tools designed to migrate to all objects within an
EsiObjectslibrary. Y ou can use browsers to find the object you want to work on.
EsiObjects contains the following browsers:

* Session Browser
* Object Browser

The ability to browse objectsis amajor part of the EsiObjects CDE. A browser isa
development tool that provides a common way to migrate through relationships between
definitional objects for the purpose of interrogating or modifying the internals of the
object.

Everything in EsiObjects is an object including EsiObjectsitself. The only differenceis
the type. Therefore, the browsers can migrate and display any object in the system simply
because they are structurally identical although their content may be different.

Class Development Environment 42

Session Browser

A Session Browser displays and provides migration services for all structures supported
within a session. Currently two structures are supported:

1) Library
2) Folder

The Session Browser is used to migrate only; it does not expose the internals of the
objects.

Object Browser

The Object Browser is used to browse any type of object. It can be used to browse
classes as well as instances of classes. It can browse static objects or objects that are
being modified by a running application. It displays the internal state of the object and
permits migration back and forth along object links. It has an integrated X ecute Shell that
can be used to evaluate EsiObjects expressions or execute aline of EsiObjects code.

Editors and Property Sheets

The ability to edit definitional objectsisamajor part of the CDE. Definitional objects are
based on the classification system and are called classes. Classes contain all information
needed to create an instance of the class commonly referred to as an object. Instances
aways know who is responsible for making them. The parent class contains methods that
give the object behavior, properties to expose the object's state, relationships that link the
object to other objects and event templates needed to respond to unsolicited events.

An editor isadevelopment tool that provides acommon way to create, edit, delete, or
inquire into an object, whether it isavariable, method, property, relationship or event of
aclass.

A property sheet typically presentsitself as one or more tab sheetsin awindow that
contains fields that you may modify. Often the fields are read only, that is, only available
as information and not modifiable.

Search Tools

Browsers are used to directly access objects. The Session Browser can be used to access a
method, property, relationship or event within an interface of a specific classif you know
where it resides. Browsers are used when looking for a component that isin a known
location. Y ou can migrate the library tree with the Session Browser or, if you know its
name, you can use the GoTo Class dialog to accessit quickly.

Often, however, you will have aneed to find a specific occurrence of an object that isa
part of the library structure, some attribute of an object or string within an object. You
generally do not know where it is or how many occurrences exist. In these cases, a search
tool is needed.

Class Development Environment 43

The EsiObjects Sear ch Tool lets you search through the library, class and interface levels
within alibrary for specific criteria. It records the object paths where a criteriamatch is
found. These paths are displayed in the search window. The programmer can then double
click on any one of the paths to launch the appropriate editor for the object found. If the
path of a property is selected, the property editor will launch. If the path of amethod is
selected, the method editor will be launched. Regardless of the editor, each occurrence of
the search criteriawill be highlighted within the edit pane.

Debugger Tool

The EsiObjects CDE contains an inter active debugger that is used to debug your code
whether they be methods, properties, relationships or event handlers. The debugger is
designed to give you control over the execution sequence. Additionally, it displays the
state of the object after each step is executed. All variables accessible to the execution
context are displayed as well as the execution stack. A tab sheet exists within the
debugger GUI that lets you change the state of an object at any step within the debugging
process.

Transport Tools

Object Transport Tools

The EsiObjects Transport Tools are used to package your application’ s definitional
components for backup or transfer. EsiObjects libraries contain class hierarchies. These
hierarchies contain interfaces and they contain services such as methods, properties, etc.
Using the EsiObjects Transport Tools you can choose to start exporting components at
any level, transferring that level and sublevelsto aflat file. These files can be used as
backup as well transfer work between systems.

Multiple components of the same level can be exported in the same file due to multiple
selections permitted by the export utility.

The Object Transport Tools only transfer the definitional components of your
application. They do not transfer any M level routines or globals. The next section
addresses that capability.

There are three transport tools available:

1. Export isused to export definitional components to flat files within the Windows
environment. The files are typed according to the level the transfer started with by
using a unique file extension. For example, if you started transferring at a class level,
the file extension would be .opc.

2. Import isused to import an exported file into the same type of component that it was
exported from. That is, if it were exported as a Class, it must be imported into a class.
File extensions are used to identify the file type.

Class Development Environment 44

3. GenericImport isused to import a component or components into the same
component it was exported from. Generic Import knows how to import the
components

Traditional M Transport Tools

EsiObjects runs within any supported ANSI Standard M system. The model side (server)
of the system iswrittenin M. It consists of M routines and globals. It will coexist with
any application that does not conflict with its namespace rules. All EsiObjects routines
and globals names begin with VES. The Veterans Administration has assigned this
namespace.

All definitional components (libraries, classes, methods, properties, ...) created by
EsiObjects are mapped to routine and global namespaces when you create them.
EsiObjects gives you control over the mapping. It also gives you control over the
mapping of instances of those classes viathe CREATE command. The Transport Tools
described above let you export and import all classes and their components. However, it
is often necessary to export and import object instances. Additionally, you may want to
import and export traditional M application routines and globals. The Traditional M
Transport Tools are designed for this purpose.

Session Browser Explained

The Session Browser isthe tool used to browse through a specific class library or folder.
Thistool is central to developing classes and folders.

Y ou can add and remove classes, arrange the class hierarchy and build the class
definitions. Using this browser, you add methods, properties, events, relationships and
variables to define a class, and then launch the specific editors or wizards to define each
of the services.

The Session Browser aso supports folders. You can add and remove folders, arrange the
folder hierarchy as well as populate the folders with objects that exist in the library
structure. When the folder is opened, all of its contents are displayed in awindow. From
this folder you can access all the objects within it just asif you were working with them
directly.

The Session Browser appears as a consequence of connecting to a server session. It
contains all libraries and folders available in that session.

The picture below illustrates a Session Browser that contains a portion of the Base
library. The major components of the class hierarchy are generally described. Each
component in the hierarchy will be explained in detail in subsequent sections.

Class Development Environment 45

=8 Collection An abstract clagg called Collection. Abstract
w- Mested Classes claszes are uged to store common definitional
7-[f] Wariables information that is inherited by its subclasses.

1 [Factory Abstract classes are not used to produce instances.
7-[l& Internal
741 LockControl

=

=

=

: An concrete clags called List. Ligt i2 a subclags of
Fi-k2 Primary Collection. Concrete claszes are uged to store
78 Array specific definitional information. Concrete classes
=& Bag are used to produce instances.

== CollectionProtector

&1-& Dictionary

45 ESISCIassExlt:nl

=

=

Containg a list of nested clagzes. Nested clagses

15 ESISHE“"" bi ghare the parents namespace.

I
=} @ List I
l ' Mested Classes """———l
EI ¥l ¥ariables ! Containg all the Clasg and Instance variables of the
-2 Factory | hass
=-#] Internal e
. #] LockControl __ Factory interface that holds all the class services
w3 Primary \ dedicated to creating instances of the class.
I
=& Log
w1 Map Contains inherited services from the parent class.
7= MultiMap | Icons that are yellow identify the item as
a8 Set inheritance.
w8 Criteria
=8 DataManager Containg all the services of the clasg and provides
H'"@ Immutable =] the primary messaging interface for the object

user.
Baze I

Session Structures

There are two structures supported in EsiObjects:. the library and folder structures. These
structures are made available in the Session Browser window at thetime a session is
connected.

Library Structures

The Session Browser is used to migrate through and perform operations on class
components of the EsiObjects system.

The general class structure is a hierarchy as follows:

* A Library contains one or more classes.
» Classes contain, Interfaces, Variables, Nested Classes and Subclasses.

* Interfaces can be added as needed and contain the services of the Class, that is,
methods, properties, events and rel ationships.

» TheVariablesinterface contains al the variables needed to define the internal state
of an object (instance). Two types of variables can be defined: Instance and Class.
Instance variables live within the actual object (instance) and Class variables live
within the Class object.

Class Development Environment 46

» Nested Classes are classes that share the same namespace astheir parents. They are
an integral part of their parent’s namespace. They do not inherit any of their parent’s
Services.

» Subclasses are classes that do not share their parent’ s namespace. They do inherit
their parent’ s variables, interfaces and services.

The Session Browser is used to browse classes within aparticular library. It is used to
traverse the class hierarchy, display the contents of the class interfaces and acts as a
launch pad for the method, property, relationship, event and variable editors. It offers
extensive functionality for the maintenance of the class hierarchy through popup and
main menu commands. Classes can be added, modified and deleted from the browser.

The Session Browser presents itself to you as atab sheet at thetime asession is
connected to.

Libraries Explained

EsiObjects supports Class Libraries. Libraries are used to group classes by some artificial
criteriathat are usually based on application or organizational requirements. Libraries
provide afirewall between groups that prevent inadvertent damage to protected classes.

Two types of libraries are supported:

e Absolute
e Virtua

Absolute libraries physically contain classes. Virtual libraries do not physically contain
classes; instead, they can integrate classes contained in one or more absolute libraries. A
virtua library can aso view some classes in absolute libraries by alternate names called
Aliases. It can even have multiple entries for a single class, each under a different name.

The relationship between virtual and absolute librariesis hierarchical, and never more
than one level deep. A virtua library imports classes from at |east one absolute library,
but there is no restriction on the number of classes it can import, and the number of
absolute libraries from which they can come. Some or all of the classesin an absolute
library may be exported to any virtual library. An absolute library can export its class
names to many different virtual libraries. A virtua library is so flexible that it can view
any combination of classesin any absolute libraries by any valid names.

The following diagram illustrates these concepts.

Class Development Environment 47

Virtual A Virtual B
Queue |« + FIFO
Stack |« », FILO

Bag Bag
Absolute C Absolute D Absolute E
Bag FIFO Bag
Array FILO Object
Queue List Class

In thisfigure, there are two virtual and three absolute libraries. Absolute Library C
exportsits Bag classto Virtual Library A, while Absolute Library E exportsits Bag
classto Virtual Library B. This causes no conflict, but if Virtual Library A wantsto
import Absolute Library E’s copy of Bag, it will have to do so under a different name.

Absolute Library D exportsits FIFO and FIL O classesto Virtual Library B under the
same names. It also exports them to Virtual Library A under different names: FIFO as
Queue, and FILO as Stack. The same class FIL O can be viewed by one virtual library
as FIL O and by another as Stack. Any number of virtual libraries under any combination
of names can view it.

To syntactically reference a class within alibrary, precede the class name with the library
name separated by a $. For example, FileM anager$FM Root would access the FMRoot
class within the FileManager library.

The Class Hierarchy Explained

In the Session Browser you can create new classes and link those classesin a hierarchy
that takes advantage of inheritance and/or private name spacing, providing for code reuse.
Additionally you can link these classesto classes in other libraries.

EsiObjects supports multiple inheritance. Therefore a class can inherit from any number
of superclasses. Though multiple inheritance can add complexity to your system and
should be used carefully, the benefits and flexibility provided can be worthwhile.

Additionally, EsiObjects supports nested classes. By default, classes in EsiObjects are
uniquely named within the library that contains them. A classisidentified by afull name
of the form library$class. Nested classes provide additional flexibility in naming classes.

Class Development Environment 48

EsiObjects allows a class to be nested within a containing class. The name of the nested
classisrelative to the containing class. For example, if aclass named Inner is defined as
anested class within the containing class User$Outer, then the full name of the Inner
classis User$Outer>Inner. Nesting may be continued to any arbitrary depth. For
example, aclass named Deeper can be defined within the container class
User$Outer>Inner, and its full name is User$Outer>Inner>Deeper.

The basic rule concerning the names of nested classesis that classes nested within a
given containing class must have different names. In thisregard, the containing class
takes on some of the functionality of alibrary as being a scope for class names.

It isimportant to observe that nesting a class within a containing class does not make it a
subclass. A nested class does not inherit from the containing class unlessit is explicitly
linked to it as a subclass.

A nested class always appears in the Session Browser as a subnode of the Nested Classes
node under its containing class. Thisisit’sprincipal nodein the Session Browser. If a
nested classis linked as a subclass of another class, then it also appearsin the Session
Browser under that other class, along with the subclasses of that class. But its node there
isidentified by the special nested classicon . This nested class node cannot be expanded,
but double-clicking on it moves the Session Browser pointer to its principal node, which
can be expanded.

When aclassis defined as a subclass of anested class, it is not automatically nested
within the same container. To define a subclass that is also nested, first create the new
nested class and then link it to the desired superclass.

Reusable Libraries Explained

EsiObjectsis delivered with a comprehensive set of pre-defined classes. These classes are
organized into libraries. Three libraries are delivered with EsiObjects, they are:

1. Master - avirtua library that contains a master list of classesin other libraries.

2. ESI - which contains system level support classes. Most classes are of little interest to
the application programmer. However, classes like TransportType are of great interest
since they provide the basic object transport capabilities needed for maximum
performance in a Client Server or Internet environment. They reside in the ESI library
because they are of great use to the EsiObjects system itself.

3. Base- which contains al the foundation classes supported by EsiObjects. They
represent extensive reusability. Some classes that are delivered with the EsiObjects
system are:

» Collections, asuperset of the ODMG's Collections with associated iterator
classes.

e Immutablesthat support date and time stamping and ranges.

» Mix-In classes that, when dropped onto another class, provide its services through
multiple inheritance.

Class Development Environment 49

* Name Poolsthat form instance hierarchies with full instance inheritance.

» Data Manager class that lets the programmer define nested Dictionaries for
maintai ning instance indices based on the property of a class. The Data M anager
automatically maintains these instances using EsiObjects event processing
capabilities.

» Criteriaclasses that offer filter and range criteriafunctionality for searching
across instance ranges.

Folder Structures

Within a session, you can create hierarchical folders. These folders, when double clicked
on, will display a window. Within that window, you can drag any object displayed in the
Session Browser window including another folder.

Folders are useful when working on numerous objects that are disseminated throughout
the structures. They provide away to keep your work concentrated, eliminating excessive
searching and migration to work on each component. It is a workflow enhancement that
increases your productivity.

Please note: Selecting an itemwithin the Folder has the same affect as directly selecting
theitemin library or folder structure. All menu operations will be performed indirectly
on the object selected, not directly on the item in the work window (The Remove
command is an exception to thisrule).

Session Browser Tools

Class Toolbar

Class Development Environment

50

Directly associated with the Session Browser isthe Class Toolbar. If displayed, contains
buttons that let you perform class operations quickly based on the selected object within a

class. Thetoolbar is described below.

Clicking on the
Search button involces
the search dialog for
the entire library.

Clicking on the
Find in Tree
button
synchronizes the
tree selection with
the service editor
that iz selected.

Clicking on the Override
button will copy the
concrete service from the
superclass into the selected
interface of a subclass.

Clicking on
the Expand
button will
expand the tree
to the next
level of items.

EEEINLIEIEE

Clicking on the GoTo
Class button will involke
a dial og that lets you
specify the class you
want to go to within the
selected library.

Clicking on the
Promote button
will copy the
currently selected
concrete service
to it’s superclass.

Clicking on the Release
Compile button causes
the selected library,
class. mterface or
services to be compiled
forrelease only.

Clicking on
the Collapse
button will
collapse the
selected sub-
tree.

Class Development Environment 51

Library Popup Menu

The Library popup menu isinvoked inside the Session Browser's pane right clicking on
the library name or icon or by pressing Shift+F10 key combination or.

The Delete command lets
you delete an entire
library. You will be
prompted to validate the
action..

The Collap se commanc
causes the library tree
structure to collapse to
the root library node.

The Add Class
command lets you
add a new class to
the library.

The Renamne command
lets you rename rename
the library name.

The Expand
command causes the
library tree structure to
expand to the next
level (clazzes).

The Properties
command lets you

view all properties of
Renarne Ak the selected library as

well as modify some.

Compile the source code for release
of the currently selectedlibrary.

Add Clazz

Delete

E LCollapze

The Xecute command lets
you interact with the

EsiObjects system via the Froperties... Chil+Erter
Xecute Shell window. Compile the
Hecute Al source code

The Purge command lets Cornpile for debugging
you purge all versioned code Purge PN =T Deh ofthe
bodies leaving a specified 5 - currently
aumber = Eemove Debug £ b+ Bt /

. = selected

\/ Irpart.. Shiftdl+| librazy.

The Remove Debug
command removes all
debug compil es from all
code bodies in the library.

E =part.. Shift+at+E
% S/Qn:h Libiary \kl\m\

The Search Library command
lets you define search criteria that ‘ The Import conunand lets you

Compile both the source code
for releage and debugging code
of the currently selected library.

The Export command lets
you export the entire library
to a host system file with
the extension .opl.

will be used to search the entire import a library export file that
library. has a .opl extension.

Class Development Environment 52

Class Popup Menu

The Class popup menu is invoked inside the Session Browser's pane by right clicking on
aclass or pressing Shift+F10 with the class selected. The pictures below illustrate the
functionality available on this popup menu.

Add a new interface to the
anrently selected class.

Add anew class to
the current Library.

Delete the currently
selected class.

Forces the currently selected
clasgs into name edit mode.
You may rename the class
at this point.

Add anew
Instance Variable
to the current class.

Collapse the currently
selected class, to hide
ite degcendants and
interfaces.

Delete
Rename Ll

Instance Yariable
Collapss Citil+Left Clase Variable

=
Epmand [t b it
Expand the currently -
selected class. Froperties.. Ct+Enter .
i Unink Al
Unlink the selected cla 5517’ Link Al ~
from its superclasses.]
Hecute Al

Campis 3

Add a new Class
Variable to the
selected clags.

Open the property sheet for
the currently selected class.

Link the currently selected

The Xecute command

I

1 v oke flo Fuige AP clags to a new superclass.
“‘,1 invoke the Xecute e Al
Shell window. “ﬁ‘\-—\./'i_ sl tabl t sour
T Shiflsdlts] ellml; es the execu 111 1ef(lm source)
. i code that was compiled for
Purge the gource code in Erport. - itrAllE ‘ .
- o . debugging, leaving the release code.
the currently selected class. | Seach Py
You can select the number -
. f
of versions you want to e The Imp ort command lets

remain after the purge. you import a library export

file that has a .opl extension.

//

The conunands in this menu
segment are a list of superclasses
Executing one of the commands
will transfer you to that class in the
Library Browser.

The Search Library conunand
invokes the Search dialog. Tt
lets you define search criteria
that will be used to search the
entire library .

export the entire library to a host
system file with the extension .opl.

‘ The Export conunand lets you

LJ

&dd
Delzte Delete
|
| Fenams Al
| [H Collapse Chrl+L eft
' Evpand (Bl Rk
i
i Fropetties... Chrl+Enter
Unlink, Alt+U
Link A+l
Bt

Class Development Environment

Compile the source
code for release of the
currently selected class.

Compile the source code
for debugging of the

currently selected class.
AR

= .
AltD //Complle both the zource

Ldvaneed..,

| At
I Eemove Debug Al
i Impaont Shif A+
| Export: Shift+alt+E
i Search Chhs
T U Crllstion

AltrE = code for release and
debugging code of the
currently selected class.

Advanced invokes a dialog that lets
vou extend the compile range to
nested classes and/or subclaszes. It
alzo letz you gelect the type of compile
- Release, Debug or Both.

53

Class Development Environment 54

Interface Popup Menu

The Interface popup menu isinvoked inside the Session Browser's pane by right clicking
on an interface or selecting the interface and pressing Shift+F10.

Forces the currently
selected interface into
name edit mode. You
may rename the

interface at this point.

Override the currently selected
interface which is inherited from
a superclass.

Add a new zervice (method,
property, event or relationship) to
the currently selected interface.

Delete the currently
selected Interface.

Expand the
selected interface.

Xecute brings up the
Kecute Shell for the
selected interface.

Add...

Collapse the /
Elename

selected interface.
Delets

T Owenide

/ Compile the source code
Purge the source code in ol spse for release of the currently
the currently selected Expand selected interface.
class. You can select the
number of versions you recue <‘

i o - Compile Compile the source
want to remain after the = le for debugeing

\purge. Puige) e codle for debugging

Remawe Debug Ak Eath Alt+B of the curt ently
= selected intertace.
Removes the |mpait... Shiftsdslt+l
executable code that E i
=poik Shift+At+E . N I

was compiled for E om]l)lle hotllltlllo?i) s,mu.ce code

. . " 1 o OFoE o
etz Jenz e \E-ldi oI l1e efas;e and de 111___,111, 1
the release code. code of the amrently selected

interface.

The Search command
invokes the Search dialog. I The Export command lets
lets you define search criteria you export the entire

that will be used to search the interface to a host system
entire interface. file with the extension .opi.

The Import command lets
you import an interface
export file that has a .opi
extension.

Class Development Environment 55

Service Popup Menu

The Service popup menu isinvoked inside the Session Browser's tree by right clicking on
any property, method, event or relationship in the interface or pressing Shift+F10 with
the service selected.

Based on what service is selected, certain menu commands will be highlighted and others
will be grayed. However, al the functionality is the same no matter what type of object is
selected.

Invokes the editor
of the currently
selected service.

Delete the currently
selected service.

Add anew
service to the
current iterface.

Forces the currently selected
service into name edit mode.
You may rename the
zervice at this point.

Promote the currently
selected service to a
superclagses interface.

Inzert

Open the property
sheet for the currently
selected service.

7
Bename AN

Delete Delete

™y

The Goto Ancestor
command transters you

Override the currently > Propehies... Chil+Enter to the same service in
selected service which is Dyeride //em 0 // the superclass. -
inherited from a superclass. 1 Fromete ,W/\

[rata e star Al

Compile the source code
— for release of the
Compile Belzaze cirrently selected service.

The Purge command

lets purge source Bl AP Debug AlD
versons. Remove Debug At Buath Alt+B Compile the source code
o o et Chit Al for debugging of the
emoves the i rently g ervi
il \SNIHAIHE currently selected service.
executable (not source) .

code that was compiled Search
for debugging, leaving

the releage code.

Compile both the source
code for release and
debugging code of the
currently selected service.

The Import
command lets
you import a
service export
file that has a
.oper extension.

The Search command
involes the Search
cialog. It lets you define
search criteria that will be
used to search the service.

The Export command
lets you export the
service to a host
system file with the
extension .opr.

Multiple Inheritance Conflict

In the Session Browser, when a subclass inherits the same service from two separate
classes, thisis known as a multiple inheritance conflict. An error results from thisand is
indicated by an “E” with acircle around it (See the picture below).

If the user right clicks on the service and selects Properties from the pop up menu, a
window appears describing the problem or conflict. The window includes the servicein
conflict, a description of the problem and the involved classes.

Class Development Environment 56

To rectify the situation, you can override the service that isin conflict.

.- EsiDbjects
File Edit “iew Browse Object Toolz “Window Help

[feruj=e==m]l248a e ea|laed snalsE];
2= _ -
- Enoillten [X] Identifies the Service
E-dm User = I :
&5 SuperClassh 4 that ig in conflict.
5§ Mested Classes ﬁ’
-] Variables I s
=5 D:‘z Primary Thiz item iz inherited from more than one parent class
L FD Method Belov are listed all paient classes where this item is
& & SubClass Sefned
SuperClassd :
§ Nested Classes ZupoClased 0 Identifies the classes that
[variables ontain the gervices i
E|D§ Primary conl ?I.lll 1€ BeIVICEes 1
*.® Method % G : conflict.
Unless this is a R elationship, you must overide the
=& SuperClassB item in arder for instances of this class to use it
-8 Nested Classes [Relationships cannot be overidden. |
[l Variables
=] D:-E Primary 0K I Cancel Appl |
54 Method fi
=8 SubClass b
w-+f Nested Classes
i [] Variables
erlE gimaﬂ’ The OK and Cancel
___©iMeliog = button perform the same
Default | operations of simply
= terminating the property
digplay.

Using the Session Browser

In addition to migrating alibrary or folder structure, the Session Browser lets you
perform numerous operations within the structure. The operations you can perform are
defined by the popup of main menu for the object selected within the structure. The
following sections will describe the operations you can perform on these two structures.

Library Operations

Creating a New Library

Thistask is performed from the EsiObjects CDE Main Window.
1. Executethe File]New|Library command. The following dialog appears:

Class Development Environment 57

Library Name lets you
name the new library. Enter
a 1-31 character name (first
character must be alpha).

Enter the M global
reference where all

The Root Location fields
are where vou enter the M
global and routine
namespace prefixes that all
objects and source code
routines are stored under
respectively. —Root Lacation

Library objects are to
be stored.

Create Library

Libran Mame: || kl

Enter the M global

e reference where all
- | Documnentation objects
aszz: |~ |1
= are to be stored.
Enter the M global V% T

Documentation: |~
reference where all = |

Class objects are to be -
stored. :] —/:E_nter the M global

reference where all
Source Code objects are
to be stored.

Sowmce Code Prefis: I ™ Wirtual Libvary
1] I : Cancel I

il 1

Enter a 1-5 Alpha
Numeric characters
(first character must be
Alpha) that will be uzed
as the Source Code
Prefix for generated M
routines.

Check the Virtual
Library box if this
library is to be
virtual and not
concrete.

_\

Pregs the Cancel
button if you want
to stop creating a

library. All enfries
will be digzcarded.

Press the OK
button once you
have completely
filled out the
form.

Enter the Name of the Library. Library names, like many other EsiObjects names,
are from 1 to 31 characterslong. The characters may be any combination of letters
and numbers, except that the first character must be a letter.

Enter an M global location for the Library’sobjects. This should be distinct from
the other global locations in the dialog. Global locations can contain literal subscripts.
For performance reasons, it is recommended that all locations are stored within the
same global name, using distinct first level subscript name. For example
ACUST("Library"), "CUST("Doc"), etc.

Enter an M global location for the Classesin the Library. This should be distinct
from the other global locations in the dialog.

Enter an M global location for the Library's Documentation objects. This should be
distinct from the other global locations in the dial og.

Enter an M global location for the Library's Source Code. This should be distinct
from the other global locationsin the dialog.

Enter a Sour ce Code Prefix to be used in naming all the M routines compiled down
from EsiObjects Source Code in the Library.

Press the OK button to create the library or press the Cancel button to discard all
entries and avoid creating a new library.

Class Development Environment 58

9. EsiObjects then opens an empty Library Browser containing the name of the new
library initstitle bar.

Source Code Prefixes—How Long?

The Source Code Prefix isaroutine name prefix for the automatically generated M
routinesin the library. ANSI Standard M routine names can be up to 8 characterslong,
and there are 62 legal characters for each position (0-9, A-Z, az) after the first character.
The following table summarizes the number of possible routines, based on the number of
charactersin the prefix you specify:

Chars Routines Possible
1 3,521,614,606,208 trillions

2 56,800,235,584 billions

3 916,132,832

4 14,776,336 millions

5 238,328 hundreds of
thousands

6 3,844

7 62

Note: If you have two projects whose source code prefixes accidentally overlap - it will NOT
cause problems. EsiObjects checks to see whether a routine name has been used, before using
it for a generated routine name. If the routine name has already been used, then EsiObjects
simply tries the next possible name. But source code prefixes should be helpful, making it
obvious which routines belong to a given library.

Source Code Prefixes should be long enough to reliably prevent conflicts between the
Library's automatically generated routines and all other routines on the system. However,
they should be short enough to guarantee a sufficient number of routine names. A four or
five character name, if it isunlikely to be used anywhere else, is usually safest.

Note: ESI Technology Corporation reserves the source code prefix VES. Do not use this prefix
for your source code. Likewise, do not use a one-character prefix of V or a two-character prefix of
VE since these prefixes may also generate conflicting routine names.

Same or Different Globals?

Thereis no restriction on overlapping global locations: it's possible to store all the source
code and documentation objects in the same global, for example. However, you may
experience reduced runtime performance when Class/Library information gets mixed in
with Source/Documentation objects.

One approach that makes sense isto assign different subscript locations within the same
global to the various components of a project.

Class Development Environment 59

Deleting a Library

When deleting alibrary you need to be concerned about types of objects:
» Definitional
* Instance

A library object knows where its definitional objects are stored. Thisisthe information
you give it when you create a new library. Every time you create a new class, interface,
service of aclass or any documentation objects associated with these components, they
are automatically stored at the global roots specified at library creation time. Any M
routines generated as aresult of compiling a code body are also mapped to the namespace
specified at library creation time.

However, instance objects are another matter. Instances will either be created as shared
or not shared (persistent or non-persistent). Non-persistent objects only have alifetime as
long as the EsiObjects environment they were created in, consequently, we are not
concerned with them in the context of this discussion. Persistent objects, however, live
until explicitly deleted. These objects can be mapped to any location at creation time. The
EsiObjects CREATE command contains a Base keyword that |ets you map instances of
aclassto any M global root location (See the CREATE command in the EsiObjects
Language Reference Guide for a detailed description of the command). If you do not
specify a base location, EsiObjects will default the object to *VESoshob.

Mapping instances to M global locationsistotally up to you, consequently, you must
keep arecord of what M global root locations these objects are stored under. It isup to
you to maintain the instance global nodes and their subscripts.

Follow the instructions below to delete alibrary.

1. Connect to the session that contains the library you want to delete.

2. Select thelibrary you want to delete by clicking on its name or icon. (If the Session
Browser is not visible, make it visible by clicking on the Session Browser Tool Bar
button).

3. Execute the Edit|Delete command. Y ou will be prompted with awarning. If you
want to proceed click on the Y es button.

At this point the library will be deleted. Y ou will have to delete the instances manually by
killing the globals they livein. This can be done through the Xecute Shell.

Examining Library Properties

ToinvoketheLibrary Property Sheet, follow these instructions:

1) Select thelibrary by clicking on the library name or icon in the Library Browser.
2) Fromthe Object menu, select Properties.

The Library Property Sheet dialog contains only one tab, for the Library's General
properties.

Specifies the M global
root locations of the
library's components.
In general, distinct,
non-overlapping global
locations are gpecfied.

Libs
G

Identifies the M
global reference

where all Library
objects are stored.

Identifies the M 010ba1\

reference where all
Documentation objects
are stored.

Library Nae: IB asd

Class Development Environment 60

Library Name lets you
name the new library. Enter
a 1-31 character name (first
character must be alpha).

Identifies the Type of
library: Virtual or
Absolute. An Absolite
Library contains its own
classes, which may be
exported to virtual
libraries. Most Libraries
are of this type. A
Virfual Library containg
no classes of ity own, but
may incorporate libraries
from other classes, under

the same or different
clags names.

\qleutiﬁes the M global
reference where all

ary Properties

£reral I

Type Abzolts

-~ Root Lacations

Library: |"VESE|ESL

Class, |"VESE|BASE

P

Ducumentanun |A\;ESDBSDC

Source Code: I“‘\JESDBSSC

Identifies the 1-5 Alpha
Numeric characters that

is used as the Source
Code Prefix for

= Class objects are stored.
Source Code Prefi: %EScb LEfianue. |
Identifies the M global
reference where all
Ok I Cancel I gy | Source Code objects are

7 stored.

generated M routines.

Press the OK button if you
have changed the Library

and want to file and cuit.

Press the Cancel button
if you want to stop. All
entries will be discarded.

Press the Apply button if
vou want to change the
library name and continue.

Name

Class Operations

Creating Classes

Before you can create a new class, do the following:
1. Connect to the session that contains the library you want to add a classto.
2. Keepin mind that the Session Browser may not be visible. If thisisthe case, click on the

Session Browser button of

Creating a Root Class

the System Toolbar to make it visible.

If you wish to add anew classto the library, without linking that class to any other class,

follow the steps below.

1. Either right click on the library name or icon and select the Add|Class command from the

popup menu or select thel
(or strike the Insert key an

2.

ibrary and execute the File]New|Class command of the Main Menu
d choose from the dial og).

The Create Class dialog appears. Enter the name of the class. Valid class names are

alphanumeric, with the first character being an apha only. Class names can be up to 32
charactersin length and must be unique within the library.

behavior of the class, only

Select the class type: Concrete, Abstract, or Mix-in. The choice here does not affect the

the icon used to display the classin the tree panel.

Class Development Environment 61

4. Select OK to create the class. The new classis displayed in the tree panel asatop-level class
directly below the library icon, in other words, with no super or subclasses.

Creating a Subclass

If you wish to add a hew class as a subclass, follow these instructions

1. Either right click on the parent class name or icon and select the Add|Class command from
the popup menu or select the parent class and execute the File]New|Class command of the
Main Menu (or strike the Insert key and choose from the dial og).

2. The Create Class diaog appears. Enter the name of the class. Valid class names are
alphanumeric, with the first character being an apha only. Class names can be up to 32
charactersin length and must be unique within the library.

3. Select the class type either Concrete or Abstract depending on where the classisin the
hierarchy. If it isaterminal class (bottom of the hierarchy) it is Concrete. If it resides above
the bottom class, it is Abstract. The choice here does not affect the behavior of the class, only
the icon used to display the classin the tree panel.

4. Select OK to create the class. The new classisdisplayed in the tree panel directly below the
selected parent class.

Creating a Nested Class

If you want to create a Nested Class, follow the steps below. Nested Classes are
namespaced within a parent class. The parent class can be an Abstract, Concrete or Mix-
in class.

1. Either right click on the Nested Classes name or icon and select the Add|Class command

from the popup menu or select the Nested Classes by clicking on itsicon and execute the
File]New|Class command of the Main Menu.

2. The Create Nested Class dialog appears. Enter the name of the class. Valid class names are
aphanumeric, with the first character being an alphaonly. Class names can be up to 32
charactersin length and must be unique within the library.

3. Select the class type either Concrete or Abstract depending on where the classisin the
hierarchy. If itisaterminal class (bottom of the nested hierarchy) it is Concrete. If it resides
above the bottom nested class, it is Abstract. The choice here does not affect the behavior of
the class, only theicon used to display the classin the tree panel.

4. Select OK to create the nested class. The new nested classis displayed in the tree panel
directly below the selected parent class.

Editing Class Properties

Editing class properties applies to any type of class, whether it be aroot, subclass or
nested class.

Invoking the Class Property Sheet

There are severa ways to invoke the class property sheet:

* From the Session Browser, right click on a class and select the Properties command
from the popup menu.

Class Development Environment 62

* From the Session Browser, select a class and press Ctrl+Enter.

» Select the class and execute the Obj ect|Properties command of the main menu.

General

Class General Properties are invoked by clicking on the General tab of the Class
Property Sheet. The General properties are presented when the property sheet diadlog is
initially opened.

{ The type of class,

concrete or abstract.
Concrete classes
can have actual
instances, while
abstract classes
contain general Class Propeilies

attributes conumon
to their concrete General I Blias |

Names the library
that owns the class.

The editable class name.
Changes to this field will
be reflected wherever the
clagg name appears.

subclasges.

Abstract claszes
usually have
subclasses, concrete
claszes usually do
not.

Automatically

assigned, for virtual
objects. The values
0..1023 are reserved

Owner Lil:urar_l,l: Baze

by EsiObjects. Don't
change thig value by
instances of this

Lope ID - Loncrete jé hand unless you
have specific reasons
Witual [~ Witual |d; I[I for doing so.
class will be virtual

ub]. ects::. A \-'11‘tua_1 ok I L | prl |
object ig one having 1

no symbol data; its l' I
value fits in a single
string, which it

accesses through its

Selected if the

Press the Apply button

Press the OK button if Press the Cancel button if you want to apply the
.‘SZVIRDA"[A you want to file the ifyou want to stop. All changes and continne
internal variable. changes and qit. entries will be discarded. editing.

Alias

Aliases are used to map concrete class names to a virtual library under a different name.
For example, assume you have avirtual library where you want to map two classes that
have the same name from different libraries. Obviously you must change the name of one
of them to prevent a namespace conflict within the virtual library. This can be
accomplished by giving one of that classes an alias. Aliases are assigned to a virtual
library through the class’s property sheet.

Class Alias Properties are invoked by clicking on the Alias tab of the Class Property
Sheet.

Class Development Environment 63

Names the virtnal library that
contains the class. Double-
clicking on this field allows
the alias to be edited.

Class Properties:

Specifies the name by which the class
ig known in the specified virtual
library. Can be edited by double-
clicking on the virtual library name.

General D3
it il Lihlaly\‘l' I Aliaz |
b azter List

(] I Cancel Eﬂpply

Press the OK button if
vou want to file the
changes and quit.

Press the Apply button if you
want to apply the changes
and continue editing,

Press the Cancel button
if you want to stop. All
entries will be dizcarded.

Linking Classes

If the class does not exist, go to the Creating Classes section and follow the instructions
for Creating a Subclass. If you wish to have an existing class be a subclass of another,

follow the steps below.

Linking Classes

To link two existing classes to each other in a super-subclass relationship, follow the

steps below.

1) Inthe Session Browser, select the class that is going to be the subclassin the

relationship.

2) Right click on the class name or icon and execute the Link command from the popup
menu or execute the Object|Link command from the main menu. Y ou can also select
the class and press the Alt+L keys.

3) TheLink to Superclass dialog appears.

4) Enter the name of the classto link as a superclass. If the classto link to isin another
library, specify the class namein the full library format: Libraryname$Classname.
For example, if you are linking to the class Array in the Base library, specify the
name as follows: Base$Array. If you are linking a nested class to another nested class,
you must use the specia syntax Libraryname$Classname>NestedClassname>....

Class Development Environment 64

5) Select the OK button to link the classes. The selected class becomes a subclass of the
class specified in Step 4.

Breaking Class Relationships

If you wish to break the linkage between two classes or nested classes, follow the steps
below. These instructions apply to normal and nested classes.

1) Inthe Library Browser, select the subclass (normal or nested) you wish to remove
from the relationship.

2) Right click on the class name or icon and execute the Unlink command in the popup
menu or execute the Object|Unlink command in the main menu. Y ou can also select
the class and press the Alt+U keys.

3) If there are multiple superclasses you are prompted for which superclass to unlink
from. Select the superclass from the dialog.

4) The selected class and its descendants are automatically unlinked from the
relationship and are no longer subclasses to the parent. Note that the selected class
may disappear from the tree view if it was unlinked from another classin the same
library and is now atop-level class.

Using Drag-and-Drop to Build the Hierarchy

Y ou can build the class hierarchy using drag-and-drop. This allows for a much easier way
to link classes than using menu options.

* Inthe Session Browser, select a class you wish to link to another either as a subclass
or asuperclass.

* Holding the left mouse button down on the class name or icon, drag the mouse cursor
to the class name you wish to link too.

» If you need to scroll down or up to get to the class name to link to, drag the cursor
just below or above the tree panel. Doing so will cause the tree to scroll in that
direction.

» If you need to navigate down to a subclass, drag the cursor over the superclass and
press the Shift key. The display of the class will be expanded to show the subclasses.

* Once you have dragged the cursor over the desired class, lift the left mouse button to
drop the class. You will be prompted to link the dropped class as subclass or a
superclass.

» Selecting Super class will make the dragged class the superclass. Selecting Subclass
will make the dragged class the subclass.

Class Development Environment 65

Promotion and Generalization

Promotion and Gener alization are two related class-restructuring operations that cause a
service (event, relationship, method or property) to be moved up "higher” in the class
structure. These operations apply to normal and nested classes.

* InPromotion, the serviceis simply moved up to the superclass without changes.
Generally (but not always) you should delete from the subclass unless you want to
override the service. The Promote command on the service popup menu, the Main

t

Menu Obj ect|Promote command or the Class Toolbar button == moves a service
up to the superclass.

* In Generalization, the service is moved up to the superclass and modified (or
rewritten entirely) in amore general way to accommodate a variety of possible
subclasses. Generdly it is not deleted from the subclass. It is merely moved up the
class treeto the proper level of abstraction so that other subclasses can inherit the
service.

All services can a'so be moved up to the superclass by using drag-and-drop.

If you need to delete the subclass service, then ssmply select it and press the Delete key
(or use the Delete command on the popup menu).

Demotion and Specialization

Demotion and Specialization are two related class-restructuring operations that cause a
service to be moved down "lower" in the class structure. These operations apply to
normal or nested classes. Y ou can demote a service by

1. Executing the Override command in the service popup menu.
2. Executing the Object|Override command of the Main menu.
3. Clicking on the Override button of the Class Toolbar.

Executing any one of these commands will move a method, property, event or
relationship down from the superclass from which it isinherited.

* In Demotion, the service is ssmply copied down to the subclass without changes. The
service remains in the superclass. Y ou may want to keep it there for further
specialization (see next bullet) or you may want to delete it and use the inherited
service.

* In Specialization, the service is moved down to the subclass and modified (or
rewritten entirely) in amore specific way to accommodate the specific needs or
features of the subclass. Generadly it is not deleted from the subclass.

Services can also be moved down to the subclass by using drag-and-drop.

If you need to delete the superclass service, then simply select it and press Delete (or
execute the Delete command in the popup or main menu.)

Class Development Environment 66

Finding a Class in the Hierarchy

Large application libraries as well asthe ESI and Base libraries contain a large number of
classes. Often you will know where the class resides in the library hierarchy. However,
often you won't. To help you access a class quickly, EsiObjects provides a means by
which you can go to aclass directly if you know the full or partial name of the class. To
find aclass, follow the steps below.

o |
1) Togotoaclassdirectly, click onthe GoTo Class button 2% that is on the Class
Toolbar, pressthe Ctrl G key combination or execute the T ools|Sear ch|Goto Class
command on the main menu. A Find Class dialog box will display.

2) Specify apath namein the form of Libraryname$Classname or
Libraryname$Classname>NestedClassname>... .

3) Click on the Find button to initiate the search. The dialog to expand if two or more
hits are found. If only one hit isfound, you will be transferred directly to that library
class. If the Class Namellist is displayed, you may select the class you want to
transfer to by double clicking on the class name you want.

The iz where you enter the name pattern to be searched
for. The name pattern talees one or more wildcard
characters. For example, L*t* would produce a list of all
clagzes within the selected library that started with a
uppercase L, any number of characters followed by a ‘t?
and ending with any number of characters.

Clicking on the
Find button will
initiate the

search.

Find Classes

¥ Malch caze Cancel

Lets vou specify
whether to make
the zearch case
sensitive or not.

I[II ;Te Fattern: // —~
I

Clags Mames
Bl Bazedlist
B Basedlistterator

Clicking on the
Cancel button
will terminate
the dial og before
the zearch starts.

Lists the resulting hits based on the name pattern
gpecified. Double clicking on one of this items will
take you to that class in the Workspace Window.

Please note that the search is confined to the library of the currently selected object in the
Session Browser. That is, if you have the Collection class selected in the Base library, the
search will be confined to the Base library only.

Class Development Environment 67

Deleting Classes

Deleting a classis a straightforward Session Browser operation. Follow the steps below:

1) Select the class you want to delete.

2) Right click on the selected class and execute the Delete command in the popup menu
(or the Edit|Delete command in the main menu or press the Del key)

3) A warning dialog will appear. Click on the Y es button if you want to delete the class
from thelibrary. If you do not, click the No button.

If you chose Yes, the class and all itsinterfaces and services will be deleted. The Library
structure within the Session Browser will be updated.

Please Note: If the class had subclasses, they will not be deleted. They will become root
classes.

Interface Operations

Interfaces are ameans of partitioning class servicesinto logical groupings. The Primary
interface is the default interface and does not need to be specified in the object message
structure. Other interfaces can be created at will. One other interface that has significance
besides Primary is Factory. Factory, if defined, is reserved and may contain constructor
and destructor methods that are automatically executed at object instantiation time.

Some benefits of being able to partition class services into separate interface are:

* Minimized the number of services the programmer has to view to find the one of
interest, increasing productivity.

e Minimizesthe number of servicesthe User Interface must display, increasing
response time.

» Offersthe capability of adding security to the interface in the future.
Creating Interfaces

If you wish to add a new interface to the class, follow the steps below.

1) Either right click on the class name or icon and select the Add|I nterface command from the
popup menu or select the class and execute the File]New|l nter face command of the main
menu (or strike the Insert key and click on the Interface radio button in the dial og).

2) EsiObjectswill automatically create anew interface giving it a name that beginswith
I nterface and ends with a number. To change its name:

a) Selectit by clicking on the name and either
i) Right click and execute the Rename command on the popup menu.
ii) or, execute the Rename command on the main menu.

b) or, simply click the second time to go into Rename mode directly.

Vdid interface names are a phanumeric, with the first character being an apha only. Interface
names can be up to 32 charactersin length and must be unique within the class.

Class Development Environment 68

Deleting Interfaces

Deleting interfaces is a straightforward Session Browser operation. Follow the steps
below:

4) Select the interface you want to delete.

5) Right click on the selected interface and execute the Delete command in the popup
menu (or the Delete command in the main menu or press the Del key)

6) A warning dialog will appear. Click on the Y es button if you want to delete the
interface from the class. If you do not, click the No button.

If you chose Yes, the interface and all it’s services will be deleted. The class structure
within the Session Browser will be updated.
Variable Operations

Creating Variables

If you wish to add a new variable to the class, follow the steps below.

1) Left click onthe Variable interface.

2) There are three waysto create avariable:
a) Right click on the Variable interface and select the Add command from the popup menu

b) or execute the File)New|l nstance Variable or File]New|Class Variable command of the
main menu

c) ordrikethelnsert key.

3) Inall cases you will be presented with a dialog box requesting the variable name.
Enter the name of the variable.

4) Only in case 1b will the correct type be selected. Use the pull down list box to select
the type of variable. EsiObjects supports Instance and Class variables.

Vadlid variable names are al phanumeric, with the first character being an alphaonly. Names can

be up to 32 characters in length and must be unique within the variable interface.

Deleting Variables

Deleting interfaces is a straightforward Session Browser operation. Follow the steps
below:

1) Select the variable you want to delete.
2) There are three ways to delete the variable:

a) Right click on the selected variable and execute the Delete command in the popup
menu

b) or execute the Object|Delete command in the main menu
c) or pressthe Del key.

Class Development Environment 69

3) A warning dialog will appear. Click on the Y es button if you want to delete the
variable from the interface. If you do not, click the No button.

If you chose Y es, the variable will be deleted. The structure within the Session Browser
will be updated.

Modifying a Variable Declaration

By creating avariable in the Variable interface of aclass, you have declared it to the
compiler. EsiObjects contains a Variable Definition Editor that lets you specialize the
declaration. To learn more about specializing a variable, refer to the Variable Definition
Editor section of this guide.

Service Operations
Creating Services

Within an Interface, you may create one or more object services. They are, Methods,
Properties, Events and Relationships. Follow the steps outlines below to add a service.

1) Select theinterface by left clicking on it in the Session Browser.

2) There are three ways to create an interface service:
a) Right click on theinterface and select the Add command from the popup menu

b) or execute the File]New|Method, Property, Event or Relationship command on the
main menu

c) or select the interface and then strike the I nsert key.

3) Inal casesyou will be presented with adialog box requesting the service name.
Enter the name of the service.

4) Only in case 1b will the correct type be selected. Use the pull down list box to select
the type of service.

Valid service names are a phanumeric, with the first character being an aphaonly. Names can be

up to 32 charactersin length and must be unique within the interface.

Deleting Services

Deleting aserviceis a straightforward Session Browser operation. Follow the steps
below:

1) Select the service you want to delete.
2) There are three ways to delete the service:

a) Right click on the selected service and execute the Delete command in the popup
menu

b) or execute the Object|Delete command in the main menu
c) or pressthe Del key.

Class Development Environment 70

3) A warning dialog will appear. Click on the Y es button if you want to delete the
service from the interface. If you do not, click the No button.

If you choose Y es, the service will be deleted. The structure within the Session Browser
will be updated.

Modifying a Service

EsiObjects contains an editor for methods, properties and events. It contains awizard for
relationships. The description and use of these editors are described in the following
sections:

+ for Methods, refer to the Method Editor section.

» for Properties, refer to the Property Editor section.

+ for Events, refer to the Event Template Editor section.

» andfor Relationships, refer to the Relationship Wizard section.

Synchronizing the Tree Selection

Often when editing a service of a class, you will be browsing in the tree structure of one
of thelibrariesthat is a part of the current session. Y ou will most likely want to
synchronize the tree selection in the Session Browser with the currently active service
editor. You can do this by using the Find in Tree function. To usethe Find in Tree
function, follow these steps:

1. Select the editor for the service you want to synchronize.

2. Execute the View|Find in Tree command or, if the Class Toolbar isvisible, click on the Find
in Tree button.

Thetree in the Session Browser will readjust and expand if necessary. The service
associated with the selected editor will be selected and highlighted.

Folder Operations

Folders are foldersin the traditional Windows sense. Folders can be organized into
hierarchical structures. Each folder may have subfolders. Within each folder, you can
storelibrary, class, interface or service objects that exist in any library structure. All
menu operations that are normally available to the object in the library are available to
you through the folders. Folders provide an indirect means of accessing al the objectsin
alibrary structure.

Folders are used to store objects that you are currently working on. They can aso be used
to store disparate objects that you want to export as a unit. Folders are general-purpose
objects that can be used for a number of different reasons.

The picture below illustrates atypical folder structure in the Session Browser and it’s
Folder Content window in the client area.

Class Development Environment 71

- - Esi0bjects - Visitor

File Edt “iew Browse 0Object Tools ‘window Help

[fErwEl s = s R E2le T F [HTE R A A 2 s

Al
-0 F'ro]ect_s % ESISAcces sorMethod. Primary: :Acce pt¥isitor
- Eus!nessFra.mework sHESISClass.Primary::AcceptVisitor

03 BusinessObjects HAESISClassLibrany. Primans:AcceptVisitor
it ESISDocumentation. Primary::Accepi¥Wisitor
RESISEQVisiter

4 ESISEvent.Primary::AcceptVisitor
ERESISFindCriteria
E‘ﬁ]ESISlnterface.Primary::Accept\.l’isitur

i FSISName dMethod.Primary::AcceptVisitor

&8 ESISPrope rty.Primary::Accept¥isitor
4HESISRelationship.Primary::AcceptVisitor
ERESISSearchVisitor
45 ESISSourceCode.Primary::AcceptVisitor
5 FSISSourceStruct. Primary::AcceptVisitor
i ESISTextD ocument.Primary::AcceptVisitor
i ESISVariableDefinition. Primary::Acce pt¥isitor
SHESISVariableDictionary. Primary::Accept¥isitor

R

Folders can be
organized into
lierarchies.

:ﬁ; User

Folders may contain any session
object available in the library
structure. Folders can be used to
store objects being currently
worked on or objects that you want
to export. They can be used for any
purpose.

Folders contain objects. Theve objects
can be viewed via a window. All the
objects outlines above are a part of a
project within the EST library to
implement the Visitor pattern used by the
Ez10bjects Search Tool. Operations can
be performed indirectly on each object.

Class Development Environment 72

Folder Structure Operations

The Session Browser is used to perform folder structure operations. The operations can
be accessed through a popup menu. The following illustrates the popup menu that
appears as aresult of right clicking on a folder name or icon.

/I_)elete the currently

BN

Edit the currently selected folder
contents. Executing this command
brings up the edit window
containing the pointers to objects
in the library structures.

Add a new gubfolder to the
currently selected folder.

selected folder from the
structure, All subfolders
will alzo be deleted.

Collapse the

selected folder to — Rename the currently
the currently Delste selected fol der.
selected level. Edi Enter™”]
Fename Al
Compile all source Compile all
Expand the [Eoflapse Etifeft code for release for source code for
selected folder to Eqpand [Hl=Hight the currently debugging for
the next level. selected fol der. the currently
\/ Properties.. Chl+Enter celected folder.
Properties will invoke &
the tolder property Irport. it (et Sl //7\
sheet where you can 2 ; Both e Compile the source
alter it*s characteristics Erport... Shit+allE = o code for releage and
ifyou wish. Ldyaneed.. debugging for the

currently selected
folder.

The Export conunand lets you export the
entire folcder and possible subfolders to a

The Import command
lets you import a folder
export file that has a .opf

host system file with the extension .opf.
Additionally, you may opt to package the

Invokes a dialog thatlets you
optionally compile the currently
selected folder and subfolders

actual objects pointed to by the folder

extens on.
contents.

tor release and debug.

Most of the operations are the same operations that apply to the library structure. The
Add, Delete and Edit operations will be explained here.

Creating a New Folder

If you wish to add a new folder to the class, follow the steps below.

1)

2)

3)

First determine where you want the folder. Select an existing folder if you want the new
folder to be a subfolder. If you want it to be aroot (top level) folder, select any objectin a
library.

To invoke the New folder dialog, do one of the following:

a) Rignht click on the selected item and execute the Add command.

b) Execute the FileNew|Folder command in the main menu.

Enter the name of the folder in the Create Folder Name field. Pull down the Type combo-box
field and select the type of folder. Two types of folders are available: Common and Private.
Common is shared among all programmers sighed into the session. Privateis private to you

Class Development Environment 73

and not shared. Private is based on you current initials. The two types are available under the
following conditions:

a) Common and Private only when the folder is aroot or subfolder to another Common
folder.

b) Private only when it is a subfolder to another Private folder.
Click onthe OK button to create the folder.

Vaid folder names are a phanumeric, with the first character being an alpha only. Folder names
can be up to 32 characters in length.

Deleting a Folder from the Structure

Deleting afolder is a straightforward Session Browser operation. Follow the steps below:

1) Select thefolder you want to delete.

2) Right click on the selected folder and execute the Delete command in the popup
menu (or the Edit|Delete command in the main menu or press the Del key)

3) A warning dialog will appear. Click on the Y es button if you want to delete the
folder. If you do not, click the No button.

If you chose Yes, the folder and all its contents will be deleted. The Folder structure
within the Session Browser will be updated.

Note: If the folder has subfolders, they will be deleted also!

Moving a Folder and its Content to another Folder

By default, al drag and drop operations on afolder are deep copy operations. That is, if
you drag afolder onto another folder and drop it, only the contents will be transferred.
The actual folder structure will remain unaltered. All pointers from the folder being drug
and dropped will be merged with the contents of the target folder. However, the source
folder will be unaltered.

If you want to move the folder and its contents, there are two ways to do this.

1) Left click onthefolder and drag it to the folder you want to move it to as a subfolder.
Press the Ctrl key down and then drop the object. The folder will become a subfolder
of folder you dropped it on and it will be removed from its original position in the
tree.

2) Right click on the folder and drag it to the folder you want to moveit to asa
subfolder. Drop it. At this point a popup menu will appear giving you the option to
Copy, Moveor Cancel. Select the Move. The folder will be inserted as a subfolder
and removed from its original location.

Class Development Environment 74

Copying a Folder’s Content to another Folder

As discussed under the Move operation, all drag and drop operations on afolder structure
are by default deep copy operations. The copy operation only moves the content of the
folder to another folder. There are two ways of copying the contents of afolder.

1) Left click onthefolder and drag it to the folder you want to move it to as a subfolder.
Drop it. The folder contents, if any, will be copied to the target folder. The source
folder will remain initsoriginal position and the contents will be unaltered.

2) Right click on the folder and drag it to the folder you want to moveit to asa
subfolder. Drop it. At this point a popup menu will appear giving you the option to
Copy, Move or Cancel. Select the Copy. The source folder contents will be copied to
the target folder and the original folder will remain unaltered.

Invoking the Folder’'s Content Editor

Each folder in the structure may or may not have content. Y ou can invoke the Folder
Editor by simply double clicking on it or alternatively, performing the following steps:

1) Select thefolder you want to edit.

2) Right click on the selected folder and execute the Edit command in the popup menu
(or the Object|Edit command in the main menu or pressthe Enter key)

3) A folder content editor window will appear. It will display the pointers to the objects
in the library structuresif those objects were dragged into the edit window.

Refer to the Section Folder Content Editor for information on how to use the editor.

Finding Library Objects and Folders

As aprogrammer, you generally remember class names, or at least, part of the name.
EsiObjects contains a structural search feature called GoT o Class. Thisfeatureis a part
of the Session Browser window. This function can be invoked by first selecting the
library (or an object in the library) and then pressing the Ctrl+G keys or executing the
View|T oolbar s|Class command of the Main Menu. A Find Class dialog will be displayed
in the client area. Y ou can enter a class name to search for. The name may contain the **’
wildcard character. If it does not contain the character, the name will be searched for
literaly.

For example:

» If theclassname‘Collect’ is entered, the system will search specifically for aclass
caled ‘Collect’.

» If you enter the class name ‘ Collect*’, the system will look for a class name that
begins with the characters * Collect’ and ends with any other valid name characters. If
one classis found with a name fitting this pattern, the system will automatically go to
that class in the selected Session Browser, opening up the tree structure at that point.
However, if the system finds more than one class matching this pattern, you will be

Class Development Environment 75

presented with alist of the hits. Selecting the class you want will then prompt the
system to go to that class and open up the library structure.

» If you enter aclass name with more that one wildcard characters, the system will look
for that pattern. If you enter a‘** Collect*’ for example, the system will search for
class names that begin with any valid characters and end with any valid characters
having the literal characters‘ Collect’ anywhere in between.

Folder Content Editor

Associated with afolder in the folder structureisits content. The content can be viewed
by invoking the Folder Content Editor.

Folder Content Editor Explained

The Folder Content Editor is awindow that contains object pointers to the actual objects
in the library structures. The content window may contain any object in alibrary
structure: library, class, interface or service (method, property, relationship or event) as
well as subfolders. Since all objectsin the folder window are pointers to object in the
library structure, any menu operation performed on a selected object is actually
performed on the target object.

i Vizitar [_[3]

:ﬁ‘a ESISAcccssuEM ethud.Frimany:Acccpﬂ-'isitur The Folder Editor

.Tﬁ'_a‘ﬂ E5I5Class. I':'rl m ary::;lﬁl:t:epl".l'lsﬂur o may contain a pointer
TﬁffgjESIﬁCIassLlhrary.F'rlmary::Al:cept‘-'lsnur | to an object contained
Sfra ESISDocumentation.Primary::AcceptVisitor in any library
ESISEQVisitor structure that is a part
&8 ESISEvent. Primary::AcceptVisitor of the session. The
ERESISFindCriteria references shown in
% ESISInterface.Primary. AcceptVisitor thig window represent
ESISNamedMethod.Primary::Acceptisitor the actual object
FHESISProperty. Primary:AcceptVisitor found in a session.
GHESISRelationship.Primary:AcceptVisitor All popup and main
% E5lSSearchisitor menu operations will
FHESI$SourceCode. Primary::Acce pi¥isitor be appliedto the
SHESISSourceStruct. Primary::AcceptVisitor actual object with the
EHESISTextDocument.Primary: AcceptVisitor excepfion of those

st ESISVariableDefinition. Primany: zcce pVisilor opera.hons specific to
EhESISVariableDictionany. Primany::AcceptVisitor the window content.

Class Development Environment 76

Property Sheet

The picture below illustrates and describes the folder property sheet. Y ou can change the
characteristics of afolder by modifying its properties. Various check boxes exist for the
purpose of permitting or inhibiting menu operations on the folder content objects or the
folder itself.

Thig fiel d will contain the
initials of the Owner only if
the folder is private. It is

blank if the folder is shared.

The Last date and
time the folder was
modified Cannot
be changed.

Containg the
Name of the
folder and it can
be changed

’/Wllen checked, the Add
operation for the type of
object selected may be
invoked. If no checked the
menu operation is not
permitted.

When checked, the
Remove operation will
permit the removal of
objects from the
folder. If no checlked
the menu operation is
not permitted.

Folder Propertias

General I

When checlked.
Move operations
on the folders will
be permitted. If
unchecked, you
will not be able to
move a folder.

M amne:

Last [11/20/00 13 56:38

Orer I ||

ject Opsiations
Iv | Add W Bemove | When checked, the
alder Operalion J Rename operation will
I Mave F Rename —————"11 be permitted on the
¥ Delete ¥ Subfaldsrs wﬂlelltl}' selected folder. .

JE Spstcm When checked.

involed. If no checked the Subfolders cperations
.. b s

1;:‘11111;;;1:; ation is not ,TI e e I will be permitted on

!) ™~ the curently selected

fol der. If not checked,

the operations will not

Clicking on the be permitted.

Cancel button will e Y
cancel the operation.
All changes made

will be made will be
lost.

When checked, the Delete
operation for the type of
object zelected may be

When checked, System
disables modifying all
properties. System is
only active when logged
into EsiObjects with the
{Admin qualifier.

Clicking on the OK
button will file any
changes made to the
Folder properties.
They will be effective
immedhately.

Clicking on the
Apply button will
apply any changes.

Popup Menu

Menu operations performed on each object in the Folder Editor window are the same
operations performed on the object when directly accessed viaalibrary structure. For
example, the method popup menu (and main menu commands) will contain the same
commands and, indeed, ook the same. The same s true of any other object and its popup
and main menu commands.

Class Development Environment 77

There is one exception to this rule however. Each popup menu will have two additional
segments attached to the bottom of the common popup that will contain three commands.
These commands are specific to the folders (See each of the appropriate sections in this
guide for information about menu commands specific to the library object type.). The
following illustrates the specific folder commands.

gdd.. Ingert
Edit Enter
Fiename Lt
Froperties Chrl+E rter
The New Folder command will t Uy=riel= ~ith hl_“+D
create a new subfolder for the ,!, Fromate Chrl+5hift+F
fol .cler as:‘sociated with the Folder Gt Ancestar llEE
Editor window.
Compile k
Remnve Debug Alt+hd
The Remove cmnmz!ncl will Impart... & it]
remove the zelected item from :
the folder and consequently from Ezport... Shift+Al+E
the Folder Editor window.
Search Chr+5
Mews Falder
The Find in Tree cominand will R
cauze the Segzion Browser to find the I
selected object in the library tree. It et
will open up the tree path to the IS Eindin Tree
object and select it.

Using the Folder Content Editor
Linking a Library Object to a Folder

Y ou may move any object from alibrary structure (including the library itself) or folder
to atarget folder in two different ways.

1) Drag the object from alibrary or folder to the target folder using the left button of the
mouse and drop it. The object will be placed in the folder.

2) Dragthe object from alibrary or folder to the target folder using the right button of
the mouse and drop it. A popup menu will appear with two commands:. Link and
Cancel. Cancel will let you abort the operations and Link will complete the
operation. If Link is chosen, the object will be placed in the folder.

Removing a Library Object Pointer from a Folder

Removing a object pointer from the folder is simple.

Class Development Environment 78

1) Within the Session Browser, double click on the folder that contains the object
pointer you want to remove.

2) Select the object pointer from the Folder Editor window.
3) Right click on the selected object pointer to invoke the popup menu.
4) Execute the Remove command.

Note: Performing this operation will remove the object pointer from the folder; it will not delete the
actual object form the library structure.

Indirect Library Operations using the Folder Contents

As stated in the Popup Menu section, all objects in the folder are pointers to the actual
object in alibrary structure that is a part of a session. Any operation you perform on a
selected item via a popup (or main) menu will be applied to the object in the library
structure.

Activating the Indirect Delete Command

Because the operations are indirect, it is possible to become confused and perform certain
operations that have unintentional consequences. The Delete command is one of those
operations. Because the Delete command can have undesirable consequences, it has been
made a personal preference. That is, you will not see the Delete command unless that
preference is enabled. See the Preference Tab Sheet subsection of the Using User Options
section in the guide for more information.

Populating the Folder Content

Populating folders is accomplished using drag and drop. Objects can be drug in the
following ways:

1. From alibrary structure and dropped onto afolder in the folder structure.
2. From alibrary structure and dropped onto a Folder Editor window.
3. Between Folder Editor windows.

Performing Operations on the Folder Content

Operations are performed on afolder object by selecting it and then using the popup
menu or the appropriate main menu command.

Note: All operations performed via the Folder Content window are indirectly applied to the actual
object in the library structure except the New Folder, Remove and Find in Tree.

Class Development Environment 79

Synchronizing the Library Object with the Folder Selection

Often when working out of afolder window, you may want to synchronize the
definitional object pointed to with the actual object itself in the Session Browser. Y ou can
do this by using the Find in Tree function. To use the Find in Tree function, follow these
steps:
1) Select the definitiona object pointer in the folder you want to synchronize.
2) Therearethree ways of executing the Find in Tree command:

a) Execute the main menu View|Find in Tree command

b) or, if the Class Toolbar isvisible, click on the Find in Tree button

c) or, right click on the selected item invoking the popup menu and execute the Find in
Tree command.

The tree in the Session Browser will readjust and expand if necessary. The definitional
object pointed to by the selected object will be selected and highlighted.

Variable Definition Editor

Variable Definition Editor Explained

The Variable Definition Editor lets you declare variables within aclass. It may be
invoked by double-clicking a variable namein the Variable interface of a Classin the
Session Browser.

Objects are distinguished by a unique identifier known as an OID (object ID). The
externally visible behavior of an object is defined by its methods and properties. An
object encapsulates state information, which is stored using instance and class variables.
Their values are accessible only within the definition of the methods and properties of the
class.

EsiObjects supports two atomic value types. a string and an Object Identifier (OID). The
string definition is based on the ANSI MUMPS definition of astring. The OID has been
added to the language specification as a part of the EsiObjects object model.

A variable may be bound to asimple literal string (or number), or it may refer to another
object by its OID. The EsiObjects Variable Definition Editor is used to declare these
variables and the type of value they will be bound to. Y ou can control if and when a
variableisinitialized at object creation time and what itsinitial value will be.

An instance variable for a class may be initialized when an object of the given classis
instantiated (created). Initialization may be deferred until the value of the variableis first
referenced in code. Alternatively, initialization can be bypassed entirely. In this case, the
programmer must explicitly assign the value of the variable.

Theinitial value may be specified as an expression or an object pointer. In the latter
case, you specify the class of the target object, which is created when the variable is
initialized.

Class Development Environment 80

In addition, if the variableisinitialized with the OID of another object, there are
advanced features that enable you to define the parameters used when that object is
created and the parentage of the object. In other words, is the object referenced by the
variable owned by the parent object? Or it is an external object that is a peer of the

parent?

General Tab Sheet

The Variable Definition Editor is used to declare and edit EsiObjects Variable
Definitions. It isinvoked by selecting the Variable interface within the Session Browser
and then double-clicking on avariable icon in the detail pane. The editor contains two
different displays, covering both General and Advanced topics.

- can be
Expression
(EsiObjects
expression) or
Create (permits
binding to a
class 1dentified
in the Class
dropdown box
below).

Initialization identifies how the variable will be
initialized at object creation time. Can be: Static
(programmer controlled), Initialized (created ate object
ingtantiation) or Dynamic (created whenever accessed).

\

‘When Initialization is specified as
Initialized or Dynamic, this field
identifies the class of the object the
variable will be bound.

J‘!nitialization: I] _ Initialized

|
Brdng 1. Expression =]

Indicated the Class: |BullinString
type of Binding

Froperties:

Expression

Displays the properties of the variable. These values
can be modified For example, double clicking on the
word Expression will put you in edit mode where you

can enter an EsiObjects expression.

The Variable Definition Editor's General display supports the basics of variable
creation. In many cases, it isall that is needed to create a variable definition.

Class Development Environment

Advanced Tab Sheet

If checked, the variable
is a child of its owner
object, and its existence

If checked, information
from the variable definition
will not be used, the object
must create and maintain
the variable's value at the

i structurally
dep endent upon the
existence of the parent.

Tts lifetime is that of the code level.
parent.
Creation Parameters v Dependent [Manually M aintsin
allows the explicit
specification of creation Creation Parameters:

parameters to be used on
the CREATE command

\that creates the \'aliable//d

Keywords allows the
specification of one or
more creation keywords
to be uzed in creating

the object. i
/;alll(‘ allows the]

gpecification of the
value agzociated with

r— Creahon Ophions

= Eewword: ICH\LD j

Lh Walue |1

the currently selected General Advanced I

\Sreztinu lkeyword. //

The Variable Definition Editor's Advanced display allows more detailed levels of

81

information to be specified when creating a variable definition. It includes direct support

for CREATE command parameters, and allows the variable's definition to be manually

maintained by writing the relevant code "by hand".

Variable Properties

Class Development Environment 82

The Variable Properties property sheet can be invoked from the Main Menu
Obj ect|Properties command or the Variable popup menu Proper ties command when the
variable is selected in the Session Browser It displays the properties of a specific

variable.

Displays the
name of the
variable. The
variable name
can be changed
here.

General

1 arie:

Identifies the Owrer Clazs:
date and time
the variable was
last modified

and saved.

Lazt Saved:
Initizlization:

Binding:

If checked,
thiz variable
will be
inherited by
subclasses of

Yariable Properties

Cardinaliby

v Inhentable

Identifies the
owner cass of
the variable.

Initialization
identifies how the
variable will be
initialized at
object creation

Callectian time. Can be:
08./19/1999 11:25 AM || Static, Initialized
Initialized
I ™
: —— Indicates the type
<Espressiony—ws——-———— 11 of binding -

expression or
clags.

- If checlked, thig

[Manually aintain

thiz clagg, Can
be changed
here.

7

variables will be
manually

maintained. Can

Applies to Class variables only. If
checked, the the value agzociated

with the variable will be exported
with the definition. Can be

changed here.

Saves all changes
made to the
variable definition
and uits the
editing session.

be changed here.

Digcards all
changes and
cancels the
editing session.

Applies all
changes and
continues the
editing session.

Variable Menus

Interface Popup Menu Commands

Class Development Environment

83

The Variable popup menu isinvoked from the Session Browser, by right clicking on the

Variablesinterface of aclass or pressing the Shift+F10 key combination.

Add a new variable
definition.

Compile the currently
selected variable
definition.

Add

Inzert

TImport a file into the

Compile Alk+C

currently selected
variable definition.

Impaort... Shift+de
Export. . Shift+al+E

Search Ctl+5

selected variable definition

‘ Export the currently
to afile.

Invokes the search dialog
enabling a documentation text
search of the selected variable.

Class Development Environment

Variables Popup Menu Commands

The Variables popup menu is invoked from the Session Browser, by right clicking on a
specific class or instance variable or pressing Shift+F10 key combination.

Edits the selected variable,
using the Variable Definition
Editor.

Rename the name of
the currently selected _ Delete the currently selecte?\
variable definition. Add Inzert / variable definition. If the

Edit Enter variable ig inherited, it cannot
Fxamine the properties of Henarme Alt+R . ._f——f‘f"\lff deleted indirectly.
the currently selected Delete Delete

variable definition. :
Podle. Do //Tlle selected variable

_ Bhii g definition, implemented at a
The selected variable " higher level in the class tree,
definiti on. implemented at Promate At i¢ overridden at the current
the current level in the class level.

Add anew variable
definition.

tree, is promoted up to a Compile AL

higher level. ; ; R
- Irnpoit... Al — Tmport a file into the
Emport... Shift+e [\tm‘renﬂy selected

variable definition.
Search Chrl+5
Compile the currently
selected variable definition. Export the currently
zelected variable definition
Invokes the search dialog ‘ to a file.

enabling a documentation text
search of the selected variable.

Using the Variable Definition Editor

Invoking the Variable Definition Editor

There are four ways to invoke the Variable Definition Editor. From within the Session
Browser, select the variable by clicking on itsicon or name then:

1) Doubleclick ontheicon or name.
2) Pressthe Enter key.
3) Pull down the Main Edit Menu and select the Edit command.

4) Invoke the popup menu by right clicking on it (or by pressing Shift+F10). Choose
the Edit command.

Class Development Environment 85

Editing Variable Properties

There are three ways to invoke the Variable Property Sheet. From within the Session
Browser, select the variable by clicking on itsicon or name then:

1) Pressthe Ctrl+Enter key.
2) Execute the Object|Properties command.

3) Invoke the popup menu by right clicking on it (or by pressing Shift+F10). Choose
the Properties command.

The Variable Definition Property Sheet dialog contains only one tab that contains al the
properties of avariable. Those properties that can be changed are highlighted and those
that cannot are grayed out.

Deleting a Variable

There are three ways to delete a variable. From within the Session Browser, select the
variable by clicking on itsicon or name then:

1) Pressthe Del key.
2) Pull down the Main Edit Menu and select the Delete command.

3) Invoke the popup menu by right clicking on it (or by pressing Shift+F10). Choose
the Delete command.

Method Editor

The Method Editor enables you to write amethod. A method is abody of code that
performs a specific operation within the object. Unlike a property, which usually
represents the data within the object, a method represents an operation. A method gives
the object some of its behavior.

The Method Editor allows you to enter code, check its syntax, compile and save multiple
versions of the source code. Compiling a method means compiling the source code for
runtime use. The code can be compiled for release or debugging.

A Method Editor isinvoked by double clicking on a Method Icon in the Session Browser.
Note that once changes are made to the method code, the code must be compiled to
reflect the changes in the actual invocation of that method.

Class Development Environment

Method Editor Explained

The Method Editor is used to edit EsiObjects methods. It appearsin the client area of
the EsiObjects Main Window . It can be invoked by double-clicking on a Method iconin
the library tree structure. The illustration below describes all of the components of the

Method Editor.

The Text Pane containg the
source code of the method.

[Method - Base$MultiMap - Primary::Insertt lement

;; Copyright 1997 ES| Te
; Class: MultiMap Colle
: Inserts an item into the

ology Corp. Matick, MA
Interface: Primary, Method: InsertElement
gltiMap - key and item are user supplied

The Version Number has two icons associated with it. The green
triangle identifies the version that 1z compiled and the red bug
indicates that the version has a debug compile aszociated with it.

Input:
(
A% Key=""", i
A%ltem The Version Pane
) contains a list of all
* Normal Key Structure the versions that are on
; 1%IL[Key, 0)=Index - Next available item node2 file as well as the
1%IL[Key,Node2)=ltem - Any given item for specific key initialg of the author
; Extended Key Structure and date of creation.
5 I%IL[EKey,D)=Index - Next available extended key node2
; I%IL[EKey,Node2)=Full Key - Any given full key
_ILI B
1 | » e
05/15/00
|Debug: 05/19/00 2:31 PM 4 |Rielease: 06/19/00 2 &1 P \L 530 P

If the Debug: If there is a debug
statug containg a compile azzociated
date, it indicates with the version, a

that the version green check here
displayed has a mdicates it is in sync
debug compile with the release
associated with version. A red X means
it. it is out of sync.

Method Properties

If the Release: If there iz a releage
compile associated
with the version, a

status containg a

date, it incicates
that the version green check here

displayed has a indicates it is in syne
releage compile W‘th_ the release
version. A red X ineang
it. it is out of sync.

associated with

Selecting the Properties entry from the appropriate pull-down or pop-up menu accesses
the Method Properties dialog. It lets the user view and edit the properties of the method.

86

Class Development Environment 87

General Method Property Sheet

The Genera property sheet of a method contains editable information about the method.
It lets you change this information, changing the behavioral characteristics of the method.

Type is
currently
unitnplemented.

Identifies the class the
method belongs to. User
cannot edit this field.

Name of the method.
User can renarne the

method by editing this
field.

¢ When unchecled, Y

direct /0 operations
(e.g the "Read" and
"Write" commands) in
the method body result
in compiler warnings
When checked, the
WArnings are

~ N suppressed /

| |
S When checked,
F'b\' L | | privileged EsiObjects
e Pubiic e functions such as
R Irhertable T Prrdleged $POINTER are

When checlked, this
method may be
irroked from outside
the class. When not
checked, this method
may be invoked only
from within the class
and its subclasses.

When checlked, the
method is accessible

from subclasses of the I~ Staic allowed it the method
given class. When not / body. When
checked, method is not unchecked,

seen by subclasses. compilation will fail if

it discovers privileged
functions

oK Cancel |

When checked, the
method will become
static and can he

accessed via its The OK button, The Cancel buiton, M The Apply button, when

librarybelass namne when pressed, will when pressed will pressed, will apply all

rather than an save all changes cancel the propetty changes. The dialog will

instance of the class, tmade to the methods edit session. All remmain up for further
propetty. changes will be lost. editing,

Information Method Property Sheet

The Info property sheet contains information about the method. It cannot be edited.

Class Development Environment

Identifies the class the
method belongs to.
Uger cannot edit this
field

Methed Properties

Gereral

Clazs: MultiMap

Name of M routine
containing release
compiled code for the
method.

Inteiface: Primary

3]

Releaze Intemediate: “YESabOFD

88

Identifies which
interface in the class
the method belongs to.
User cannot edit thiz
field

Identifies the currently
compiled release

version of the method.

Fl
Lazt Relzase Compile: 06/19/00 2:31 P

R elease Version:

Date and time of last

release compile. Debug- Identifies the current
Debug Intemediate: “WESob0G0 compiled debug
Name of M routine rEa

Debug Wersion: 4

T~ A

version of the method

containing debug
compiled code for the
method.

Last Debug Compile: 0G/13/00 237 P

Lazt Modified: 0&/19400 2:31 P

Date and time the

L

Cancel
i

method gource code
wag last saved after

i

Date and time of last
debug compile.

The Cancel button,
when pressed will
cancel the property
edit zession. All
changes will be lost.

The Apply button, when
pressed, will apply all
changes. The dialog will
remain up for further
editing.

The OK button, when
pressed, will save all
changes made to the
methods property.

being modified.

Preszing the Help button
will invoke the Acrobat
Reader and this
documentation will be
cigplayed.

Class Development Environment 89

Method Menus

Access to method functionality is available through the Main Menu as well as popup
menus within each windowpane. The popup menu commands are explained below.

Source Code Popup Menu

The Source Code popup menu isinvoked by right clicking inside the source code pane of
the Method Editor window or pressing Shift+F10 key combination.

The Paste conunand ingerts

the text that iz on the clipboard
into the cursor location or
replaces selected text.

removes the selected text and places it on the dipboard The

text and places it on text is not deleted from the code body.
the clipboard.

Cul /ﬁhe Delete comimand ‘
o Cirlal deletes the selected text.
Easte %
Delete Delete

The Unde command will revert HHevert [t
to the state of the last operation. Undo Chil+Z
The Properties command Save Curent ~Alt+3
invokes the property sheet HewVersion Al
for the selected method. ;

Pioperties... Chul+Erter
The Syntax Check command Compile
will check the displayed code Syrtax Check, AlteY
for syntax errors.

Find.. Ailt+F3
ind Mext F3
Be(p\lace_._ Chl+F3

The Cut command The Copy command copies the selected ‘

The Revert command
will return to the initial
state of the method.

The Save Cwrrent command will
save the current source.

The
Compile|Release
command compiles
a release version of
the code digplayed
in the text pane.

The New Version
command will
create a new
Version.

Beleaze Alt+R
Lebug Al+D
Eo‘tb Al+B

The Compile| Debug
command will compile a
debug version of the
code displayedin the
text pane. It will display
all errors in the Output
Window.

The Find conunand will
involke the Find window.

The Replace command
will message the Find
window, instructing it to
replace the current text
found with that specified
in the replace field.

The Find Next command will
message the Find window to
find the next occurrence of the
search text previously provided.

The Compile|Both command will compile
a release and debug version of the code
displayed in the text pane. It will display
all errors in the Output Window.

Class Development Environment

Version Popup Menu

The Version popup menu isinvoked by right clicking inside the version history pane of
the Method Editor Window or pressing the Shift+F10 key combination.

The Copy command will copy
the vergion to the clipboard.

The New Version
command will create
a New Version.

The Purge command is used to
purge all versions of a method
except for a specific number

you specify via a dialog box.

The Delete command will
delete the selected version.
Confirmation ig cueried for.

The Locked command
will prevent the zource

o code from being changed.

MNew Yelzion

Delete Drelete
Purge

Lacked

The Compile|Release command
will compile a release version of
the code displayed in the text pane.

The Remove Debug conunand
is used to remove the debug
compile from the currently
selected version displayedin the
editor window.

Heleazg™ Al+H
Bemove Debug Alt+ Debug Al+D
Syntas Check Al+Y Baoth % +B

The Syntax Check
command will check :
the code displayed in port Shift+at+|
the selected edit Export Shifl-+4i+E
window for syntax
error. It will display all
errors in the Output
Window.

The Compile/Both
command will
compile a release
and debug version of
the code digplayedin
the text pane. It will
display all errors in
the Output Window.

The Compile|Debug
command will compile
a debug version of the
code displayedin the
text pane. It will
display all errors in the
Output Window.

The Export
Will Import command is command is used
uged to import a method from to export the
a flat file into the digplayed displayed method
method. to a flat file.

Using the Method Editor
Creating a Method

To create a method, follow the steps below.

1) Inthe Session Browser, expand the class to which you wish to add a method by
clicking on the expansion box (box with the + in it).

2) Now expand the interface that will hold the method. Thiswill display all exiting
services as a sub-tree to the interface.

3) Click the right mouse button on the interface name to bring up the popup menu.

90

Select the Add option. (Note that you also could pressthe Insert key to add an item.)
4) The Add to Interface dialog appears. Enter the name of the method. Valid names must

begin with an alpha character and can contain up to 32 a phanumeric characters.
Make the name something that gives a sense of what behavior the method provides.

Class Development Environment 91

5) Pull down the combo box and select Method from the list.
6) Click onthe OK button to add the method to the interface.

Editing a Method

Once amethod has been added to the interface, you can manipulate it in many ways. By
selecting the method and right clicking on it, a popup menu is displayed that allows you
to delete, edit, and rename the method among other operations. Note that each operation
has a keyboard equivalent that will invoke the action directly.

To edit amethod, perform the following steps:

1. Select the method to edit. As described above, clicking the right mouse button on the
method name will display a popup menu from which you can select the Edit option.

2. The method editor will appear in the client area of the Main Window. It will contain
the source code to be edited. Y ou can now create or modify the code. Y ou can also
create new versions as well as compile and/or syntax check the code. If you want to
create or modify documentation on the method, make sure the Documentation
Window is active. Simply click in the Documentation Window and start typing the
text. If the Documentation Toolbar is not active, chose the
View|T oolbar siDocumentation to activate it.

3. Additionally, pressing the Enter key or double-clicking on the method name in the
interface will also invoke the editor.

Deleting a Method

To delete amethod, follow these steps:

1) Inthe Session Browser select the method that you want to delete.
2) Right click on the method icon and select the Delete command from the menu.

3) A verification dialog will ask you if you want to continue. Answer Y es. At this point
the method will be deleted and the library structure will readjust to the deletion.

Reusing the Method Editor Window

User Option Preference

The User Option Preference tab sheet contains a check box call Redisplay. When this box
is checked, EsiObjects will always look of a method editor in the client area before
creating anew one. If one exists, it will reuse that Method Editor Window, displaying the
newly selected method code in that window. If the method in that window had changes
made to it, the window will let you save it before proceeding.

Drag-and-Drop

Another approach to reusing a Method Editor window that is already displayed in the
client areaisto drag-and-drop the method name into an open editor as outlined below:

Class Development Environment 92

1. There must be a Method Editor already open in the client area. And some portion of
the code pane must be visible.

2. Select the method to edit from the Session Browser, hold down the | eft mouse button
on the item name and drag the cursor to the editor's code pane.

3. Notethat the cursor will indicate when avalid areato drop the item is reached by
changing to an cursor arrow with a plus box attached to it. When the cursor shows
thisindication, lift the left mouse button to drop the method.

4. The context is switched to the Method Editor context.

5. If the original method being edited has been modified without being saved, you will
be prompted to save the changes prior to the context being switched. Click Saveto
save the changes, Discard to throw away the changes, or Cancel to cancel the drop
operation.

Editing Method Properties

Properties of amethod can be edited using the Method Property sheets. There are at | east
3 waysto invoke the Method Property sheet:

1) From within the Session Browser, select the appropriate method and press
Ctrl+Enter.

2) From within the Session Browser, select the appropriate method and invoke the
popup menu by right clicking on the name or icon, or by pressing Shift+F10. Choose
the Properties menu item.

3) From within the method editor, select Properties from the Edit menu.

Once the property sheet is displayed in the client area, you can edit those fields that are
changeable.

See the Method Properties under Method Editor Explained section above for a complete
description of all thefields.

Managing Source Versions
Explicit Source Management

When saving the source code of a method (using the source code popup menu) there are
four distinct options related to compiling and managing source code versions:

1) SaveCurrent Savethe source code under the version number currently being
edited.

2) New Version Save the source code under a new (highest) version number.
3) Syntax Check Check the syntax of the current source text.
4) Compile Compile the current source text.

Class Development Environment 93

Source Code User Options

In the EsiObjects User Options, there are two specific options related to source code
version control:

Auto New Version When prompted to save source code, the New Version check box
on the Save dialog will default to what is set here. When checked, the
default action on saving source code will be to create a new version of
the source code.

Compile On SaveWhen prompted to save source code, the Compile check box on the
Save dialog will default to what is set here. When checked, the default
action on saving source code will be to compile the source code after
saving.

Default Save Options

If the user closes a source code object without saving changes, then the Save Source
Code diaog shown below will be displayed.

Save Source Code 1

The Save button
will save the
source code. It
will then call the
compiler to
compile the
method or
property. If there
are compile
errors, they will
be digplayed in

tMethod - Bazethultitap - Priman:: | nsertElement

The Cancel
button will
cancel the zave
operation.
Control will be
returned to the

The zource code has been modified.
Save the changes. discard the
changes, ar cancel?

Dizcard ; Cancel B

the Build tab TAW MNew Wersion \ r":":\ Compile editor.
sheet of the
Output Window.

The Discard
button will
terminate the
editing seszion,
throwing away any
changes made.

The New Version check
box will force the system
to save the method or
property to a new version
before compiling it

The Compile check box
will tell he system to
compile the source code
creating intermechate and
object code for execution.

The options that are selected, by default, will be determined by the appropriate user
options.

Class Development Environment 94

Property Editor

The Property Editor isatool that enables you to define a property within a particular
interface within aclass. A property is a specialized method that supports up to 10 types of
access known as accessors. Properties are typically used to expose the state of an object.
For example, the Value accessor can retrieve the value of an instance variable and return
it to the caler. It could aso perform some calculation on the values internal to the object.
In addition to retrieving a value from an object, the Assign accessor is designed to alter
the object's state. It can do this by assigning new instance variable values to the object.

One important thing to remember is that each accessor is associated with the EsiObjects
language. For example, the Vaue accessor would be invoked in the following construct:

Set A%lenp=I %Cust oner . Nane

This statement will cause the Vaue accessor of the Name property associated with the
object accessed by 1%Customer to be executed. The value returned form that accessor
would be bound to the temporary variable A%Temp for local use.

Conversely, the Assign accessor would be invoked for the following construct:

Set | %Cust oner . Nane="ACME Tire Conpany"

The Assign accessor of the Name property associated with the 1%Customer object would
be passed a parameter that would contain the name string on the right. The Assign
accessor code would associate the value passed in with the proper instance variable.

The Property Editor enables you to define the code (if any) for the particular types of
access you are going to allow on the property.

Property Editor Explained

The Property Editor allows you to enter code, check its syntax, compile and save
multiple versions of the source code for each accessor. Compiling a property accessor
means compiling the source code for runtime use. The code can be compiled for release,
debugging or both.

A Property Editor isinvoked by double clicking on a Property Icon in the Session
Browser. Note that once changes are made to the property accessor code, the code must
be compiled to reflect the changes in the actual invocation of that accessor.

Class Development Environment 95

Property Editor Window

The Property Editor isused to edit Properties. It appears asaclient area of the
EsiObjects CDE Main Window.

The picture below illustrates the general components of the Property Editor. Keep in
mind that for a specific accessor, most of the functionality is the same as a method. In
fact, internally to EsiObjects, each accessor is a method.

The Accessor Tab
Bar containg the all
the tabs for the
accessor methods.

The Version Number has two icong associated with it.
The green triangle identifies the version that is
compiled. If a red bug appears that means the version
has a debug compile aszociated with it.

The Text Pane
containg the
source code of
the method.

2% Propenty - Base$Collection - Primary::Cardinality

o Asgnl O Create | © Kill @ Value |0 SData | @

2[c): Copyright [c]) 1995 ESI Technology Corp. Matjck. MA ;I

: Property: Cardinality. class: Collection, Accessor! ¥alue 23 P

: returns the current # of items in the collection The Ve .‘{ll?ll
Set SReturn=I%Cardinality Pane coufains

Quit a list of all the
versiong that

are on file ag
well as the
initialg of the
author and
date of
creation.

a Llj LW
O/21/00

Debug: e ‘Helease: 06/21/00 4q\5? Pr | 457 PM

If the Release: If there is a release
tatus contains a compile asgociated
date. it indi cates with the version, a
that the version green checl here

If there is a debug
compile associated
with the version. a
green checl here
indicates it iz in sync
with the release
version. A red x means
it iz out of sync.

If the Debug:
statug containg a
date, it indicates
that the version
displayed has a
debug compile
azzociated with
it.

displayed has a indicates it is in sync
release compile W‘th_ the release
associated with version. A red X ineang
it. it is out of syne.

One of the User Preferences provided by EsiObjects in its T ools|Options menu entry is
the Compile on Save feature. When this preferenceis selected, arelease compileis
automatically performed whenever aversion is changed and saved. Checking this
preference causes the check box in the Save Source Code dialog to be checked. If
Compile on Saveis not selected, the user can save changes to the source code without
compiling it. When the code isinvoked, the source code shown on screen may be out of
sync with what actually gets executed. EsiObjects detects an out of sync condition when
the current release or debug version was modified and saved after compilation. It alerts
the user to this condition by displaying ared x after the release or debug compilation
timestamp. The out of sync marker goes away when arelease and debug compile are
done against the same source code.

Class Development Environment 96

Property Editor Accessor Tab Bar

Thetab bar contains the name and implementation status of each of the properties ten
accessor methods.

{ The Assign 4

Accessor is
invoked by the Set

/ The $Normalize
Accessoris

/ The $Data

Accessor is

{ The $Query

property=value
command. The
value iz passed
into thig accesgor
via a parameter.
You have control
over what you do
to the value.

{ The Kill

Accessoris
invoked by a
Kill property
conunand.
You have
control over
what the Kill
actually does.

involked when
the $Data of a
property is
usged. You have
control over
what the code
actually does
and how the
$Data behaves.

invoked when the
$Normalize of a
property is used.
You have control
over what the
code actually
does and how the
$Normalize
behaves.

Accessor i
involked when the
$Query of a
property is used.
You have control
over what the
code actually
does and how the
$Wuery behaves.

o Assign] o Createl 0o kil @ value WQ SDala] o SGEtl o Nurmalize] o SOrdBll o Sﬂumyl O Svalid l

The Create
Accessor ig
usged by the

The §Get
Accessor is
invoked when

The $Order
Accessor is
invoked when

The Value
Accessor iz
invoked by the Set

The $Valid
Accessorig
mvoked when

CREATE variable=property the $Get of a the $Order of a the $Valid of a
command to command. A value property is property is used. property is used.
specialize an ig returned from used. You have You have You have

instance of the
class being

Y created

control over
what the code
actually does
and how the
$valid behaves.

control over
what the code
actually does
and how the
$Order behaves.

control over
what the code
actually does
and how the

| $Get behaves.

this accessor and
bound to the
variable. You have
control over what
you do to the value.

Theicon that appears to the |eft of each accessor name contains a color that indicates the
accessor’s status. A description is given below:

Icon

O
@

&

There are ten different accessor methods, each used for a different purpose.

Meaning

Not implemented. The specified accessor is not implemented; even
so, default template source code appears as a user preference.

Implemented here. The accessor is implemented by the selected
interface. In the case of an inherited interface, "here" refers to the
class that implements the interface.

Inherited. The accessor is implemented at a class that is an
ancestor of the class that implements the selected interface.

=3
)

Description

Assign

Create

Kill

Value

$Data

$Get

$Normalize

$Order

$Query

$Vvalid

Class Development Environment

Invoked whenever there is an attempt to assign a value to
the property. The accessor's first argument is the value
assigned to it; the remaining arguments, if any, are array
subscripts specified for the property.

Invoked when there is an attempt to initially create the
property. The accessor's first argument is the value
assigned to it; the remaining arguments, if any, are array
subscripts specified for the property.

Invoked when there is an attempt to kill the property. The
accessor's arguments, if any, are array subscripts specified
for the property.

Invoked whenever there is an attempt to reference the
property's value. The accessor's arguments, if any, are
array subscripts specified for the property.

Invoked whenever the $DATA function is applied to the
property. The accessor's arguments, if any, are array
subscripts specified for the property.

Invoked whenever the property is the first argument of the
$GET function. The accessor's first argument is the default
value to be returned if the property considers itself to be
undefined; the remaining arguments, if any, are array
subscripts specified for the property.

Invoked whenever the property is the first argument of the
$NORMALIZE function, which is used to normalize a
potential value to one that is appropriate for the property.
For example, an integer-valued property might always
return an integer. The accessor's arguments are input
values to be normalized.

Invoked whenever the property is the first argument of a
$ORDER function. The accessor's first argument is the
direction (1 by default, -1 for reverse $ORDER); the
remaining arguments are the array subscripts specified for
the property.

Invoked whenever the property is the first argument of a
$QUERY function. The accessor's arguments are the
subscripts, if any, specified for the property.

Invoked whenever the property is the first argument of the
$VALID function. The accessor's first argument is the value
to be validated; the remaining arguments, if any, are the
array subscripts specified for the property.

Property and Accessor Properties

There are two levels of property properties. The property level properties are on the

97

property itself. Accessor level properties are on each accessor of the property. Accessors
are, in essence, individual methods associated with the property.

The following sections identify each property type.

Class Development Environment 98

Accessor Properties

Right clicking on the selected accessor’ s tab and choosing the Properties command from
the popup accesses the Accessor Properties dialog. It lets you view and edit the properties

of the selected accessor.

Identifies the property
ACCESSOr.

Acce eeor Properties: Value

General 1

Acceszor ig available
to external calls.

Clage: Callzction

= Ca[dina»
Interface: Primary.

Identifies the property the
acceszor is agzociated with

Identifies the interface the
property iz a part of.

Identifies the class the

Accessor ismherited
by subclaszes.

—FElags
\ 5
VIiE

[~ DirectlO

property is a part of.

Name ofI\-Imuhne T Inhertable [Privileged L

containing release code.

Release

Intermediate: “WESoh07k

Date and time of last

!

__\5
%
ﬁ

Identifies the accessor as
uaviug the privilege to do L'O.

Identifies the accessor as
\uaviug the privil eges.

Identifies the ciurently

hmnpiled release version

Identifies the current debug

hmnpiled Version.

Date and time the accessor

Warzion: 24
release COlll])i]t'.‘, Cormnpile Date: Dﬁm | |
. Debug- K
Name of M routine ~|rtermadiate: ™YESobG0 -
containing debug code. Wi 24
- Compile Date: 0B/22/00 1257 PM |
Date and time of last
debug compile. LastModfied 06/22/001257 P
Cancel 1 1 m
The OK button,

when pressed,
will save all

changes made
to the methods
property.

The Cancel button,
when pressed will
cancel the property
edit session. All
changes will be lost.

The Apply button,
when pressed, will

apply all changes. The
dialog will remain up
for further editing.

Pres
nvo.

e
source code was last saved
after being modified.

sing the Help button will
lee the Acrobat Reader and

this documentati on will be
displayed

Property Properties

Class Development Environment 99

Selecting the Obj ect|Pr operties command from the Main Menu accesses the Property
Properties dialog. It lets you view and edit the properties of the property.

These are the items on the Generd tab:

Identifies the class the Giopeylkicpertics

property belongs to.
User cannot edit this
field

Feneal 1 Aecessors ;

Clage: Collection

Interface: Primary

Identifies the

Name of the property.
User can rename the

method by editing this
field

Currently not
ﬂé] implemented.

Interface the property Name: | OO
belongs to. User
camnot edit this field Tupe i

[Elags

v Public

L

When checled, thiz
method may be
involed from outside
the clags. When not
checked, thiz method
may be invoked only
from within the class

‘When checked, the
property isaccessible
from subclasses of
the given class.
When not checlked,
property ignot seen
by subclasses.

and its subclasges.

0K 1 Cancel 1
pal

Help J

The Cancel button,
when pressed will
cancel the property
edlit session. All
changes will be lost.

The OK button, when

pressed, will save all
changes made to the
properties property.

The Apply button, when
preszed, will apply all
changes. The dialog will
remain up for further
editing.

Pressing the Help button
will invoke the Acrobat
Reader and this
documentation will be
displayed.

Class Development Environment

100

The Accessors tab shown below lists of al the accessor methods defined for the property.
Y ou must click on the name of an accessor method from thislist in order to show
information about the particular accessor method.

Property Properties

Geners Acceisog |

Name of M routine
containing releage

compiled code for the
method.

I

dentifies the accessor

the property sheetis
currently displaying.

Releate Identifies the currently
. Intermediats: “VEScbO7k b compiled release
Date and time of last 3 —\;\:el‘s.iﬂll of the accesszor.
release compile. Wersion: 24
Last Campis: 06/22400 12:57 Pi4
Name of M routine Diebug - Identifies the curent
cmltanlnnlg clelbIII;g o e e | cl;lilug compil ed version
H - _'_,_,_,———'_'_'_'_ g
compiled code for the : o i of the accesgor.
Wersion: 24] A
ACCEssOr. e
Last Compile: 0B/22400 1257 PM
F——/]Z;ate and time the

Lasgt Modified:

Date and time of last

Wi e T e

debug compile.

e

LCancel I _.A\,\pply I Help I

i

accesgor gource code
was last saved after

-

being modified

The OK button,
when pressed, will
save all changes
made to the methods
property.

The Cancel button,
when preszed will
cancel the property
edit session. All
changes will be lost.

The Apply button, when
preszed, will apply all
changes. The dialog will
remain up for further
editing.

-

Presving the Help button
will invoke the Acrobat
Reader and this
documentation will be
displayed.

Class Development Environment 101

Property Menus

Access to Property functionality is available through the Main Menu as well as popup
menus within each windowpane and the Accessor popup menus. The popup menu
commands are explained below.

Source Code Popup Menu

The Source Code popup menu isinvoked by right clicking inside the source code pane of
the Property Editor window or pressing Shift+F10 key combination.

The Cut conunand

The Paste conunand ingerts
the text that is on the clipboard
into the curgor location or

removes the zelected
text and places it on

text and places it on the clipboard. The
text iz not deleted from the code body.

The Copy command copies the selected ‘

replaces selected text.

The Revert command
will return to the initial
state of the method.

The Find conunand will
involke the Find window.

The Undeo command will revert
to the state of the last operation.

the clipboard.

LCopy

Chl+C
ot %
Delete Delete
Hewert Bl ik
Urdo Chil+£
Save Cunent — Alk+S

Hew Yeraon bl

The Properties conunand
invokes the property sheet
for the selected method.

Pioperties... Chl+Enter

The Syntax Check command
will check the displayed code
for syntax errors.

The Save Cwrrent conunand will
zave the current source.

The New Version
command will
create a new
version.

ebug
Eoth

Cul The Delete commancd
deletes the zelected text.

The
Compile|Release
command compiles
arelease version of
the code displayed
in the text pane.

Ailt+R
At
A+

The Compile| Debug
command will compile a

Cornpile

Suntax Checl. Al

Find Aib+F3
ind Hest F3

EEEI_ace, : Chl+F3

The Find Next command will
meszage the Find window to
find the next occurrence of the
search text previously provided.

The Replace cmmnand\
will messzage the Find
window, instructing it to
replace the current text
found with that specified

in the replace field.

debug version of the
code displayedin the
text pane. It will display
all errors in the Output
Window.

The Compile|Both command will compile
a release and debug version of the code
displayed in the text pane. It will cisplay
all errors in the Output Window.

Class Development Environment 102

Version Popup Menu

The Version popup menu isinvoked by right clicking inside the version history pane of
the Property Editor Window or pressing the Shift+F10 key combination.

The Copy command will copy
the vergion to the clipboard.

The New Version
command will create
a New Version.

The Purge command is used to
purge all versions of a method
except for a specific number

you specify via a dialog box.

The Delete command will
delete the selected version.
Confirmation ig cueried for.

The Locked command
will prevent the zource

o code from being changed.

MNew Yelzion

Delete Drelete
Purge

Lacked

The Compile|Release command
will compile a release version of
the code displayed in the text pane.

The Remove Debug conunand
is used to remove the debug
compile from the currently
selected version displayedin the
editor window.

Heleazg™ Al+H
Bemove Debug Alt+ Debug Al+D
Syntas Check Al+Y Baoth % +B

The Syntax Check
command will check :
the code displayed in port Shift+at+|
the selected edit Export Shifl-+4i+E
window for syntax
error. It will display all
errors in the Output
Window.

The Compile/Both
command will
compile a release
and debug version of
the code digplayedin

The Compile|Debug
command will compile
a debug version of the
code displayedin the

The Export
Will Import command is command is uged

used to import a method from to export the the text pane. It will text pane. It will
a flat file into the displayed displayed method display all errors in display all errors in the
method. to a flat file. the Output Window. Output Window.

Class Development Environment 103

Accessor Tab Popup Menu

The Accessor tab popup menu isinvoked by right clicking on an accessor tab in the
Property Editor or pressing Shift+F10 key combination.

The Delete command
will delete the

accessor that is on the
property.

The Save command
will force a compile of
the current accessor.

Save Alt+57
~Dielete Delete

Properties Etrl+Eﬁ

The Override
command will cauge the
inherited Accessor to be
copied into this

property. overtiding the
inheritance .

The Properties
command invokes the
property sheet for the
selected accessor.

Using the Property Editor

Creating a Property

The illustration below represents the EsiObjects Session Browser. It exists as atab sheet
in the Session Browser window.

To create a Property, follow the steps below.

1) Inthe Session Browser, expand the class to which you wish to add a property by
clicking on the expansion box (box with the + in it).

2) Now expand the interface that will hold the property. Thiswill display all exiting
services as a sub-tree to the interface.

3) Click the right mouse button on the interface name to bring up the popup menu.
Select the Add option. (Note that you also could pressthe Insert key to add an item.)

Class Development Environment 104

4) The Add to Interface dialog appears. Enter the name of the property. Valid names
must begin with an apha character and can contain up to 32 a phanumeric characters.
Make the name something that gives a sense of what behavior the method provides.

5) Pull down the combo box and select Property from the list.
6) Click onthe OK button to add the property to the interface.

Editing a Property

Once a property has been added to the interface, you can manipulate it in many ways. By
selecting the property and right clicking on it, a popup menu is displayed that allows you
to delete, edit, and rename the method among other operations. Note that each operation
has a keyboard equivalent that will invoke the action directly.

To edit a property, perform the following steps:

1) Select the property to edit. As described above, clicking the right mouse button on the
property name will display a popup menu from which you can select the Edit option.

2) The property editor will appear in the client area of the Main Window. It will contain
the source code to be edited. Y ou can now create or modify the code. Y ou can also
create new versions as well as compile and/or syntax check the code. If you want to
create or modify documentation on the property, make sure the Documentation
Window is active. Simply click in the Documentation Window and start typing the
text. If the Documentation Toolbar is not active, chose the
View|T oolbar siDocumentation to activate it.

3) Pressing the Enter key or double-clicking on the property name in the interface will
also invoke the editor.

Deleting a Property

To delete a property, follow these steps:

4) Inthe Session Browser select the property that you want to delete.
5) Right click on the property icon and select the Delete command from the menu.

6) A verification dialog will ask you if you want to continue. Answer Y es. At this point
the property will be deleted and the library structure will readjust to the deletion.

Reusing the Property Editor Window

User Option Preference

The User Option Preference tab sheet contains a check box call Redisplay. When this box
is checked, EsiObjects will aways ook of a property editor in the client area before
creating anew one. If one exists, it will reuse that Property Editor Window, displaying
the newly selected property code in that window. If the property in that window had
changes made to it, the window will let you save it before proceeding.

Class Development Environment 105

Drag-and-Drop

Another approach to reusing a Property Editor window that is already displayed in the
client areaisto drag-and-drop the property name into an open editor as outlined below:

1) There must be a Property Editor already open in the client area. And some portion of
the code pane must be visible.

2) Select the property to edit from the Session Browser, hold down the left mouse button
on the item name and drag the cursor to the editor's code pane.

3) Notethat the cursor will indicate when avalid areato drop the item is reached by
changing to an cursor arrow with a plus box attached to it. When the cursor shows
thisindication, lift the left mouse button to drop the property.

4) The context is switched to the Property Editor context.

5) If the original property being edited has been modified without being saved, you will
be prompted to save the changes prior to the context being switched. Click Saveto
save the changes, Discard to throw away the changes, or Cancel to cancel the drop
operation.

Editing Property Properties

Properties of a property can be edited using the Properties Property sheets. There are at
least 3 ways to invoke the Properties Property sheet:

1) From within the Session Browser, select the appropriate property and press
Ctrl+Enter.

2) From within the Session Browser, select the appropriate property and invoke the
popup menu by right clicking on the name or icon, or by pressing Shift+F10. Choose
the Properties menu item.

3) From within the property editor, select Properties from the Edit menu.

4) Once the property sheet is displayed in the client area, you can edit those fields that
are changeable.

See the Property Properties under Property and Accessor Properties section above for a
complete description of all the fields.

Managing Source Versions
Explicit Source Management

When saving the source code of a property (using the source code popup menu) there are
four distinct options related to compiling and managing source code versions:

1) SaveCurrent Savethe source code under the version number currently being
edited.

2) New Version Save the source code under a new (highest) version number.

Class Development Environment 106

3) Syntax Check Check the syntax of the current source text.
4) Compile Compile the current source text.
Source Code User Options

In the EsiObjects User Options, there are two specific options related to source code
version control:

Auto New Version When prompted to save source code, the New Version check box
on the Save dialog will default to what is set here. When checked, the
default action on saving source code will be to create a new version of
the source code.

Compile On SaveWhen prompted to save source code, the Compile check box on the
Save dialog will default to what is set here. When checked, the default
action on saving source code will be to compile the source code after
saving.

Default Save Options

If the user closes a source code object without saving changes, then the Save Source
Code dialog shown below will be displayed.

Save Source Code 1

The Save button
will save the
source code. It
will then call the
compiler to
compile the
method or
property. If there
are compile
errors, they will
be digplayed in

tMethod - Bazethultitap - Priman:: | nsertElement

The Cancel
button will
cancel the zave
operation.
Control will be
returned to the

Save the changes. discard the
changes, ar cancel?

9 The zource code has been modified.

Dizcard ; Cancel B

the Build tab TAW MNew Wersion \ r":":\ Compile editor.
sheet of the
Output Window.

The Discard
button will
terminate the
editing seszion,
throwing away any
changes made.

The New Version check
box will force the system
to save the method or
property to a new version
before compiling it

The Compile check box
will tell he system to
compile the source code
creating intermechate and
object code for execution.

Class Development Environment 107

The options that are selected, by default, will be determined by the appropriate user
options.

Event Template Editor
Event Template Editor Explained

Event Template Editor Window

The Event Template Editor isdifferent from the other editors (method, property, and
variable) in that the information entered here is not used at any time. It is used primarily
for documentation purposes. But this does not |essen the importance of this editor and the
need to use it whenever an object triggers an event.

The Event Template Editor isillustrated below. Each component is explained.

& Event - ESI$Class - Pimary::Complnterfacelndex M=l E3
:2[c] ;Copyright [c] 2000 ESI Technology Corp. Natick. MA -
; ESI5Class - Primary::Cumplnlerlaceﬁlndex

Compinterfacelndex{Obj,Ewt] :;
; The compiled interface index for Interface Obj has been recompiled
: Obj is the OID of the interface
1 Evtis the event name

Quit

-
4 E

Ln 2 Cal 38
3

Tlustrated here is an
example from the
EsiObj ects internals.

General text editing
pane where the event
protocol ig
documented.
Anything can be
entered here since it
is never compiled.

It describes the
protocol for an event
that is fired when an
EsiObjects interface
is compiled.

Display of the line
and column the
cursor is currently at.

In EsiObjects, events are used throughout the system. For example, the modification of a
property will automatically generate an event so that other processes using that property
may be notified of the event. They must be watching for that event to receive the
notification.

Any object developed using EsiObjects may throw an event when some condition must
be broadcast. Thisis accomplished viathe Event command. The EsiObjects L anguage

Class Development Environment 108

Reference and Programmers Reference Guides discuss the Event, Watch and Ignore
commands and event processing in EsiObjects.

The Session Browser alows you to add events to an interface. The Event Template
Editor is used to enter the handler prototype that the event requires. Therefore, anytime
you use the Event command in a method, make sure that the event is added viathe
Session Browser (to document the fact that an event of that name is thrown by the object)
and the necessary protocol is specified viathis editor.

If auser of the class wishesto hook a handler to the event, they merely invoke this editor
to access the template. They can then copy the template code to the handler method to
insure that their handler has the proper protocol in place.

Event Template Menus
Template Popup Menu

The Event Template popup menu is invoked by right clicking in the Event Template
Editor or pressing Shift+F10 key combination.

Using the Event Template Editor

Creating an Event Template

To create a method, property or event template, follow the steps below.

1) Inthe Session Browser, expand the class to which you wish to add an event template
by clicking on the expansion box (box with the + in it).

2) Now expand the interface that will hold the event. Thiswill display al exiting
services as a sub-tree to the interface.

3) Click the right mouse button on the interface name to bring up the popup menu.
Select the Add option. (Note that you also could press the Insert key to add a service.)

4) The Add to Interface dialog appears. Enter the name of the event. Valid names must
begin with an apha character and can contain up to 32 a phanumeric characters.
M ake the name something that gives a sense of what event within the object can be
hooked to.

5) Pull down the combo box and select Event from the list.
6) Click onthe OK button. The event template will be added to the interface.

Editing an Event Template

Once an event has been added to the interface, you can manipulate it in many ways. By
selecting the event and right clicking on it, a popup menu is displayed that allows you to
delete, edit, and rename the event among other operations. Note that each operation has a
keyboard equivalent that will invoke the action directly.

Class Development Environment 109

To edit an event:

1) Select the event to edit. As described above, clicking the right mouse button on the
event name will display a popup menu from which you can select the Edit option.

2) The Event Template Editor will be displayed in the Main Window client area for the
event. You can now create or modify the documentation for the event. Please note
that the Event Template isjust that, it is a template for the event. Defining it in the
interface of the class has significance, however, what is entered in the text area of the
editor has only documentation significance. Use it to document the event protocol
(The formal structure of the Input Specification of the method that will receive the
callback when an event isfired).

3) Additionally, pressing the Enter key or double-clicking on the item will aso invoke
the editor.

Using Drag-and-Drop to Edit an Service
Each time you edit an event, a new editor may be created for the item. To edit an event

without creating a new editor, drag-and-drop the item to an open editor as outlined
below:

1) There must be an Event Template Editor already open and some portion of the code
panel must be visible somewhere on the desktop.

2) Select theitem to edit from the Session Browser, hold down the left mouse button on
the item name and drag the cursor to the editor's text area

3) Note that the cursor will indicate when avalid areato drop the item is reached by
displaying a cursor with a plus character in abox. When the cursor shows this
indication, lift the left mouse button to drop the event.

4) The context of the browser is switched to the dropped event.

5) If the original event being browsed had been modified without being saved, you will
be prompted to save the changes prior to the editor context being switched.

Deleting an Event

To delete an event templ ate, follow the steps below.

1) Inthe Session Browser, expand the class to the event template by clicking on the
expansion box (box with the + iniit).

2) Click the right mouse button on the event template name to bring up the popup menu.
Execute the Delete command. (Note that you also could press the Del key to add a
service.)

3) The Delete validation dialog will appear. Click the Y es button to delete the event
template of No to abort the delete.

Class Development Environment 110

Relationship Wizard
Relationship Wizard Explained

EsiObjects provides Method, Properties and Events services within any of its interfaces.
In keeping with the philosophy to hide complexity and provide you, the programmer,
with tools that eliminate redundant work, EsiObjects also contains awizard to assist you
in creating a relationship between two classes. Additionally, the runtime component of
EsiObjects takes over the responsibility of maintaining the relationship.

A binary relationship is an association between two classes, a sour ce class and atar get
class. A binary relationship may view as an attribute of its source class. Within a
relationship, an object of the source class may be associated with zero or more objects of
the target class. A source class may contain multiple relationships to the same or different
target classes. For aparticular relationship, there is usualy a corresponding inver se
relationship from the target class back to the source class.

A relationship may have a cardinality of “one” or “many”. In the former case, an object
of the source class may be associated with at most one object of the target class. In the
latter case, an object of the source class may be associated with a collection of objectsin
the target class.

The specific object-to-object mappings of arelationship are established dynamically.
There are two rules that the associations must obey:

* Referential integrity must be maintained. This means that when an object in a
relationship’starget classis deleted, objects in the source class can no longer
maintain their associations with it.

» A relationship and itsinverse (when the inverse exists) must map consistently relative
to each other.

EsiObjects treats rel ationships as objects belonging to the class ESI$Rel ationship.

Using the Relationships Wizard

Creating a Relationship

To create arelationship, you must select an interface of the source class and invoke the
“Add to Interface” dialog using the Interface popup menu. If you choose “ Relationship”
asthe kind of item to add to the given interface, then a new wizard (sequence of dialogs)
guides you through setting up the relationship. We use awizard because rel ationships
require this information at creation time, and we do not expect you to have to pull up a
Properties dialog sheet to set it.

Y ou must specify the following information when creating a relationship:

Class Development Environment 111

» Target class. The name of therelationship’starget class. Thisisan editable field.
(A dropdown selection box allows existing classes to be chosen. A separate button
allows the user to change the library from which classes may be selected.)

e Cardinality. Selected asaradio button, either “One” or “Many”. Defaultis“One’.

* Publicflag. Whether the relationship is accessible from classes outside the source
class. Selected as acheckbox. Enabled by default.

* Inheritableflag. Whether the relationship may be inherited by subclasses of the
source class. Selected as a checkbox. Enabled by default.

Y ou may specify the following optional information, also within the wizard, when
creating a relationship:

» Shape. For arelationship of cardinality “many”, the type of collection (e.g. Set, List,
Array, Bag) of objectsin the target class to which an object in the source class will be
associated. Default is Set. (A dropdown selection box allows you to select from
among the subclasses of Base$Collection.)

* Inverse. The name of the inverse relationship in the target class. This may be left
blank, asit is not required that the inverse relationship be defined. Thisis an editable
field, which may also be modified by adrag and drop operation. Y ou also need to
identify the interface to which the inverse relationship belongs, with a default of
Primary.

The relationship creation wizard will offer you a choice of options for the inverse
relationship: None, New, or Existing. If you select New, the wizard would step you
through the creation of a new inverse relationship. If you select Existing, the wizard
would let you choose the inverse from alist of existing relationships mapping from the
target classto the source class. Thislist includes only relationships with no inverses.

Editing a Relationship

Unlike the other kinds of itemsin aclass interface, arelationship contains no editable
code and therefore has no editor in EsiObjects. It does have a property sheet, which in
addition to the above information also contains:

» Source class. The name of the source class that the relationship belongsto. It may
not be changed.

* Interface. The name of the interface in which the relationship is defined. It may not
be changed.

* Name. The name of the relationship. Editable (as with property sheets for methods,
properties and events).

Deleting a Relationship

There are three ways to delete a rel ationship. From within the Session Browser, select the
relationship by clicking on itsicon or name then:

Class Development Environment 112

* Pressthe Dd key.
¢ Pull down the Main Edit Menu and select the Delete command.

* Invoke the popup menu by right clicking on it (or by pressing Shift+F10). Choose
the Delete command.

Promote, Override and Copy Command Not Supported

Methods, properties and events are class services. In the case of methods and properties,
they are simply code bodies. An event is simply a definition. These services are available
at the definitional level. When invoked, they simply execute within the context of an
instance. They do are not associated with instance structures.

However, relationships are actually structures that exist between two objects. Once
instantiated, they are typically immutable during their lifetime. Like most features of
object orientation, they are dependent upon their definitions being unaltered.

As a consequence of the immutability of relationships, operations like Promote, Override
and Copy are not permitted as they are for the other services.

Search and Edit

Application libraries often contain many classes, and in many cases, the application will
contain numerous libraries. As the application increasesin size, it becomes harder for the
programmer to keep track of all the classes and services they contain. EsiObjects itself
consists of two large libraries of classes, most of which are reusable by the application.

Search and Edit Explained

EsiObjects provides a powerful search engine for searching within a particular library.
Once the objects are found based on the criteria specified, they are displayed as pointers
in arecord oriented window in the same format that folders display their contents.

As explained in the section Session Structures section above, a session consists of two
types of structures: the library structure and the folder structure. The library structure
contains hierarchical class structures and is used to partition the classes logically,
according to some application requirement. Folders contain pointers to definitional
objects within alibrary. Folders are used to condense a disparate set of definitional
objects into one window list for easy access.

The Search tool is auseful programming tool that allows you to search in EsiObjects
libraries for occurrences of specific strings and associated information such as the
author’ sinitials and date ranges. In general, thistool is used to search for string
occurrences that are numerous and may be disseminated throughout alibrary. This can
save a significant amount of time as the programmer may want to modify, replace and/or
remove selected strings and associated information.

The Search tool of EsiObjects lets you select the search range by first pointing to a
component using the Session Browser (the range). There are three levels within the

Class Development Environment 113

library tree that constitute a search range: the entire library, a specific class or a specific
interface within a class. Selecting the appropriate level within the tree and then executing
either the popup menu Sear ch command (or the main menu T ool s|Sear ch|Selected
command) will bring up the Search In form (shown below). Within these permitted
search ranges, you can also specialize the search to a service source code body and/or the
name of the service by checking the appropriate check boxes (Sour ce Code and Name)
on the Search In form.

‘Whole Word indicates the word(s) must be found as
indicated and cannot be a part of other words. Note
that this does notinclude the use of punctuation
around the word For example, the word “value™
located in the string {I%6value} would be found

Search
invokes the
search and
expands to

Thiz is where the word are non-letter characters.

because the character to the left and right of the

display the
results below.
The dialog is

source code Text
search string is
entered. Wildcard
characters are
permitted.

i Search in Library: B ase

Search | Muodification Date Ad\rancdl |nlerFaces|

retained for
reuge in the
event that the
same string

\Fontaining |
Text: I\Xtardinality

N ‘w'hole \Word

¥ Match Case

- = search is
i modified.
—'J . Cancel *

Match Case ,(émhmg :
indi cates whether o

Hame | Iniials: | |
or not to match A G Cancel cloges
the case of the H \ z tl. ial ‘
words in the 1e cialog
string against the I i before a search

target. Thiz iz a
default value.

If a sting is entered in the Name
field, the name of the object will
be checked for an occurence of
the string. Wildcard characters

is imitiated

Initials specializes the search
to only those items that
contain the initials of the
author, the name, the zearch
string and date if it is

are permitted.

specified.

The first tab sheet shown below, Sear ch, contains two groupings of fields, that is,
Containing and M atching. Each group of fieldslets you enter specific search criteria.
The Text field lets you enter a sting of characters to search for. If specified, this search
will be confined to the source code of those services specified on the Advanced tab sheet.
The M atching group containstwo fields. The I nitialsfield, if specified, specializesthe
search to the initials of the programmer that are associated with the specified code body.
The Name field, if specified, speciaizes the search to the name of the object being
searched.

The Text Match string search can be modified to either search for the literal specification
of the string by checking the M atch Case check box or you can force a search
independent of case by clearing the check box. Additionally, you can search for awhole
word by checking the Whole Word check box. If you clear the check box, the search will
treat the search string as a partial string. A whole word search has a specialized meaning.
Read the description in the illustration above.

Class Development Environment 114

The second tab sheet shown below, M odification Date, contains three radio buttons.
They let you ignore the date check, specify a date range (the Between radio button) or
specify a number of days, hours or minutes prior to the current time (the During the last
button). If you specify arange, it will specialize the search to that date range.

Search involkes the search and
expands to display the results
below. The dialog is retained for
reuge in the event that the same
string search is modified.

If No Date
Check is
selected the date
fields will not be
ugedin the
zearch.

i Search in Library: Base

Seach Modification Date IAdvancedI Interaces |

\ Scarch I
If the During % &y Date
the last racio Cancel I

button is 7(‘ Duritg the last |1 5 IDa_l.Js 'I
selected the ' Between [10/11/00 = ad [10/12/00 =

search will be
confined to the
number of days,
hours or
minutes prior to
the current
time.

Cancel cloges
the dialog
before a
search ig
initiated

If the Between racio
button is selected the
search will be confined to
the date range specified
in the fields to the right.

The important thing to remember isthat, if specified, these four search criteriaform a
logical and at search time. That is, if you specify the Text string “1%Cardinality”, the
Initials“JAM”, aname “List” and a date range of 20 days, the search engine will find and
report all objects that contain the specified source code text string and initials and name
and in the date range specified. Thislets you narrow the search down to only those
objects that meet the criteria.

The diagram below illustrates and explains all the fields that |et you specify the search
range specialization and search criteria.

Class Development Environment 115

The third tab sheet shown below, Advanced, allows you to further specialize the search
range to components contained in a class. Within the Sear ch In group, the Events,
Methods, Properties, Relationships, Variable Definitions and Nested Classes check
boxes let you limit the search to these particular objects. They are selected by default.
Deselecting them will eliminate these items from the search range.

If the Search In items Method and You may gelect a direction to gearch in. The ’

Properties have been checked , then choices are: f("em'm

you may select one of the following sCurrent Class, the default setting, indicates invokes the

constraints to limit the search range: search only within the class selected search engine.

+Compiled - Check only the compiled Superclasses directs the search through the The form

version.) parent classes or superclasses. expands to

*Last - Check only the last version sSubdasses directs the search to the descendent di s;play.the

{iﬁl- Check all versions. classes or subclasses. 1‘es;lfl_t Fama
workbox. The
dialog is
retained for

i Search in Library: Base reuse in the

event that the
same string

—Constraint search is
If checked. Welzions IEompiIed 'I Direction ICunentEIass "I Cancel I modified

all Events
will be
included in
the search
range.

Searchl Modfication Date Advanced |Interfaces|

—Search In
¥ Everts M Fropetties [w Wariable Definitions
v Methods ¥ Relationships ¥ Mes ssams

%,

/]

/

Cancel clozes
the dialog

before a gearch
is imtiated

If checked, all
Variables will
be included in
the search

range.

If checked. all
Relationships

will be included
in the zearch
range.

If checked. all
Properties

If checked. all
Methods will
be included in
the gearch
range.

If checked, all
Nested

Classes will be
included in the
gearch range.

will be
included in the
search range.

The Constraints section defines global limitations on the search. EsiObjects implements
source code versioning. Using the Ver sions combo box, you can select the range of
versions to search. Additionally, selecting the direction of the search in the Direction
combo box can modify the search range. See theillustration above for details on these
fields.

Class Development Environment 116

The fourth tab sheet, I nterfaces, allows you to specialize the search range to a selected
set of classinterfaces. Selecting from the list box, you can search all interfaces by
accepting the default <Search All Interface> or specify each individually in the Add
Interfacefield. Thistab isonly accessible when aclass or class library is being searched.

The Add
Interface field iz

Add will add .
Search invokes

specific

interfaces where you enter the search and
defined in the the interface expands to
Add Interface name you want display the
field to the list to gearch. results below.

The dialogis

retained for

reuse in the
[(] event that the

box below. For
example,if a
user only wanted
to search the

Primary and/or Searchl Modification Datel Adva Int=ifages
Factory

same string
; s 0 search ig
Earc -
. . Add Interface: Facton 1]
interfaces this | £ \ modified
could be [-_ Factary Cancel . |
indicated / = P ry
Bermove |

/ Hemove.&_lll
{ Remove will Y

dd
remove gelected / \
interfaces from] 7

the search.
Users must first
select an
interface in the
ligt box to

\ remove.

! Search in Library: Base

Cancel cloges
the dialog

before a gearch
is initiatecl

Remove All will remove all individual
interfaces from the list box. The list
box will display <Search All
Interfaces> which will sweep through
all interfaces in the gearch

Displays all the
interfaces you
added via the Add
Interface field and
Add button.

Each Search In form that isinvoked is specific to the level in the library tree that it was
selected from as indicated in the form title.

Class Development Environment 117

The results of a search are displayed in a detached window. The window is record
oriented and is similar to a Folder window. The diagram below illustrates the results of a
search in the List class for the instance variable “1%Cardinality” and the initials “JAM”.
Each object path listed under the Name column isidentical to the path used in afolder
window. The commonality is no coincidence. Once found, these objects can be selected
and transferred to afolder viadrag and drop where you can store their pointers for future
work or export. Like folders, the appropriate editor or property sheet for any object in the
collection can be invoked by double clicking on the pointer.

The Initials column lists the
Initials of the programumer.

The Text column lists the
target that the search criteria
was found in. For example, if
yvou specified Methed or
Property and the zearch string
wasg found, the line of code in
the service will be displayed.

The Name colunmn lists the path
to the object that passed the
search criteria test. Thereis a
separate entry in this workbox
for each hit. Double clicking on
the item will involce the
appropriate editor.

@ Besults for Search in Class: List. Matching: 1%Cardinality

Initials

Name Text

k@ Base$List:Primary.Copy.1 s Sret=1%¢Cardinality JAM
i DaseSList:Primary. RemoveAll.4 3 I24Cardinality=0.126Head=0,12%Tail... JAM
it BaseSList:Primary.RemoveE lementAt.] 4 5 |%Cardinality=1%Cardinality-1 JAM
E‘iﬁBaseSList::Primary.HemnueFirstElement.Q 5 12Cardinality=5g[I%cCardinality]-1 JAM
EdBaseslist:Primary. Removel astFlement.7 | T?%NewTail'=""" 5 I%CurrentPositio... JAM
¥§ Base$List:Primary. RetrieveElementAt.3 F T%Num=1:1:1%Cardinality q:T%MN... JAM

ﬁBaseSList::Primary.HelrieveLasiElement.E 5 [ZCurrentPosition=1sCardinality JAM

1] | »

Using Search and Edit

Performing the Search

Follow these steps to initiate a search.

1. To begin asearch, first open the Session Browser, then highlight alibrary, class or interface
on the tree view in which you want to search.

2. Thenright click on an item to invoke the pop-up menu and execute the Search command (or
execute the T ool s|Sear ch|Selected command).

3. The Search In form will appear. Specify the search criteriaand click on the Sear ch button.

4. Once the search has finished and if it found objects conforming to the search criteria, a
detached window will appear containing the object pointers found in the selected hierarchy.

Class Development Environment 118

Using the Search Results

Once the search has completed, a detached window will appear containing pointers to the
definitional object conforming to the search criteria. Y ou can use the resultsin the
following ways:

1. Select al or apart of the entries and drag them to afolder which is persistent. The search
window is not, it will be deleted when you shut the EsiObjects client down. Thiswill make
them available in future sessions.

2. Select any one of the objects and perform any permitted operation on it indirectly, just like
you would asif it were afolder.

Debugging Tools

Interactive Debugger

Because developing software systems is usually a complex process and the mere fact that
human beings make mistakes, I nter active Debugger s have become an integral part of
software development environments.

The fundamental purpose of a debugger isto let the programmer control the execution of
a software component so that the context of execution can be observed as each instruction
is executed. A good debugger will let the programmer set break points, control the flow
of execution in various ways and modify the state (variables) of objects. It will display
the sequence of code execution, the variable states at each step and the execution stack
contents.

The Interactive Debugger Explained

The EsiObjects Interactive Debugger is normally used when an error terminates the
execution of an application and the cause is not obvious. However, debuggers are
actually good tools for learning the internals of applications as well. Programmers who
are given responsibility for maintaining existing applications find that using the debugger
to explore the code and object state is afast way to learn the application internals.

Using a debugger is a habit the programmer must learn. Rather than wasting time looking
at the code, activating the debugger and stepping through the execution sequence usually
exposes the problem immediately, saving an incredible amount of development time.

Interactive Debugger Window

The Interactive Debugger contains atoolbar and a Debugging Window. The Debugging
Window contains a status bar and three major panes. The following sections will describe
each component.

Debugger Execution Toolbar

Class Development Environment 119

The Debugger Execution Toolbar contains buttons that active/inactive the debugger as
well as control the execution flow of the debugger. The buttons on the toolbar are
explained below.

The Watch Variable
button causes the
system to execute until
it encounters any one of
the watched variables.

It is currently not
implemented

The Go button cauzes the
debugger to continue
normal execution until the
execution thread
terminates normally or it
hitg another BREAK
conumanc

The Step Out finishes
execution of the current
code body and continues
step execution until the
stack is popped and
control is returned to the
last call frame.

|=mme - &=

When the Enable
Debugging button is
depressed, the debugger is
activated and ready to be

The Run to \

Cursor button
prompts the

Gle Step Into button causes
the debugger to execute the
code of the next command.

The Step Over
cauges the debugger
to execute the next

If code in that execution path
hasz a debug compile, step
execution will resume with

releaged code will be

that code, otherwige, the

Qealted

message, subroutine,
or extringic function,
continuing with the

next command at the
current stack level.

Debugger Symbol Toolbar

system to
execute up to
the cursor
position.Itis

currently not

implemented. /

invoked when a BREAK
command is encountered
within an execution context

been compiled for

(aggsumung the code has

\ debugging,

The Debugger Symbol Toolbar contains a button for each symbol scope supported by
EsiObjects. Often, when debugging, you are only interested in seeing specific variables.
These buttons | et you toggle the display of scoped variables on and off. If the buttonis
depressed, the system will display that variable in the Symbols tab sheet of the Debugger

Window.

Refer to the Variables section of the EsiObjects L anguage Reference Guide for more
information on symbols and scoping.

Class Development Environment 120

The Symbol toolbar isillustrated below. Each button is described.

glaobals

A Domain
Variable that
ig aggociated

with an object

domain. 15 encapsulated context. It ig the same Name Pool objects are
Domains are within. as an Access used as shareable symbol
persistent. Variable. tables.

A Universal

Variable . i
not a variable per
can be .
se. It simply acts
acceszed o
like one that
from any . .
- containg a pointer
context ancl

is persistent.
Tradition M

An Instance
Variable
exists as long
as the object it

A Name Pool variables
reside within a NamePool
object created from the
NewlNameFool class.

A Temporary
Variable exists as

long as a method or
property's execution

A Relationship is

to another object.
It has the lifetime
of the object that
owng it.

A Class Variable that iz
available within the
execution scope of the
class object. Lile the class
itis persistent. The are
used to hold informati on
available to all object
instance of a clags.

A Parameter Variable is
paszedin via the Input
specification of amethod
or property and has a
lifetime equal to the
method. It is the same as
an Access or Temporary
Variable.

A Special
Variable that is
often iz maintained
by the system.
Some special
variables can be
et by a method or
property.

Class Development Environment 121

Debugger Window with Symbol Display

The Debugger Window is not a part of the EsiObjects Main Window. It is a separate
window. It hasit’s own menu and is used exclusively for displaying the execution
context of a code body that has a debug compile associated with it. The picture below
illustrates the Debugger Window with the Symbol tab sheet exposed. The Symbolstab
sheet is part of the State window that displays all the relevant symbols and their values
after the last execution step.

(] Cache - Dubugger
; Bl View Debug Browse Help
Thiz pane holdz sRea e 38 FloieEar Se0lRe
the source code ltem:T%iem =
|
of the code bﬂdy H Fsgﬁsi;ninl :‘ruduﬂ: of & list:
i H =object
that is meﬂy ::r : %Il D =priorinext? where prior and next arc the positions of prev and next items |
E:XE!CUtJIlg. : Baltems(objecil=item count - not currently used
: Mtems[object.®)=""" for x-ref of postions of each object - not currently used
ij“t next physical position for the new item being added
e
5 TRI=S0)%ILF-1]4+1
5 IBILITHN=THlem
= ICardinaliny=Sall2aCardinaling+1
The red hox Event Cardinalibe™""SET"
; R : insert element at the current position
highlights the 1 BéCurrentPosition>D d InseriAt 0
: If eurrent position not set, add element 1o tail of list
cormmand of :
argument of a e B L ——__"—]
. x|
command that is i | Symbol | value | class)
i T
[[; 4 CurrentPosition <htomicy
next to execute i e <Atomicy
| Undefined CAtomicy
“Jerry L Wiechmann' <Atomic
i LaAtomicy =
|
The Symbols tah
sheet contains all \ \

the relevant
sytnbols and
values that exist
after the last
execution step and
hefore the nest.

i

The Symbols column
contains the name of all
the execution contest
sytmbols along with their

The Class colunn displays
the class of the walie bound
to the symbol. [fthe walue is
a string, <Atormics will be
displayed.

The Value column
displays the
symbol's value.
The walue can bea
string or an OID.

dentifying icons.

Debugger Window Symbol Display Popup Menu

The symbol popup menu
sheet. Any variable can h
highlighted on the object
the variable.

isinvoked by right clicking on avariable in the Symbol tab
ave two types of values: string or object. The menu commands
popup menu are dependent upon what value type is bound to

Class Development Environment 122

String Value Popup Menu

The illustration below describes the string commands you can use to modify the variable
or itsvalue.

The Edit Value
cormmand lets you edit
the walue of the selected
vatiable,

Edit ¥alue Alt+5hift €
Dalete Alt5hift Delste

The Delete cotrgnand
lets wou delete the
selected wariahle.

Universal
Dameain
Class
v Instance
v Parameter
The Show corrrnands v Temporary
listed here are used to Special
toggle the display of that v Pacl
specific item off or on. Relationship

Class Value Popup Menu

Theillustration below describes the object commands you can use to modify or migrate
the object.

The Delete cotrtratd
lets wou delete the
selected variable,

The Look Into
cotrumand lets you
migrate into the

selected object.

The Look In Subscript
cormnmand lets you rmigrate
into an ohject that is
pointed to by an array
subscript.

Class Development Environment 123

The Pull Out command iz causes
the Object Browser to reburn to the
previously object visited.

Al Shift Delete

: The Show Descendants
)i A EhIT LerL At cotrunand will display the
Look inko Al Shift Enter next level of descendants

of an atray.

Uréversal

Diornairs

Class

¥ Instance

v Parameter

v Temporary
Special

¥ Pool
Relationship

The Show
cornands lsted
here are used to
toggle the display
of that specific item
off or on

Debugger Window with Stack Display

The picture below illustrates the Debugger Window with the State windows Stack tab
sheet displayed. The Stack tab sheet contains the stack state before the command or
command argument outlined in the red box isto execute.

Class Development Environment 124

P -,
This pane holds the B Yew Debuy Prowes Heb : _
source code of the (W Ey i FETH PO s@ER L ISR T

code body that is :npul: -
o:T3lem, i

Cmmﬂy executing. Iterm: T%Hem
_—_J’IR\.___:.}{H\]

» physical structure of a list:
SISl object
1L, D =prior®;nextl where prior and next are the positions of prev and next items

¢ Blemsfobiectl=item count - not currently vsed
The red hox :1%hems|object#]=""" for x-rel of postions of each object - not currently used
h-ighlights the : et next physical position for the new item being added

]

command or s THI=SOM%ILI™T,-1]+1
5 I%ILIT%N=T%Hem
argument ofa s BeCardinalitv=Sall*%Cardinality]+1

Event Cardinality*,"SET"]
»insert element at the current position
| 1% CurrentPosition>0 d Insertl O Ji|

cotrgnand that is
next to eExecute

Class J Senvice I Location] Object
Base§list PrimanyInserElement 171 INMnhj[6,2)
ESlISServerEnviran... System:Xecule IM%ohj[6]
ESl4Session Syatem:Startup IN%5ohj[1]

[\ i

i

Bl

The Class colurmn
containg the fisll
library and class
name of the code
body that is
executing at that

The Ohject

level The Service The Location :
column displays column colurmn displays
the interface and displays the the object 01D
The Stack tab sheet cottains the the service name Line:Comiman of the stack level
stack that exist after the last that identifies d that EXEIi;t;LDn
context.

execution step and before the next. the code body. executed.

Debugger Window with Xecute Display

The picture below illustrates the Debugger Window with the State window Xecute tab
sheet displayed.

The Xecute shell is different from the normal stand-along Xecute Shell in that it operates
off the execution stack. This meansthat all context symbols are available to you.

The Xecute tab sheet contains afield that you can use to enter full EsiObjects commands
and alist box that retains a history of al the commands entered in the event that you may

want to re-execute them at alater time.

In addition to executing commands within the Xecute field, you can evaluate expressions
by ssimply preceding the expression with an equals sign (=). If there was not an error, the
expression will display with its value separated by an equal character. For example:
=10+20 would appear as 10+20=30.

cotrtratd of

argument of a
cotrgnand that is
next to eExecute

Thiz field is used
to enter a walid
EsiDhiects
cotrtnand.

Class Development Environment

] Cache - Debugge [5] x]
. Eie Mew [ebug Browse Help
Thiz pane holds the I+ mTET % Ex[30 T Oz 0E& T Es0m
source code of the nput |
code body that is L-Txncm
| currently executing. .:l;':m.'TSGIt‘:m =
é\\\ : phwsical structure of a list:
: BILIN=object

The red hox i,
highlights the

» BIL, D =prior®;nextl where prior and next are the positions of prev and next items
; Bltems[objecti=item count - not currenthy used
: Biltems[objectd]=""" for =-ref of postions of each object - not currently used

‘: iaet next physical position for the new item being added
Hreak
s THI=50[I%ILI1.-1]+1
& BGILITHN=THltem
& BCardinality=5a[I2Cardinality]+1
Ewent Cardinality[™""SET"]
» insert element at the current position

| BSCurrentPosition>0 d Insertht O

The Xecute tab shest

containg a field for entering
a line of EsiObjects code
and a list of all comtmands

entered previously.

This List box contains a
list of prewiousty entered
comnands that can be
selected and re-executed

Debugger: Main Menu Items

125

The Debugger Window is separate from the EsiObjects Main window and consequently
has a separate menu. However, all menus that are in common to the Main Window are
identical at the command level. The Debugger Window has one menu item specific to
the debugger — the Debug menu item.

Main File Menu

Menu Command
File Print...
Print Setup...
Exit

Main View Menu

Menu Command

Description

Invokes the print dialog and then prints the
selected object or text to the selected printer if
you choose to proceed.

Invokes the Printer Setup form and lets you
change the printer setup parameters. If you
choose to proceed, the printer and printing
options will be changed.

Shuts down the Debugger Window.

Description

View

Toolbars|Debugging Actions
Toolbars|Symbol Types

Toolbars|Browse Actions

State

Main Debug Menu

Menu

Command

Go

Run to Cursor
Step Into
Step Out

Step Over

Debugger Active

Main Browse Menu

Menu

Command

Look Into

Look In Subscript

Pull Out

Watch

Class Development Environment

126

Executing this command will toggle the
Debugging Actions toolbar to hide and appear.

Executing this command will toggle the Symbol
Types toolbar to hide and appear.

Executing this command will toggle the Browse
Actions toolbar to hide and appear.

This command toggles the State window
display off and on. The State window contains
the Symbols, Stack and Xecute tab sheets.

Description

Executing this command will cause the program
to execute to completion or the next break point.

Causes the program to execute up to the current
cursor position in the code window.

Causes execution to step into the next code
block.

Causes the execution to continue until the
execution stack is popped.

The next block of code will be executed. The
debugger will stop upon returning to the current
level of execution.

Toggles the debugger as active or inactive.

Description

Within the context of the Object Browser, if a
variable is selected that has a OID associated
with it, executing this command will force the
Object Browser to migrate that link and display
the context of the object pointed to by the
subscript OID.

Within the context of the Object Browser, if a
variable is selected that has a OID as a
subscript, executing this command will force the
Object Browser to migrate that link and display
the context of the object pointed to by the
subscript OID.

Executing this command will force the Object
Browser to return to the object it came from and
redisplay its context.

Not Implemented Yet.

Show Descendants
Refresh

Show History

Edit Value

Goto Definition
Class
Evaluation
Recycle

Auto Refresh

Main Help Menu

Menu Command

Help
Getting Started

Class Development Environment 127

Not Implemented Yet.

This command, when executed, will totally
refresh the Object Browsers display of an object
state (variables and values).

The Object Browser keeps track of the objects it
migrates through. Executing this command will
force a List History list box to appear, displaying
the migration history.

When you have selected a variable within the
Object Browser that has a string value bound to
it, executing this command put you into edit
mode. The value of the variable can then be
modified.

Not Implemented Yet
Not Implemented Yet
Not Implemented Yet

You have control over whether a completely new
Object Browser is instantiated every time you
migrate to a new object. The Recycle button on
the browsers toolbar controls this. If the button is
depressed, that means that only one instance of
the browser will exist for all migrations. This
command will indicate that by a v in front of it.
Executing this command toggles the Recycle
button between the recycle and no recycle
states.

If you are changing the state of an object using
the Object Browsers embedded Xecute Shell,
you can use this toggle command to turn auto-
refresh on and off. When on (indicated by a v in
front of the command), changing the state of the
object being browsed will automatically cause the
display to refresh. Toggling the Auto Refresh
command causes the equivalent Auto Refresh
button on the Object Browsers toolbar to pop in
and out.

Description

Activates the Acrobat Reader and displays the
Getting Started Tutorial. This tutorial is designed
to teach you some fundamental object oriented
concepts. It is primarily designed to teach you
how to use the EsiObjects tool set.

Cl

Administrator’'s Guide

Language Reference
Guide

Programmer’s Reference
Guide

Tools Guide

About EsiObjects

Using the Interactive Debugger

ass Devel opment Environment 128

Activates the Acrobat Reader and displays the
Administrator's Guide. This guide contains all the
information needed to start and shutdown the
EsiObjects system as well as how to install and
set up the servers for the supported M systems.

Activates the Acrobat Reader and displays the
Language Reference Guide. This guide contains
all the information you will need to use the
EsiObjects language. Each language element is
explained in detail.

Activates the Acrobat Reader and displays the
Programmer’s Reference Guide. This guide
contains all the information you will need to know
about objects and how to use them within your
application.

Activates the Acrobat Reader and displays the
Tools Guide. This guide contains extensive
information about the EsiObjects tool set. Each
GUI object is described in detail along with
instructions on how to use it.

Invokes a dialog that displays current status
information about the EsiObjects Class
Development Environment.

Because developing software systems is usually a complex process and the mere fact that
human beings make mistakes, I nter active Debugger s have become an integral part of

software development environments.

The fundamental purpose of a debugger isto let the programmer control the execution of
a software component so that the context of execution can be observed as each instruction
is executed. A good debugger will let the programmer set break points, control the flow
of execution in various ways and modify the state (variables) of objects. It will display
the sequence of code execution, the variable states at each step and the execution stack

contents.

The EsiObjects Interactive Debugger shoul

d be used when an error terminates the

execution of an application and the cause is not obvious. Using a debugger is a habit the
programmer must learn. Rather than wasting time looking at the code, activating the
debugger and stepping through the execution sequence usually exposes the problem
immediately, saving alot of development time.

To use the debugger, follow the steps outlined below.

1) From the main menu, select the View| Debugger command. Thiswill invoke the
debugger, displaying the window with three empty panes.

2) The debugger should be started in active mode. Thisisindicated by Enable

Debugging ¥ button bei ng depressed. If it is not, depress the button to activate it.
Y ou may pop it out to de-activate the debugger at any time. In active mode, the

3)

4)

Class Development Environment 129

debugger will automatically react when aBREAK command is encountered while
executing a code body that has a compiled debug version.

To actually force the debugging session to start, you must physically insert aBREAK
command in the code to be debugged. Make sure you insert it prior to the suspected
problem area. Y ou must compile a debug version of the code.

Now run the application such that the code will encounter the BREAK command. At
this point, the debugger will automatically be activated. The panes will fill in and
control will be handed over to you. Note: The EsiObjects systemis modal at this
point. The debugger has control of the system. To use any other tool in the EsiObjects
system, the debugger must be deactivated.

At this point you may use the Step buttons to execute the code. The Step and other
buttons are described as follows:

=¥ Thisisthe Go (F5 accelerator key) button. Clicking on this button will terminate
step mode and continue normal execution of the code until it execute to the end or it
encounters another BREAK command. All buttons will gray out indicating the end of this
debugging session.

| [Thisisthe Step Into (F9 accelerator key) button. Clicking on this button will tell
the debugger to step into the next message, subroutine or extrinsic function if it has a
compiled version. If it does not have a compiled version, it will execute as normal.

IE' Thisisthe Step Over (F8 accelerator key) button. Clicking on this button will tell
the debugger to step over the next message, subroutine or extrinsic function.

3 Thisisthe Step Out (Shift+F9 accelerator key) button. Clicking on this button will

tell the debugger to step out of the current message, subroutine or extrinsic function.

Thisisthe Run to Cursor button and is currently not implemented.

—1Thisisthe Watch Variable button and is currently not implemented.

Here are some important things to remember when using the Interactive Debugger:

The Interactive Debugger must be started (window present) and activated (Enable
Debugger button depressed).

The code body must have aBREAK command inserted at the appropriate point and
the code body must have a Debug compile available. (Bug icon next to the version
number in the appropriate editor window).

At any point within the step-by-step process, you may depress the Go button or pop
out the Enable Debugging button to continue normal execution.

Class Development Environment 130

Xecute Shell
The Xecute Shell Explained

The Xecute Shell isthe EsiObjects equivalent of the M programmer's prompt. It allows
you to enter commands and send messages.

Most programming operations can be accomplished with the EsiObjects browsers and
editors. However, sometimes it is necessary to enter commands at a prompt. The Xecute
Shell lets you do this. The important thing to remember about the Xecute Shell isthat it
operates within the context of an object. The Xecute Shell isinvoked from the
Object|Xecute Shell command of the Main Menu. Remember that when an object is
active within the client area or in the Session Browser window, commands active within
the context of that object are highlighted in the Main Menu. They operate on the object. If
you invoke the Xecute Shell command, awindow will be brought up that lets you enter
commands for direct execution. These commands operate within the context of the active
object.

Some things you can do from the Xecute Shell are:

» Invoke the Object Browser to explore the internals of the current or another object.
* Instantiate objects directly.
» Send messages to objects.

» Enter standard M code. For example, it is acceptable to call a conventional M routine
that runsin the main console window. Run the routine, switch to the console window,
and go.

A line of code entered from the Xecute Shell worksjust like aline of code in one of the
object's methods.

Xecute Shells are aso found in other contexts, including in the Object Browser. The
Object Browser can be invoked from the Xecute Shell viathe ZVIEW command. The
Object Browser has a Xecute Shell built into it. In addition to executing lines of code, the
Object Browser shell lets the programmer evaluate expressions.

The advantage of using the Object Browser is that it shows you the instance variables of
the browsed object. In addition to the Xecute Shell functionality, it gives you the
opportunity to examine, browse and edit variables interactively.

Xecute Shell Window

The Xecute Shell window allows commands to be entered in the context of any object. It
isasimpler tool than the Object Browser, and its purpose is more tightly constrained.
The Xecute Shell for the Environment isinvoked from the EsiObjects CDE Main
Window, by selecting the Xecute Shell item of the Object menu.

Class Development Environment 131

The picture below illustrates and describes the components of the Xecute Shell.

The Xecute button causes
the Command Line to be
executed. Pressing Return
with the curzor in the
Conunand Line field also
has this effect.

The Command Line accepts
lines of EsiObjects code,
which will be executed inside
the context of the object for
which the Xecute Shell hag
been involed.

i Xecute Shell for $Environment

Comrmard Lire: I

Result

The Result fieldig where a return
value is displayed. Usually thisis
blank. but SET $RETURN can
azzign it. The QUIT expr will
return a value ag well.

The Abort button
terminates execution
currently nnderway
and cloges the shell.

The Exit button
closes the
Xecute Shell.

Using the Xecute Shell

The Xecute Shell Window contains a Command Line field and a Result field. The
Command Line field accepts EsiObjects commands and is similar to the direct mode
prompt (>) on an M system.

To open the Xecute Shell:
1) Execute the Main Menu command Object|Xecute Shell.

Note: Notice that the Xecute Shell is operating within the context of your environment object
assigned to when you started your session. This environment is always available to you through
the $ENV special variable. Because you have programming access to the environment, you must
exercise caution. The environment uses variables. You do not want to alter or delete these
variables. Since you will often use the environment to create test objects and set test variables,
you should confine variable name creation to a namespace that does not conflict with the
environments. For example, 1%Test is not used.

2) To usethe Xecute Shell, enter acommand line in the Command Line drop-down
combo box. The Command Line field is adrop down box, which allows you to
retrieve commands that were entered previously. Y ou can select a command from the

Class Development Environment 132

list and edit it or execute the command line as it is again. Note that these commands
arelost if you close the Xecute Shell window.

3) Click Xecute button to execute the command.

If the command is an Esi Objects language construct that returns avalue, it will appear in
the Result field. Most lines of code do not have return values unless they set the
$RETURN special variable. If you want to execute an expression and return it to the
Return field, you can use the Set $Return=Expression or Quit Expression construct. In
either case the return value will be sent to the Return field of the Xecute Shell window.

Executing a command does not close the X ecute Window. Y ou can keep the Xecute Win-
dow open during your EsiObjects programming session. Like an M prompt, it is aways
available for entering commands and sending messages. If you find that the Xecute Win-
dow getsin your way when working with other browsers, you can minimize the window.

6. Click Exit to close the X ecute Window.

Object Browser

The Object Browser Explained

The Object Browser allowstheinternals of any object in the system to be examined.
The browser exposes the internal state of the object - it isaprogramming tool. Itisa
static debugging tool that lets you examine the internals of an object aswell as actually
change the values of variables. Normally, it isinvoked by first issuing the ZVIEW
command viathe Xecute Shell. See the EsiObjects Language Reference Guide See the
section Xecute Shell of this guide for more information on this subject.

Class Development Environment 133

Object Browser Window

The following picture illustrates and describes the major components of the Object
Browser.

The Value colunmm
digplays the symbol's
value. The value can

be a string or an OID.

The Symbol column containg the
name of all the relevant execution
context symbols along with their
identifying icons.

The Class colunm digplays the
clags of the value bound to the
symbol. If the value is a string,
<Atomic> will be displayed.

The Actions = s / The Symbols
toolbar lets you \H 14| F B3 @| J”ﬁ o W’%@@ toalbar lets
111ig1‘at.e tln‘j:rugh Symbol | Yalue V | Class you select the
the obj ect links. AutoDelete vt <Atomic> symbols you
automate the % Cardinality ngm <Atomic> want to
refresh when LR CLASS | INVESOBASE[17] ESI3Class display.
values change as ¥ CurrentPosld <Atomic>
well azrecycle % CurrentPosition '™ <Atomic>
the display. ¥ Head vt <Atomic>
(®»REFERENCE e <Atomic> The Xecute
(@ SELF IN%0bj[2.2) BaseSList causes the
{ The Command | ©SHARED o <Atomic> Command
Line accepts lines % Tail gt <Atomic> Line to be
of Ez1Objects executed.
code, which will A|I]uit $Class =] wecute i Pressing
be execnted inside Return with
the context of the Al I'N“"'ESUBASE[] 7] £k the cursor in
currently displayed the Command
object. CLA3S = 06 [Pem [Fita 4|4 Line field also

hag thig effect.

The Result fiel dis where a retin The Status bar Pressing the Evaluate button

value i digplayved. Usually this is containg cauges the expression currently
blank, but SET $RETURN can information in the command line field to be
azzign it. The QUIT expr will about the evaluated. Its value will be

return a value as well. selected symbol. returned to the Result field.

The Object Browser contains two toolbars, a status bar. Each will be explained in detail
in the following sections. For information on the embedded Xecute Shell, see the section
in this Guide called Xecute Shell.

Class Development Environment

Object Browser Actions Toolbar

The Object Browser Actions Toolbar buttons let you migrate through objects, control
the refreshing of the browser as well as the instantiation of new browsers. The picture

below illustrates and describes all the buttons.

The Refresh button
updates the display
to reflect the
browsed object's
current state.

The Step Into The Step Out
button causes button causes the

the selected Object Browser to
object to be return to the
browsed. previous context

object's state occurs.

G E]

The Show Descendants button will
show the descendant nodes for built in
arrays. In the present implementation
of EsiObjects, descendant nodes are
always shown, as though they were
separate variables. The future will
bring a cascading tree display of
descendant nodes.

The History button
digplays the browse
pathin a dialog. The
history is shown from
the bottom to the top.
Selecting any path
will reset the browser
to thatlevel.

Into or Step Out
operation. If not
depresged, a new

The Auto Refresh button,
when depressed, will cause
the display to refresh
automatically if change to the

The Recycle button,
when depressed, causes
the current browser to be
re-used for any Step

browsger will be created.

Object Browser Symbol Toolbar

The Object Browser Symbol Toolbar contains a button for each symbol scope
supported by EsiObjects. Often, when developing an application, you are only interested
in exploring the internals of an object. While doing so, these buttons let you toggle the
display of scoped variables on and off. If the button is depressed, the system will display

that variable.

Refer to the Variables section of the EsiObjects L anguage Reference Guide for more

information on symbols and scoping.

Class Development Environment 135

The Symbol toolbar isillustrated below. Each button is described.

glaobals

A Domain
Variable that
ig aggociated

with an object

domain. 15 encapsulated context. It ig the same Name Pool objects are
Domains are within. as an Access used as shareable symbol
persistent. Variable. tables.

A Universal

Variable . i
not a variable per
can be .
se. It simply acts
acceszed o
like one that
from any . .
- containg a pointer
context ancl

is persistent.
Tradition M

An Instance
Variable
exists as long
as the object it

A Name Pool variables
reside within a NamePool
object created from the
NewlNameFool class.

A Temporary
Variable exists as

long as a method or
property's execution

A Relationship is

to another object.
It has the lifetime
of the object that
owng it.

A Class Variable that iz
available within the
execution scope of the
class object. Lile the class
itis persistent. The are
used to hold informati on
available to all object
instance of a clags.

A Parameter Variable is
paszedin via the Input
specification of amethod
or property and has a
lifetime equal to the
method. It is the same as
an Access or Temporary
Variable.

A Special
Variable that is
often iz maintained
by the system.
Some special
variables can be
et by a method or
property.

Class Development Environment 136

Object Browser Status Bar

The Object Browser Status Bar displays the status of a selected symbol. The picture
below illustrates and describes each component of the status bar.

Contains the
name of the
currently
selected
symbol..

Containg “Permanent” if the
lifetime of the symbol value
exceeds the objects and
“Temporary™ if its lifetime is
equal to or less than the lifetime
of the object.

CL&sS Obj |Perm [Exlr

Containg "Extra" if the selected
symbol has not been defined

through the Variable D efinition
Editor. Contains “D efined” if it
has been defined.

Status area that contains
“Literal™ if the value of the
symbol iz a literal type and
“Object™ if the value iz an
OID.

Browsing Dead Objects

If an instance variable contains areference to an object that no longer exists, or if the
currently browsed object has been destroyed, then the object browser's display will be
adjusted as follows:

» Dead objects will show MIA in the status area when they are selected.

* Thevaue column for adead object will read "Dead Object..." or "Dead Protected
Object...", depending on its type.

* When you browse a dead object, the text and background colors will beinverted in
the object browser window.

» Dead objects will show the SREFERENCE value as zero (0).

Object Browser Popup Menu

Class Development Environment 137

The Object Browser popup menu isinvoked by right clicking on avariable in the Object
Browser's main panel or pressing Shift+F10 key combination after selecting the
variable. Any variable can have two types of values: string or object. The menu
commands highlighted on the object popup menu are dependent upon what value typeis

bound to the variable.

String Value Popup Menu

Theillustration below describes the string commands of the Object Browser.

The Properties command
lets you wiew all

The Goto Definition
cotntratd itrokes the

Pull Ot

properties of the selected Variable Definition Editor,
vatriahle as well as

modify some. iGoko Definition CErl+D

The Delete co d I~ Propertics... Cer+-Enber

lets wou delete the Edit ¥alue A +5hift E
zelected variable. - Dislate Alt+5hift Delets

AlE+3hift Left Arrow =

The Show comnands

listed here are used to
toggle the display of that
specific item off or on.

v Relationship

The Edit Value command lets
wou edit the walue of the selected

watiahle.

the Object Browser to return to the

The Pull Out comrgnand is causes ‘
previous object just wsited.

+ Daomain

v Class

v Instance
v Parameter
v Temporary
v Special

+ Paol

Class Development Environment 138

Class Value Popup Menu

Theillustration below describes the object commands of the Object Browser.

The Properties command
lets you wiew all

The Goto Definition Executing the Class cormand will
cormatd invokes the ‘ force the Session Browser to go to

properties of the selected Variable Definition Editor. the class that iz associated with the
variahle as well as session . This comtnand is the same
modify some. Goto Definiion | Clrl+D f\\eis_the GoTo Class comrmand.

Class Chrl+C
The Delete co 4 ™ Properties... (Ckrl+Enter
lets sou delete the Eif vt Shift £
selected variable, = Delste Alt+5hift Delets

The Pull Out comumand is causes

Pull Ot Alt-+Shift Left Arrow == .
The Look Into —————& LookInto Alt+Shift, Enter —QE Object Browser to retun to the

co d lets you prewious object just wsited.

migrate into the
selected object.

v Doman

The Show i

) v Instance
commtrands isted
here ate used to e
toggle the display : ;;:gaw
of that specific item v Paol
off or on v Relationship

Using the Object Browser

The Object Browser is used to view and modify the internals of an object. It isastatic
debugging tool. The EsiObjects Interactive Debugger is designed to let you control the
execution of a code body and view the state of the object in terms of its symbol table and
its execution stack. It is a dynamic tool. The Object Browser lets you view and actually
modify the state of a object in a static state, outside of the execution context of a code
body.

Invoking the Object Browser

First you must determine what object you want to browse. Y ou must have accessto its
OID or you can select one of the objects in the Session Browser window or Client Area.
Note: If you want the Xecute Shell to come up in the context of the current session’s
environment object, click in the Documentation or Output Windows.

Class Development Environment 139

To invoke an Object Browser, follow the instructions below:

1) Execute the Main Menu command Object|Xecute Shell. Thiswill bring the Xecute
Shell up in the client area of the Main Window.

2) TheZVIEW command is used to invoke the Object Browser. It can take an argument
that must evaluate out to an OID or it can be argumentless. If it is argumentless, the
object context that the Xecute Shell was brought up in will be browsed. Enter the
ZVIEW command in the Command Line field of the Xecute Shell to invoke it on the
object you want to browse.

At this point the Object Browser will display in the client area. Refer to the section The
Object Browser Explained for a complete description of the Object Browsers
components.

Note: When the Object Browser first displaysit will display variablesthat are
available on the stack at that time. However, upon returning to this stack level
subsequently, you may not seethese variables. Thisisnormal behavior.

Setting Up for Browsing

The Object Browser can be set up to:

* Recyclethe current browser every time anew object is migrated to

» Refresh the contents of the display automatically or manually whenever the state of
the viewed object has been atered either interactively or via the embedded Xecute
and evaluation shell.

* View only selected scoped variables.
Recycling the Object Browser Window
On the Actions Tool Bar, the Recycle button @ when in the depressed state, lets you

reuse the current browser window. If it is not depressed, a new browser window will be
created when migrating into a new object.

Refreshing the Object Browser Display

Also on the Actions Tool Bar, when the AutoRefresh button @ is depressed, the
display area of the browser will automatically refresh when the objects state changes. If
you do not want it to refresh, simply pop the button out. This lets you refresh the state

manually using the Refresh button @ Simply click on it whenever you want the
display refreshed to its current state.

Viewing Selected Symbols

Object can have alarge umber of symbols stored in them. Often you are only interested
in certain symbols such as Instance variables and no others. It is possible to select those

Class Development Environment 140

symbols that you want displayed and eliminate those you do not want displayed by using
the Symbols Tool Bar. Thistool bar (and the Show cascading menu on the popup menu)
let you select which symbols and values you want displayed. Selecting the symbols you
want to see speeds up the display if there are alarge number of symbolsin an object.

Migrating Object Hierarchies

The Object Browser is capable of migrating links between objects and displaying the
target object’ sinternal state. The Actions Tool Bar contains all the buttons needed to
migrate through an object hierarchy.

On the Actions Tool Bar, the Step Into button l isused to step into the object that is
currently selected in the display area. If the selected item is an <Atomic> type (literal),
the Step Into button will not be highlighted. If it isan internal object, the Object Browser
will step into that object and it’s state will be displayed. Alternatively, to step into an
object, simply double click on the selected item in the display window.

Another approach to migrating into an object is to use the popup menu that can be
invoked by right clicking on the selected item. This provides all the functionality that the
tool bar contains plus more. Since an EsiObjects object can contain primitive M data
structures (arrays), often an array will have an OID in a subscript that you may want to
look into. There are commands on the popup menu that permit you to migrate to objects
pointed to by array subscripts.

Next to the Step I nto button isthe Step Out button i Once you have stepped into an

object, the Step Out button will highlight indicating that you may step out of the current
object, returning to the context of the previous object. Once clicked on, the Object
Browser will return to the previous object, redisplaying its state in the display area of the
browser.

Viewing and Modifying an Objects State

Once you have migrated to the object you are interested in, there are several approaches
to viewing and modifying an objects state. the following sections explain each approach.

Viewing the Definition of a Symbol

When browsing an object, you are often interested in the definition of a symbol. You can
access the definition of an object (if it exists) by executing the Goto Definition command
on the popup menu. Executing this command will bring up the Variable Definition
Editor. Seethe section titled Variable Definition Editor in this guide for more
information.

Using the Xecute and Evaluation Shell

At the bottom of the Object Browser is an embedded X ecute and Evaluation Shell that
lets you execute afull line of EsiObjects code or evaluate an EsiObjects expression.

Class Development Environment 141

The Shell is operating in the context of the object being browsed. Consequently, you may
change any symbol that resides in that object. Additionally, you can evaluate an
expression by entering it in the Command field and then clicking on the Evaluate button.

Directly Modifying Symbol Values

Directly modifying values consists of double clicking on the symbol name that has an
<Atomic> value associated with it. The browser then goes into edit mode and you can
change the value associated with the symbol. To get out of edit mode you must hit the
Enter key. Clicking outside of the symbol will not perform this operation.

Note: When editing a value, remember to place quotes around the string if they are
required. The compiler will check any symbol you modify. If it incorrect, you will receive
an error message.

Transport Tools

Transport Tools Explained

Within the EsiObjects system there are two levels of content that is defined when writing
an object-oriented application. They are the:

1) Definitional Content
2) Instance or Legacy Content

Transporting Definitional Content

The Definitional Content of an EsiObjects application consists of libraries, classes,
variables, services and documentation. These are objects that contain definitional
information and documentation used to create instances. Thisinformation is exported and
imported via ASCII text files. Upon import, these definitional objects are mapped to M
globals and routines.

EsiObjects contains import and export functionality needed to transfer definitional
objectsto external file. Exporting means saving the definition of the object to an ASCII
text file. Importing means restoring an object definition from an export file.

In EsiObjects, the following definitional objects can be exported: libraries, classes, nested
classes, interfaces, method and property source code versions, event source code,
relationships and variable definitions. It should be noted that exporting a class library
would export the entire library including al classes, nested classes and all methods,
properties, relationships, events and variable definitions within the classes.

Generic Import

Generic Import isaspecial type of import. Typically, when you import you will have
selected an object and have chosen the Import option to import directly to the object
currently selected. For example, if you had an export for Subclass A, which is a subclass

Class Development Environment 142

of Example Class 1 (see the diagram below), you would select that classin the Session
Browser and choose the Import option. After selecting the proper file, Subclass A would
be overwritten with the contents of thefile. If you were to import the same export file
over Subclass B, the system would allow you to do so. Selecting an object and importing
will directly import to that object. Note that you could overwrite a class with an export of
acompletely different class. Of course, you could not import an object definition of a
different type. For example, you could not import a method export file to a class.

Example Class 1 Example Class 2

Subclass A <4 Class.opc <=
—) —)

Subclass B

In the above diagram note that Subclass A has been exported to the text file Class.opc.
Thisfile can be imported back into Subclass A. Also, Class.opc can be imported into
Subclass B overwriting the definition of that class with the definition stored in Class.opc.

Keep in mind that in many cases you will want to import a definitional object to the same
location from which it was exported. For example, let’s say afellow developer isworking
on aclass and has coded a new method. She exports the method and tells the
programming staff to import the file “NewMethod.opm”. Instead of using the Session
Browser to find the class, and then find the method (Note: If the method doesn’t exist yet,
you would have to create it), before executing the import, members can simply select the
Tools|Generic Import command from the main menu and select the “NewMethod.opm”
file. The system will import the objects to the same location from which it was exported.
Even if the class or method does not exist. The system creates any necessary objects
along the path of the object before restoring it.

Class Development Environment 143

Example Clags

Subclags A

s

“New Method” NewMethod. opm - I;k Valtllable for Tmport
v other users.

If Generic Import is used, as the user imports the file NewMethod.opm, all necessary
objectswill be created. A library isthe exception to thisrule since it knows what M
globalsto store the objects in and what name prefixes to use when creating an M routine
at compile time. However, when exported, libraries can be instructed to retain this
information. The Generic Import of awhole library would then know where to store the
M globals and routines.

When to use Import vs. Generic Import

Use Import whenever you want to import a definitional object to a specific location or to
overwrite one object with a definition of another. By selecting the object in the Session
Browser, you can select the Import option (see the Import Option section) and you will
import the saved definition over the selected object.

1) Use Generic Import to import the object definition to the same location from which it
was exported. Thisis especialy useful if you don’t know exactly where the object
was exported from but you need to import it to the same location it came from.

Y ou do not need to have a Session Browser open to use Generic Import. It is available
through the main menu T ools|Generic I mport command.

Class Development Environment 144

Import/Export File Extensions

Many of the elements of the EsiObjects library structure can be exported to and imported
from the host operating system via ASCI| files. Thesefilesarein aspecia text format
and have the extension OPx where x specifies the type (property, method, etc.).

Thefollowing isalist of generated OPx file extensions.

Extension Type of File

.OPS Savefile: Generic - Mix of al types.
.OPB Code Body

.OPC Class

.OPD Documentation
.OPE Events

.OPF Folders

.OPI Interface

.OPL Library

.OPM M ethod

.OPP Property

.OPV Individua Variables
.OPX Full Variable Table

The extensions are generated automatically based on what object (s) are being exported.
For example, if the Export command for amethod is selected, the .OPM extension will be
generated. If the Export command for alibrary is selected, the .OPL extension will be
generated.

Transporting Instance and Legacy Content

The Instance Content of an EsiObjects application consists of the instances of the
definitional objects (classes). These instances are mapped to M globals via the object
creation process. Traditional M Global Tools exist within EsiObjects for the purpose of
transporting these object instances.

The L egacy Content consists of those M routines and globals that make up alegacy M
application. It may be wrapped using Esi Objects wrapping technology. The Global and
Routine Transport tools are used to move legacy globals and routines into and out of the
EsiObjects system.

Class Development Environment 145

These tools are grouped into two groups:
1) Global Transport Tools
2) Routine Transport and Editing Tools
Global Transport Tools

Two Global Transport Tools exist of exporting and importing M globals. They are the
Global Save and Global Restore respectively.

Routine Transport and Editing Tools

Two Routine Transport Tools exist for exporting and importing M routines. They are the
Routine Save and Routine Restore respectively. In addition to the transport tools,
EsiObjects provides a Routine Editor. It is used to modify routinesif required.

Using Definitional Object Transport Tools

EsiObjects provides extensive support for import and export operations. Definitional
objects may be imported or exported:

1) directly viathe Session Browser (library or folder structures) popup menus or main
menu Toolg|Generic | mport command

or, indirectly viaaFolder. See the Folder Operations section for more information on
folders.

Direct Import and Export
Export Option

Any objects that are a part of the definitional structure (classes, libraries, methods,
properties, property accessors, etc.) can be exported directly from the Session Browser or
its descendant applications (property editor, method editor, etc.).

To export adefinitional object, follow the instructions below.

1) Select the object you wish to export using the Session Browser. Please note that you
may invoke an editor if exporting methods and properties. Within that editor, you
may export specific versions.

2) Select the Export command from the object's popup menu. If you want to export a
specific version of source code, bring up the popup menu by right clicking on the
version number.

3) The Export dialog will appear asillustrated below. Fill in al the fields properly based
on the type of object being exported.

Class Development Environment 146

Note: The check boxes that appear in the Options area are specific to the type of definitional
object being exported. Only two types require specializing for export: Libraries and Classes. All

other object type exports do not require specialization.

Library Export Dialog

The Save in field lets

you select the external
folder that the file is to
be zaved to.

{ This field displays the

name that will be uzed

for the file. In the case Saveln |l e

This list box displays
existing files of the
same type selected in
the Save as type
field.

The Export button is

shown, itis generated
from the library name
(Bage) followed by a §
delimiter and then the
class name (Collection).

uged to export the
selected object and its
constituent components
if selected.

File name: IBase

This field displays

Export : I

the file extension
generated based on
the selected object
type.

Save as lype: ILibary Export [*.opl]

O ptiohz:
erate Class Libran B

j Cancel

The Cancel button is
used to abort the export
operation. If pressed,
the export will not

proceed.

When the Generate Class Library Bootstrap box is checked,
the M global root locations and routine prefix will be exported.
The Import function will use them to import the library
definitional objects into those locations. Ifitis unchecked, you
will be recuired to define a library before importing.

Based on the definitional object type
selected, the Options area may
contain check boxes used to
specialize the export. In the example
above, the object type iz a library.

Class Development Environment 147

Class Export Dialog

This list box displays
existing files of the
same type selected in
the Save as type

The Save in field lets

vou select the external
folder that the file is to
be zaved to.

{ This field displays the

name that will be uzed
for the file. In the cage
shown, itis generated
trom the library name
(Bage) followed by a §
delimiter and then the

class name (Collection).

Export

P
Save jr: ! el mfer The Export button is
used to export the
selected object and its
constituent components

if selected.

This field displays Filename: RIS [Ewor] |
the file extension . = !
: : 0 Save as ype: | Class Export (*.opo) __i Cancel ——/T_lle Cancel button ig
generated bazed on :
- . Optiors: used to abort the export
the selected object — X
[W]Include: Class Relationships 01)61'2]“011 f presse d.
t\'])t?. [wlpciude Mested Classes . o
the export will not
proceed.
When the Include Class
I}elalt_mtlslll;p‘slng 1’*:1 . When the Include Nested Based on the definitional object type
¢ 1§c \.ec a 1_e a 1:1.11> 111.)..\ Classes box iz checked, all of selected, the Options area may
“*_i?;mted with lﬂlib class the nested classes associated contain check boxes uzed to
J: i o N
W}ﬂ tf ex})o‘l:(ec along with this class will be exported specialize the export. In the example
with the class. along with the class. above, the object type is a class.

7) Onceal fields have been filled in properly, click on the Export button to export. At
this point you may chose to abort the operation by clicking on the Cancel button.

A status dialog box will display the progress of the export. Once the status box
disappears, the export will be complete. Y ou may click on the Cancel button of the status
dialog to abort the export at any time.

Import Option
To import adefinitional object follow the instruction below.

The imported object must already exist to use the Import function. If the object does not
yet exist, then you must createit. Alternatively, you may use the Tools|Generic Import
since it will create the definitional object before the contents are imported. (See the next
section labeled Generic Import below).

1) Using the Session Browser, select the correct object type. If the file being imported is
asource version, you should bring up the appropriate source editor and select the
version you want to import into.

2) Invokethe lmport co

Class Development Environment 148

mmand from the object or source version’s popup menu (or the

main menu Obj ect|l mport command).

3) TheImport dialog wil

| appear similar to the one shown below. Select the directory

that the import fileresidesin.

4) The export file will appear in the list box (Library import example shown below).
Doubleclick on it or select it and click on the Import button to start the import.

This field dizplays the
File name that will be

The Look in field lets
you select the external
folder that the file
resides in.

This list box displays
existing files of the

same type selected in
the File of type field.

used for the file. In the
cage shown, itis the
name of the Uger
library.

This field displays
the file extension

generated based on
the selected object
type.

Lok jri | wfer The Import button
Talliser ol is used to import
the selected object
and it congtituent

COIII])OllelltS.

IUser

| Impart ”T
j Cancel |

File name:

Files of lype: ILibary Expart [*.opl)

A

——ﬂ[_he Cancel button is
uged to abort the

import operation. If
pressed, the import
will not proceed.

Options:

Generic Import
To generically import def

1)
2)

From the main menu,

Based on the definitional object type
selected, the Options area may
contain check boxes used to
gpecialize the import.

initional objects, follow the instruction below.

execute the Tool |Generic Import command.

The Import dialog box shown below will appear. Using the ‘Look in” combo box,

select the external directory that contains the export file. All supported file types will

appear.
3)

Y ou may select multiple files by holding the Ctrl key down and clicking on each file

name. Alternatively, you may hold the Shift key down and select arange of files.

Class Development Environment

149

Note: Classes and any constituent objects contained in the files need not exist in the library
structure—they will be automatically created when generically imported. For example, generically
importing a property will automatically create the interface and class if they do not exist in the
library the property came from. A library will not be recreated under these circumstances. If you
want a library recreated automatically, you must export the full library with the Generate Class
Library Bootstrap box checked in the Export dialog.

The Look in field lets
vou select the external
folder that the file

resides in.

This field dizplays the
File names that are

This list box displays existing files of the same
type selected in the File of type field By default,
the Generic Import list files of all supported
types. However, you may select specific types.
Multiple selection of different types is permitted.

I % e

Look in:

selected. Multiple files

The Import button

Userdburap.ope

of different types can
Userflist opc

be zelected. The
selected files are
displayed in cuotes.

is usged to import the
selected objects and
their constituent
components.

File name: I"\u’isilur opf" "'User.opl”

Import : I

This field displays
the extension of the
file type you want to

Files of lype: IAny Object E xport [*.op*]

[plics:

ﬂ Cancel

The Cancel button i
usged to abort the

import. By default
the extension will be
op to display all
types permitted.

L\

import operation. If
pressed, the import
will not proceed.

The Options area may contain check
boxes used to specialize the import.

4) Click on the Import button to start the import.

5) At thispoint adialog box will appear. It will ask you if you want to continue. Y ou
have the opportunity to terminate the import at this point. Selecting Yeswill continue
the import. Selecting No will terminate the import. If you chose to continue, the
Import status dialog box will appear giving you a running status of the import. Y ou
have the opportunity to terminate the import at an point by clicking on the Cancel
button.

Warning: If you terminate the import, your definitional database will be left in an indeterminate
state. You will be responsible for rolling it back to it's original state if that is required.

Class Development Environment 150

The AutoLoad Method

If aclass with the method 'Factory::AutoLoad' isimported, then this method will be
automatically executed after the entire class has been loaded successfully. (This method
isnot run if the import is canceled before the class has finished loading.)

Thisisaconvenient way of doing specialized processing of aclassif required.
Indirect Import and Export

EsiObjects supports Folder structures within the Session Browser. To learn more about
Folders, see the Folder Operations and Folder Content Editor sections of this guide.

In anutshell, folders permit a programmer to store pointers to definitional objects within
alibrary structure. Import and Export operations can be performed on the whole folder or
individually on each object pointer stored in the folder.

Export Option
Exporting from the Folder Structure

EsiObjects implements two types of folders: Shared and Private. Shared folders are
available within a session. Anyone who connects to the session will be able to use the
folder. Private folders are private to each user. Any other user signed onto the session
does not see folders private to your session.

Follow these instructions to export the contents of afolder.

1) Select thefolder you wish to export using the Session Browser.

2) Select the Export command (or execute the Object|Export command) from the
folder's popup menu.

3) The Export dialog will appear asillustrated below for either a Shared or Private
folder.

Note: The check boxes that appear in the Options area are specific to the type of folder being
exported.

Shared Folders

/Tl_lis field displays the name
that will be used for the file.
In the case shown, it i
generated from the library
name (Bage) followed by a §
delimiter and then the class
name {Collection).

This field digplays
the file extension
generated based on
the selected object
type.

/‘;_Vhen the Include Child
Folders checkbox is
checked, the export
function will export all
child folders along with
the selected folder

Class Development Environment

The Save in field lets you
select the external folder that
the file is to be saved to.

|23 Model

Save jn

This list box displays
existing files of the

same type selected in
the Save as type

The Export button is

used to export the
selected object and its
congfituent components
if selected.

File name: |EusinessDbiects

| Export 4/

Save as bupe: IFoIder Export [*.0pf]

O ptior:

i %:l———ﬂ[_he Cancel button i

used to abort the export

[w]lnclude Child Folders
{vlInclude private folders for all users

Fackage Folders Contents

operation. If pressed,
the export will not
proceed.

When the Include private
folders for all users checkbox
is checked, the export function
will export all user’s private
folders as well as the selected
folder..

When the Package Folders
Contents checkbox is
checked, the export function
will export all the full contents
of each definitional object.

Based on the definitional object type
selected, the Options area may
contain check boxes used to
specialize the export. In the example
above, the object type iz a library.

151

Class Development Environment 152

Private Folders

This list box displays
existing files of the
same type selected in
the Save as type

The Save in field lets

you select the external
folder that the file is to
be zaved to.

{ This field displays the

name that will be uzed
for the file. In the case Save in:) The Export button i
shown, it 153 gellel‘atecl |1 dceounts [Esicw [Projects used to export the
trom the library name |23 &.dobeapp [Esiohjectsv4 0 Recpcler selected Ubj ect and its
(Base) followed by a § g g“s':eist g Fsctateh g :;d'SItIE_H | constituent components
delimiter and then the achen gLache malEie if g
) R |_1 CacheSys [itewidgert [Temp if selected
class name (C.Ol]eCthll). D ESIBusiness D Program Files D Thumbs
| | I
This field displays Filename: [Visitor [Ewpot ~] |
the file extension Save a3 ype: | Folder Expart [%.apf] i | :
cenerated based on I E EElil ——/T_lle Cancel button i
Ele celected obiect Dptiors: used to abort the export
o) |inciude Chid Folders operation. If pressed,
t}"]Je. MiFackage Folders Contents S
the export will not
proceed.
When the Include

Child Folders
checkbox is checked,
the export function will
export all child fol ders
along with the zelected
folder if they exist.

export function will export all the contain check boxes used to
full contents of each definiti onal specialize the export. In the example

‘When the Package Folders Baged on the definitional object type
Contents checkboxis checked, the selected, the Options area may
object. above, the object type iz a library.

4) Once al fields have been filled in properly, click on the Export button to export. At
this point you may chose to abort the operation by clicking on the Cancel button.

A status dialog box will display the progress of the export. Once the status box
disappears, the export will be complete. Y ou may click on the Cancel button of the status
dialog to abort the export at any time.

Exporting from the Folder Content Editor

Exporting a definitional object from the Folder Content Editor is the same as exporting
the object directly from the library structure.

Follow the instructions for exporting in the Direct Import and Export section.

Import Option
Importing from the Folder Structure

To import afolder follow the instruction below.

1) Using the Session Browser, select the folder you want to import into.

Class Development Environment

2) Invokethe Import command from the folder’s popup menu (or the main menu

Object|lmport command).

3) Thelmport dialog will appear similar to the one shown below. Select the directory

that the import fileresidesin.

The Look in field lets
you select the external
folder that the file
resides in.

This field dizplays the
File name that will be
used for the file. In the
casge shown, itis the

I Hler

Loak in:

This list box displays
existing files of the

same type selected in
the File of type field.

name of the Uger
library.

Usefwhark. opf

This field displays
the file extension

Impart ”T

The Import button
is used to import
the selected object
and its constituent
components.

generated based on File name: |
the selected abject Files of type: | Folder Expart *.0pf)

type.

ol Options:

I %:I———/lthe Cancel button is

[w]auto create ohiects
Restare packaged objects

When the Auto
create objects is
checked, the import

uged to abort the
import operation. If
pressed, the import
will not proceed.

automatically creates
an imported object if
it does not exist. If it
is not checked, the

object must exist
before importing.

When the Restore packaged objects
iz checked, the objects that were
packaged with the folder will be
restored to the library structure. If not
checked, they will not be restored.

Based on the definitional
obj ect type selected, the
Options area may confain
check boxes uszed to
specialize the import.

4) The exported file will appear in thelist box (Folder import example shown below).
Doubleclick on it or select it and click on the Import button to start the import.

Importing from the Folder Content Editor

153

Importing adefinitional object from the Folder Content Editor is the same as importing

the object directly from the library structure.

Follow the instructions for importing in the Direct Import and Export section.

Generic Import

Generically importing a folder is the same as importing an object directly. The only
differenceisit isafolder that is being imported (file extension .opf) as opposed to a

definitional object.

Follow the instructions for generically importing in the Direct Import and Export section.

Class Development Environment 154

Using Instance and Legacy Transport Tools

Traditional M Tools have been added to the EsiObjects toolbox to assist you in importing
and exporting traditional M routines and globals. They were never designed to provide
the full functionality that you would expect in atraditional M development environment.
EsiObjectsis an object oriented development environment. These tools are primarily
availablefor:

* Importing and exporting legacy M database routines and globals
* Importing and exporting object instance data contained in globals.
» Editing legacy routines.

Using Routine Tools

Using the Routine Editor

There are two ways to invoke the EsiObjects Routine Editor:

» To create anew routine, use the following menu path: Tools | Routines| Editor.

* Toedit an existing routine, double-click on that routine's name in the Routine
Directory window.

Class Development Environment 155

The EsiObjects Routine Editor provides a ssmple editing window for creating and
modifying routine source code. The picture below illustrates the component parts of the
Routine Editor.

B IUSR USRI LEGACY [_ (O] x]

3 : Print Customer List. -
W' . Printing Customer List". Il
D RANGE
I F="*" G MENU

W

D SHOWHEAD J
I SG[E=""' S E=""™

3 ¥=F,1="""

F 5 ¥=S50[CUST["B".V]) :¥=""" QW]E F S I=S0["CUST['B"V.I]] Q:I='"" D GETINFO,5HOWCUST

R X

G MENU
4 ; Exit.
W . .Exiting." 1!
K ¥
Q

-
< | »

[hi2, G 7

The Main Editing
Window is uged
for editing
EsiObjects code.

The Status Bar displays
the line, column
numbers of the cursor
position.

To save changes, you can right click to invoke a popup menu, or simply type Alt+S. A
variety of other useful editing functions are also available through the popup menu.

Class Development Environment 156

Routine Source Code Popup Menu

The Routine Source Code popup menu isinvoked by right clicking (or pressing
Shift+F10) inside the source code pane of the Routine Editor.

Pastes the content of the
clipboard into the cursor
position. If a text
segment iz selected, it
will replace it.

Cut the zelected code segment.

This removes the code segment
form the routine and places it on
the clipboard.

Copy the zelected code
segment. This places the
code segment on the
clipboard but does not
remove it from the
routine.

Cut Cbrl+e
/D_elete the selected text Copy T+ Revert back to the last
from the routine. The E e saved source version.
deleted zegment will not i ke All changes to the
be placed on the Delete Delete

. f____f\fode will be lost. W,

clipboard However, if
vou want to recover it,
uge the Undo conunand.

Hevert [tk
rda [y

Save Current saves
the zource code
currently being edited.

Save Cuirent All+S —

Undoes the most-recent
editing operation in the
source code panel.

Find... Alt+F3
Fird Mext B8
Replace.. ChlF3

///Fjiml Next repeats the la;t\

find operation and find
the next occurrence of the
text.

Find gearches for
text within the
source code panel.

Specity text to search for and the
replacement text to talke it place.
Once the =earch for text iz found, it
is replaced by the replacement text.

Class Development Environment 157

Using the Routine Directory

This utility is used to view aroutine directory listing:

To view alisting of routines, use the following menu path: Tools| Routine Tools |
Routine Directory.

When clicked on, the search for thoge routines
that match the Routine Identifier pattern will
commence.

i Houtine Directory

. |
Routine name or : i == :
partial name with I~ Houtine [dentifier: E._‘I
wildcard character ESlAPOOA ESIaP00G ECIAPOCRY ESIBADOD ESIBOO07
to zearch for. ESlaPO0 ESIaFO0H ESLAPO0E ESIBADDE ESIBOO0G
ESlAFO0Z ESlAaPO0I ESLAPOOY ESIBADDF EslBOO0E
ESlaPO04 ESIaPOn ESIAPO0Z ESIBADNG ESIBO00A
ESlaPO0A ES|aPOnk. ESIBA0M ESIBAONH ESIBO00A
ESIAPO0E ESIaPOOL ESIBADOZ ESIBAD0I ESIBOO0E
ESlaP007 ESlaP0om ESIBA00D ESIBAOL ESIBOO0E
ESlAFO02 ESIAPOOM ESIEADDM ESIBADDK, ESIBO00:
ESlaP003 ESIaPO0D ESIBAD0G ESIBADOL ESIBOOOC
%SIAF'DEIa ES|aPOnP ESIEA00E ESIEADOM ESIBOOO
] CAESIAPO0A ES|aP000 ESIBADOT ESIEOOM ESIB000D
Display area ESIAPO0E ESIAPOOR ESIBAODS ESIBOOOZ ESIBO00e
where all routines ESlAROOC ESlAPO0S ESIEADOS ESIBOOOS ESIBOOOE
found will be ESlAP000 ESlaPO0T ESIBANDS ESIEDOO04 ESIBOOOF
displayedin ESlaPO0E ESlaPonu ESIEA00R ESIEDOOS ESIBOOOF
columus. ==y ES|aPO0y ESIBADOC ESIBOO0E ESIBOO0g
il H

Type an identifier to narrow the search, and click the Search button. A listing of the
matching routines then appearsin the list box below. The following special characters
may be used in specifying a search identifier:
Char. Description
* Wild Card (anything or nothing can go here.)
% Single Character (any single character can go here.)

Class Development Environment 158

Routine Directory Popup Menu

The Routine Directory popup menu is invoked by right clicking (or pressing Shift+F10)
inside the routine list pane of the Routine Directory.

Rename the
selected routine.

Invoke the Routine Editor for
the selected routine name.

Rename
E dit
Select Al
D elete

Select all routine names in the
list. Clicking in the ligt box

without any routines selected
will cauze thiz item to pop up Delete the selected j

by itz self. routine.

Class Development Environment 159

Using the Routine Save

This utility is used to export one or more routines to aformatted file.

To create an export file containing routines, use the following menu path: Tools |
Routine Tools | Routine Save. A dialog appears, alowing the user to specify an output
file name.

Routine Save

Clutput fle: C:temp ESIER.RSA Browse |

Save Cancel |
i

The Browse
button will
invoke the file
selection
dialog. The
file selected is
displayed in
the Output file
field.

The Routines
button will involke
the Routine
Selector window
where the routines
to zave will be
selected.

The Output file
field displays
the zelected file
that the routines
will be saved
to.

The Cancel
button will
cancel the
routine gave
operation.

The Save button
will cause the
selected routines
to be saved to
the zelected file.

Class Development Environment 160

Click the Routines button.

A Routine Selector window appears like that illustrated below, allowing the user to
specify exactly which routines to export.

The Search button
(or pressing Enter in
the Icdentifier field)

cauges all matches to
the current identifier
to be loaded into the
search results list.

The Routine
Identifier allows a
search identifier to
be gpecified,
narrowing the list of
routines to a specific
gronp. (Use the ?
wild card).

Routine Selector

Boutine |dentifier. ;ES\BH" Search 1

ESIBROO ESIBRO0A ESIBROOE ESIBRO0) ESTBRDIN———
ESIBRO0Z ESIBRO0A ESIBROOF ESIBROOI ESIBRO0D
ESIBRO03 ESIBROOb ESIBROOF ESIBROOK ESIBROOO

ESIBRO0D4 ESIBROOB ESIBROOg ESIBROOK ESIBROO0p
ESIBRO0S ESIBRO0C ESIBROOG ESIBRONI ESIBROOP
ESIBRODE ESIBROOC ESIBRO0K ESIBROOL ESIBRO0G

The Nark button
copies those search
results that are
currently selected,
into the selections
list.

ESIBROOZ ESIBROOd ESIBRODH ESIBR00m ESIBRO0Y
Esl ESIBROOD ESIBRODI ESIBROOM ESIBRON
BRO03 ESIBRO0= ESIBRODI ESIBROON ESIBROOR

The Search |

Results pane
displays the
routines that match
the current
identifier.

Clear e

Selected Routines:
ESIBROOT

The Selections List
pane contains the
list of routines that
have currently been
selected for
exporting

The Clear button
clears the list of
selections.

K Cancel ;

0
3

The OK button causes the
export process to move The Cancel button cancels
ahead to the next stage. the export process.

There are three ways to mark routines using this dialog:

1) Clicking on Buttons. The Mark button adds sel ected names to the export list, while
the Clear button removes al the names from the export list.

2) Double-Clicking on Names. Double-clicking on a name in the name list at top, adds
that name to the export list. Double-clicking on a name in the export list at bottom,
removes that name from the export list.

3) Popup Menus. When you have selected a group of names, you can right click on
them (or press Shift+F10) to invoke a popup menu with useful options.

After the selector window is closed successfully, the earlier file dialog re-appears,
allowing the user to specify an output file name.

Class Development Environment 161

Clicking the Save button causes the routines to be exported to the specified file. The
Output Window shown below displays the save progress.

? Output RHoutine List: Routines to be written to file C:\temp\ESIBR.RSA
4 output routine—>ESIBROD01

output routine—>ESIBROD01
Output Routine List: Successful. 1 routines saved

A+ [Output ; Build % Debug 7

Using Routine Restore

When Routines are restored, you will be prompted viaa common Windows file selection
dialog box to select afile that contains routines to be restored. Once selected the routines
will restore and the status will print in the Output Window.

Note: itis important to be careful not to accidentally use the Global Restore option to import
Routines, or vice versa.

Class Development Environment 162

Using the Global Tools
Using the Global Directory

This utility is used to view aglobal directory listing. To view alisting of globals, use the
following menu path: Tools| Global Tools| Global Directory.

When clicked on, the search for those globals
that match the Global Identifier pattern will
conumence.

=]

: Global Diwectory

-
Global Identifier: I Search

“ESI
“ESIAP
“ESIEA
“ESIED
“ESIER
“ESIDB
“ESIFw
“ESIHM
“ESILOG
“ESIPK.
“ESIPS
“ESITEST
"ESIWE
“ESlxi

Global name or
partial name with

wildcard character
to zearch for.

| {—

Display area
where all globals
found will be

displayed.

Type an identifier to narrow the search, and click the Search button. A listing of the
matching globals then appearsin the list box below. The following special characters
may be used in specifying a search identifier:
Char. Description
* Wild Card (anything or nothing can go here.)
% Single Character (any single character can go here.)

In the global directory, the ™ prefix isoptional. In other words, *ESI* and ESI* will
both produce alisting of all globals whose names begin with the three letters, ESI.

Class Development Environment 163

If there are many matching entries, the list will take longer to produce. The following
strategies are helpful in reducing the search time:

» Specify aprefix. A* (all routines beginning with A) will run considerably faster than
*A (al routines ending with A).

* Narrow the search as much as possible. A search with few matches will run faster
than a search with many matches.

Note that EsiObjects does not alow you to see M routines and globals whose name
begins with the % character.

Using the Global Save

This utility is used to export one or more globals to aformatted file. To create an export
file containing globals, use the following menu path: Tools| Global Tools| Global
Save. A dialog appears, allowing the user to specify an output file name.

Global Save El l

The Output file Output fle: ehemp\ESIBR gza Bluwsij
field displays the ;

selected file that ~Format————

the globals will o

be zaved to.

[Dlobals | Cancel Save | E

l

Standard: A Global
Save will be performed
using the M standard.
ESI: A Global Save
will be performed using
an EST proprietary
format that handles
control characters.

The Browse
button will
invoke the file
selection dialog.
The file zelected
is displayedin the
Output file field

The Globals
button will
invoke the Global
Selector window
where the globals
to zave will be
selected

The Save button
will cauge the
selected globals
to be zaved to
the selected file.

The Cancel
button will
cancel the
global save
operation.

There are two choices for the save file format:

1) Standard: A Global Save will be performed using the M standard. If a subscript of
one of the globals selected or any of the values in the global s contains control
characters, then the save operation should use ESI format.

Class Development Environment 164

2) ESI: A Globa Save will be performed using an ESI proprietary format that handles
control characters. Thisformat is unknown to M and only understood by EsiObjects.

Click the Globals button. A Global Selector window appears, allowing the user to
specify exactly which globals to export.

The Search button
(or pressing Enter in
the Identifier field)

cauges all matches to
the current identifier
to be loaded into the

The Global
Identifier allows a
search identifier to
be gpecified,
narrowing the list of
globals to a specific

Global Selector [%]

Search |

Global identifier: |ESI®

“ES] "ESIPK. .
group. (Use the ? ESIAP “ESIFS search results list.
. “ESIBA “ESITEST
wild card). “E3IED ~ESIVA

“ESIBR "SI

“ESIDE

“ESIFW

The Nark button
copies those search
results that are

“ESIHM
s

The Search

Results pane Clear currently selected,

N Selected Globals: - - -
displays the globals T into the selections
that match the list.
current identifier.

The Selections List
pane contains the
The Clear button }ISt ufgl‘LTballs 'tl];at
clears the list of o | o 131‘ itali lfel?t y been
selections. - selected 101
1e

exparting.
The OK button causes tl
export process to move The Cancel button cancels
ahead to the next stage. the export process.

There are three ways to mark globals using this dialog:

1) Clicking on Buttons. The Mark button adds sel ected names to the export list, while
the Clear button removes al the names from the export list.

2) Double-Clicking on Names. Double-clicking on anamein the name list at top, adds
that name to the export list. Double-clicking on a name in the export list at bottom,
removes that name from the export list.

3) Popup Menus. When you have selected a group of names, you can right click on
them (or press Shift+F10) to invoke a popup menu with useful options.

Class Development Environment 165

After the selector window is closed successfully, the earlier file dialog re-appears,
allowing the user to specify an output file name. Clicking the Save button causes the
globalsto be exported to the specified file. The Output Window shown below displays
the save progress.

ﬂ{ Output Global List: Globals to be written to file C:\temp\ESIBR.G5A in ESI format
4 output global->"ESIBR

Total writes: 317

Output Global List: Successful. 12927 nodes saved

A . output ;/“Build % Debug 7

Using the Global Restore

When Globals are restored, the user is alowed to specify afile name, containing the
globals to be imported. Once the file name has been specified, the process of importing
globals can begin.

Note: itisimportant to be careful not to accidentally use the Routine Restor e option to
import Globals, or vice versa.

Management Tools

If the developer starts up the EsiObjects Development Ul on a client PC with the /Admin
(or /ESI) command line qualifiers, access to management functions are permitted through
the M anagement main menu option. The Management menu option is an add-in and will
only appear if these qualifiers are specified. There are two commands supported at this
level.

1. Version, which simply displays the current version of EsiObjects.
2. Security, which provides a command path to system and user level security commands.

Version

The Version command simply displays the installed version of EsiObjects.

Class Development Environment 166

The Server Version field
displays the installed

version of EsiObjects.

| version Information

Clicking the OK button Click on the
cutrently has not effect Cancel button to
other than terminating the terminate the
dialog display session. dialog sesston.

Security

EsiObjects supports a simple username and password security scheme. There are two
areas supported by this scheme.

3. User Management iswhere all the commands reside for creating and maintaining the
user files on each server (session). The User Management command will invoke a
window that displays each user in the rows and their attributes as columns. This window
permits all the editing functions.

4. Policiesiswhere system level security is maintained.

User Management

The User Management command is a graphical tool used to maintain the user’s information
stored on a particular M server.

The following illustrates the User Management window and its component parts.

Class Development Environment 167

Identifies

the user by
the text I

Dusplays
the fisll
name of the
SEE.

If*Yes,
FECUHtY i3
eniables for the
user. If ‘Mo’
security 1s not
enabled.

Oiptions are the codes that
identify the privileges the
user holds.

A = Administrator

D = Detugger/Inspection
P =Prograrmmer

E =Ezi0hjects Internals

Contains the initials
of the user. The
initials are used to
identify code bodies
and can be used as
search criteria,
Ewery user showld
have initials.

i Usvr Managemint [Plato ¥4.1]

Ideritifier | Mame | Initials Options
jgoodnough Jerry Goodnough JEG P
twiechmann Terry L, Wiechmann TLW ADPE

Using the Popup Menu Commands

The User Management window supports a popup menu. The menu lets you perform all
the functions of the VESOTCMN program. The menu isillustrated below.

The New command
inwokes a dialog
she et that lets you
ENter New users.

The Delete
command lets you
delete the user.

New
Delete /
Rename

The Rename
command lets you
renatne the user’s
Identifier

Properties

_ Reset Password

The Properties
cotnmand lets you
invoke the

propetties sheet

The Reset
Password invokes a
dialog box that lets
you change the
user’s password.

Class Development Environment 168

Using the New Command

The New command is used to add new users to the user file. The Add User dialog is
illustrated below. All fields are described in the callouts. When a new user isadded to
the server, security is, by default, turned on for that user.

Enter the User ID here. Tt
can be alphanumeric with
punctuation but net contain
control characters,

The User Name 13 entered
here. It should be in the
format of First IMiddle Last
Wame. Control characters
are not permitted.

Enter the user’s
Inmitials here. The
initials must be upper
or lowercase
characters only.

_\\

Enter the Password here.

It must be alphanumeric

Enter the Password

here to verify it. Iriftials: [0}1; pun:tuanon, Ciontrol
Paszward: I"'"""'"‘“"'”""""" characters are no
allowed.
.. . Veriy Password: _,/
Check the Administration
‘ Optionz

box 1f you want to the user
to have Administration
privileges.

Check the Debugging
if you want to the user
to have debugging
privileges.

[Admirestration I Debuggng

[Programmer I~ Intetnals

Check the Programmer
box if you want to the
user to have
programming privileges

Check the Internals
if you want to let the
user modify internal
code.

Click onthe Add
button to add a
new user to the
user file.

Click on the Done
button when you
are finished
entering users.

Using the Delete Command

The Delete command is used to expunge a user from the user file. Selecting the Delete
command will invoke adialog that lets to verify the deletion. Deleting auser isfinal. To
put the user back into the system, you must use the New command and reenter all the
user information.

Using the Rename Command

The Rename command is used to change the user’s Identifier only. Selecting this
command will change the selected Identifier in the User Management window to rename
mode. At that point you can change the identifier.

Using the Properties Command

The Properties command will invoke the user’ s property sheet. The sheet isillustrated
below.

Picture goes here!

Class Development Environment 169

Using the Reset Password Command

The Reset Password command lets you change the user’ s password. When you enter a
new password, you must enter the Verify Password field as well. The Password is
checked for validity and then compared with the Verify Password entry. If they pass, the
password is changed. If not, you will receive an error dialog.

Enter the Password here Tt
must contain only

alphanumeric and punctuation
characters. control characters
are not permitted.

Enter the Password here. Tt
must be identical to the value
entered in the Password field.

x|

Passwond

* Werfy Password
| ok | Cancel |

Click onthe OK button after
vou have entered the
Password and Verify
Password fields. The fields
will be checked for validity
and compared.

Click on the Cancel button if
you want to quit the operation.

Policies

Security can be enabled and disabled at two levels within the EsiObjects system. First, it
can be enabled or disabled at the system level. Second, it can be enabled or disabled for
each user.

Selecting the Policies command invokes a dialog box that lets you enable or disable
security checks for everyone at the system level. When enabled, all users will be required
to enter ausername (Identifier) and password if security has been enabled at the user
level. When disabled, no security checks will be made.

The Security Policies dialog is illustrated below with descriptions.

Checl the Enable box
to enable security on
the server. Clear the

box to disable security
checks.

Class Development Environment

cecurity Policies

v Enabled

Click on the OK
button to change the

security sething on the
SETVEL.

Click ¢n the Cancel
button if you want to
avold making

changes.

170

	Introduction
	Document Conventions
	Overview of EsiObjects
	Model-View-Controller
	EsiObjects Client Environment Overview
	EsiObjects Server Environment

	Class Development Environment Overview
	Main Window and Components
	Main Window Explained
	Using the Main Window
	Keyboard Shortcuts
	Main Window Toolbar

	Main Window Menu
	Main Menu Commands
	Main File Menu

	Main Menu Add-in Programs

	Output Window
	Output Window Explained
	Output Window Popup Menu

	Docking the Output Window
	Using the Output Window
	Debug and Build Tab Sheets
	Output Tab Sheet

	Documentation Window
	Documentation Window Explained
	Components of the Documentation Window
	Documentation Pane
	Tool Bar
	Popup Menu

	Docking the Documentation Window
	Using the Documentation Window

	The Session Browser
	The Session Browser Explained
	Using the Session Browser
	Docking the Session Browser
	Displaying and Hiding the Session Browser

	Session Control
	Session Control Explained
	Session Control Window
	Session Control Menus
	Session Control Main Menu
	Session Window Popup Menu

	Session Control Properties
	General Tab Sheet
	Connection Tab Sheet

	Using Session Control
	Creating a New Session
	Create a Session by Copying and Renaming
	Disconnecting a Session
	Deleting a Session
	Troubleshooting Session Control

	User Options
	User Options Explained
	Using the User Options
	User Tab Sheet
	Format Tab Sheet
	Preferences Tab Sheet

	Macro Substitution Token List
	Setting The Initial Text
	Initial Text Example

	Help Documentation
	Help Documentation Explained
	Administrator’s Guide
	Language Reference Guide
	Programmer’s Reference Guide
	Tools Guide
	Getting Started Tutorial

	Using the Help Documentation

	Class Development Environment Tools
	Tools Overview
	Browsers
	Session Browser
	Object Browser

	Editors and Property Sheets
	Search Tools
	Debugger Tool
	Transport Tools
	Object Transport Tools
	Traditional M Transport Tools

	Session Browser Explained
	Session Structures
	Library Structures
	Libraries Explained
	The Class Hierarchy Explained
	Reusable Libraries Explained

	Folder Structures

	Session Browser Tools
	Class Toolbar
	Library Popup Menu
	Class Popup Menu
	Interface Popup Menu
	Service Popup Menu
	Multiple Inheritance Conflict

	Using the Session Browser
	Library Operations
	Creating a New Library
	Source Code Prefixes—How Long?
	Same or Different Globals?

	Deleting a Library
	Examining Library Properties
	Class Operations
	Creating Classes
	Editing Class Properties
	Linking Classes
	Promotion and Generalization
	Finding a Class in the Hierarchy
	Deleting Classes

	Interface Operations
	Creating Interfaces
	Deleting Interfaces

	Variable Operations
	Creating Variables
	Deleting Variables
	Modifying a Variable Declaration

	Service Operations
	Creating Services
	Deleting Services
	Modifying a Service

	Synchronizing the Tree Selection

	Folder Operations
	Folder Structure Operations
	Creating a New Folder
	Deleting a Folder from the Structure
	Moving a Folder and its Content to another Folder
	Copying a Folder’s Content to another Folder
	Invoking the Folder’s Content Editor

	Finding Library Objects and Folders

	Folder Content Editor
	Folder Content Editor Explained
	Property Sheet
	Popup Menu

	Using the Folder Content Editor
	Linking a Library Object to a Folder
	Removing a Library Object Pointer from a Folder
	Indirect Library Operations using the Folder Contents
	Activating the Indirect Delete Command
	Populating the Folder Content
	Performing Operations on the Folder Content
	Synchronizing the Library Object with the Folder Selection

	Variable Definition Editor
	Variable Definition Editor Explained
	General Tab Sheet
	Advanced Tab Sheet
	Variable Properties
	Variable Menus
	Interface Popup Menu Commands
	Variables Popup Menu Commands

	Using the Variable Definition Editor
	Invoking the Variable Definition Editor
	Editing Variable Properties
	Deleting a Variable

	Method Editor
	Method Editor Explained
	Method Properties
	Method Menus
	Source Code Popup Menu
	Version Popup Menu

	Using the Method Editor
	Creating a Method
	Editing a Method
	Deleting a Method
	Reusing the Method Editor Window
	Editing Method Properties
	Managing Source Versions
	Explicit Source Management
	Source Code User Options
	Default Save Options

	Property Editor
	Property Editor Explained
	Property Editor Window
	Property Editor Accessor Tab Bar
	Property and Accessor Properties
	Accessor Properties
	Property Properties

	Property Menus
	Source Code Popup Menu
	Version Popup Menu
	Accessor Tab Popup Menu

	Using the Property Editor
	Creating a Property
	Editing a Property
	Deleting a Property
	Reusing the Property Editor Window
	Editing Property Properties
	Managing Source Versions
	Explicit Source Management
	Source Code User Options
	Default Save Options

	Event Template Editor
	Event Template Editor Explained
	Event Template Editor Window
	Event Template Menus
	Template Popup Menu

	Using the Event Template Editor
	Creating an Event Template
	Editing an Event Template
	Using Drag-and-Drop to Edit an Service

	Deleting an Event

	Relationship Wizard
	Relationship Wizard Explained
	Using the Relationships Wizard
	Creating a Relationship
	Editing a Relationship
	Deleting a Relationship
	Promote, Override and Copy Command Not Supported

	Search and Edit
	Search and Edit Explained
	Using Search and Edit
	Performing the Search
	Using the Search Results

	Debugging Tools
	Interactive Debugger
	The Interactive Debugger Explained
	Interactive Debugger Window
	Debugger Window with Symbol Display
	Debugger Window Symbol Display Popup Menu
	Debugger Window with Stack Display
	Debugger Window with Xecute Display
	Debugger: Main Menu Items

	Using the Interactive Debugger

	Xecute Shell
	The Xecute Shell Explained
	Xecute Shell Window

	Using the Xecute Shell

	Object Browser
	The Object Browser Explained
	Object Browser Window
	Object Browser Actions Toolbar
	Object Browser Symbol Toolbar
	Object Browser Status Bar

	Browsing Dead Objects
	Object Browser Popup Menu
	String Value Popup Menu
	Class Value Popup Menu

	Using the Object Browser
	Invoking the Object Browser
	Setting Up for Browsing
	Migrating Object Hierarchies
	Viewing and Modifying an Objects State

	Transport Tools
	Transport Tools Explained
	Transporting Definitional Content
	Generic Import
	Import/Export File Extensions

	Transporting Instance and Legacy Content
	Global Transport Tools
	Routine Transport and Editing Tools

	Using Definitional Object Transport Tools
	Direct Import and Export
	Export Option
	Import Option
	Generic Import
	The AutoLoad Method

	Indirect Import and Export
	Export Option
	Exporting from the Folder Structure
	Exporting from the Folder Content Editor

	Import Option
	Importing from the Folder Structure
	Importing from the Folder Content Editor

	Generic Import

	Using Instance and Legacy Transport Tools
	Using Routine Tools
	Using the Routine Editor
	Using the Routine Directory
	Using the Routine Save
	Using Routine Restore

	Using the Global Tools
	Using the Global Directory
	Using the Global Save
	Using the Global Restore

	Management Tools
	Version
	Security
	User Management
	Using the Popup Menu Commands
	Using the New Command
	Using the Delete Command
	Using the Rename Command
	Using the Properties Command
	Using the Reset Password Command

	Policies

