

Tools Reference Guide

EsiObjects V4.1

ESI Technology Corporation

5 Commonwealth Road

Natick, MA. 01760

www.esitechnology.com

Information in this document is subject to change without notice. Companies, names and data
used in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of ESI Technology Corporation.

 2000 - 2003 ESI Technology Corporation. All rights reserved.

EsiObjects is a registered trademark of ESI Technology Corporation.

GT.M is a registered trademark of Sanchez Inc.

DSM, Cache, MSM are registered trademarks of InterSystems Corporation.

Microsoft, Visual Basic, Windows and Windows NT are registered trademarks of Microsoft
Corporation.

Table of Contents
TOOLS REFERENCE GUIDE ...1

ESIOBJECTS V4.1 BETA ...1

TABLE OF CONTENTS..3

INTRODUCTION...5

DOCUMENT CONVENTIONS ..5

OVERVIEW OF ESIOBJECTS ..1
MODEL-VIEW-CONTROLLER...1
ESIOBJECTS CLIENT ENVIRONMENT OVERVIEW ..2
ESIOBJECTS SERVER ENVIRONMENT ..3

CLASS DEVELOPMENT ENVIRONMENT OVERVIEW ..4
MAIN WINDOW AND COMPONENTS ..4

Main Window Explained ...4
Using the Main Window..5
Main Window Menu ..7
Output Window..18
Documentation Window ..20
The Session Browser ...23

SESSION CONTROL ..24
Session Control Explained...24
Using Session Control ...30

USER OPTIONS...32
User Options Explained ..32
Using the User Options ...33
Macro Substitution Token List ..36

HELP DOCUMENTATION ..38
Help Documentation Explained ..38
Using the Help Documentation ...40

CLASS DEVELOPMENT ENVIRONMENT TOOLS ...41
TOOLS OVERVIEW ...41

Browsers..41
Editors and Property Sheets..42
Search Tools..42
Debugger Tool...43
Transport Tools ...43

SESSION BROWSER EXPLAINED...44
Session Structures ...45
Session Browser Tools...50

USING THE SESSION BROWSER..56
Library Operations..56
Folder Operations ...70

Finding Library Objects and Folders ...74
FOLDER CONTENT EDITOR ..75

Folder Content Editor Explained ..75
Using the Folder Content Editor...77

VARIABLE DEFINITION EDITOR...79
Variable Definition Editor Explained ...79
Using the Variable Definition Editor ..84

METHOD EDITOR ...85
Method Editor Explained ..86
Using the Method Editor ...90

PROPERTY EDITOR ..94
Property Editor Explained ..94
Using the Property Editor ...103

EVENT TEMPLATE EDITOR ..107
Event Template Editor Explained..107
Using the Event Template Editor ..108

RELATIONSHIP WIZARD ..110
Relationship Wizard Explained ...110
Using the Relationships Wizard ..110

SEARCH AND EDIT ...112
Search and Edit Explained ..112
Using Search and Edit...117

DEBUGGING TOOLS ...118
Interactive Debugger...118
Xecute Shell ...130
Object Browser..132

TRANSPORT TOOLS..141
Transport Tools Explained..141
Using Definitional Object Transport Tools...145
Using Instance and Legacy Transport Tools...154

Introduction
This guide covers all of the EsiObjects development tools needed to develop an
application. These tools are an integral part of the Class Development Environment
(CDE).

Document Conventions
EsiObjects documentation uses the following typographical conventions:

For more information on
this subject please refer to
the BREAK Command
section of this manual.

Underlined text is used to highlight a reference to
another section of this manual or another manual.

Property In text, italicized words indicate defined terms that
are usually used for the first time. Words are also
italicized for emphasis.

CREATE Words in bold and capitalized are EsiObjects
commands or keywords.

Set T%Test=I%Pat.Name This font is used for code examples.

 Overview of EsiObjects 1

Overview of EsiObjects
Model-View-Controller
The Model-View-Controller concept is a common design pattern used to implement
modern applications. EsiObjects itself is implemented using this pattern. As an
EsiObjects programmer, you should strive to implement you applications using this
pattern.

Patient: Doe, John

Sex: Male

DOB: 4-Feb-1942

Patient Edit

Name:

Sex:

Save Cancel

DOB:

Doe, John

Male

4-Feb-1942

Views

Model

Objects

Database

Controller

Window

Field

Button

Printer
Controls

The diagram above illustrates the pattern when applied to a client server database
application. Simply put, this concept enforces a separation of data (the model), from the
interface primitives (the controller). These two sides are brought together into views.
These views reflect different ways of looking at the same data.

In the example above, displaying the Name, Sex and DOB of a patient creates a Window
view. The window components are a part of the controller. The patient data is extracted
from the database and displayed using the controller components. Another view is
created on paper of the same model side data. In this case the Printer Controls are used to
create the view.

The EsiObjects development environment contains tools for creating and maintaining all
class (model side) structures and code including workflow tools that increase your
productivity.

 Overview of EsiObjects 2

EsiObjects Client Environment Overview
For a top-level overview of EsiObjects, see the EsiObjects Overview section of the
EsiObjects Programmer Reference Guide.

The EsiObjects Class Development Environment (CDE) contains all the tools needed
to develop the definitional components of an object oriented database application. These
tools can be grouped functionally into the following categories:

• Workflow tools that increase your productivity.

• Class development tools that create all the definitional components of an object.

• Tools needed to test and debug your application.

• Import and export tools needed to transport the application components to external
systems for sharing or backup.

In terms of the Model-View-Controller paradigm described in the previous section, the
CDE provides the tools needed to develop the model side of an application.

The client side of the Class Development Environment is based on Microsoft
Windows . Fundamental to the EsiObjects environment is the Main Window. It contains
a menu that lets you access the components listed below. It also gives you access to
printing and help services. The Main Window contains several child windows that
support the CDE set of tools or any other tool set that may be developed in the future.
These windows are:

• Session Browser – This window contains tab sheets that contain graphical
representations of library and folder structures associated with a particular session
connection. Library and folder structures are visually displayed and provide a point
and click approach to migrating to the desired services. Additionally, tools exist to
automatically go any class in the hierarchy if you know its name or, if you are
working in a folder, you can go directly to an object whose pointer is stored in the
folder.

• Output – This window contains three tab sheets. The Build sheet is used by the
system to display information about compiles, syntax checks, etc. The Debug sheet is
used by the system to display system information. The Output sheet is available to
you for displaying application level information. It provides a convenient way to
track execution when testing your application among other things.

• Documentation – This window is used by the system to display documentation for
the currently selected object. The text is stored in Rich Text Format to be compatible
with other Microsoft tools such as Word .

• Session Control – This window allows you to establish connections to one or more
EsiObjects servers.

• User Options – This window contains three tab sheets that allow you customize your
development environment.

 Overview of EsiObjects 3

EsiObjects Server Environment
When the EsiObjects client is started up on a PC and a session connection is made to a
process that is started up on the server by the TCP redirector, an environment object is
created in the server process. It is an instance of the class ESI$WindowsEnvironment.
The client owns and is connected to the environment object on the server. The
environment is always active as long as a session connection is maintained and can be
referenced via the $ENVIRONMENT special variable.

The environment object is always instantiated as part of the EsiObjects session
connection. There is only one environment object associated with a session. EsiObjects
supports multiple development sessions. That is, a programmer can have multiple
sessions defined and have an EsiObjects environment associated with each session. This
provides a flexible approach to development since browsers and editors can be brought
up simultaneously while attached to separate sessions.

 EsiObjects Environment 4

Class Development Environment Overview
Main Window and Components
Main Window Explained
This is the main window of the EsiObjects environment. It appears whenever the system
is launched, and serves as the primary EsiObjects work area.

The Main Menu contains cascading menus of all the functions available in EsiObjects.
The menus will always look the same to the programmer. Only those commands that are
applicable to the currently selected item will be highlighted and activated. All others will
be grayed out. The Main Menu contains all commands that are applicable to a selected
object where popup menus generally contain only the most frequently used commands.

The window's Client Area is where EsiObjects places all visual objects launched from a
browser or menu such as the method editor, property editor, etc.

The Session Browser contains tab sheets that display library and folder structures for the
currently connected sessions. The Session Browser and all of its functionality are used to
migrate through all the available library and folder structures.

 EsiObjects Environment 5

The Main Window Toolbar provides quick access to a variety of important functions
that also appear on the Main Menu.

The Documentation Window always contains the documentation for the item selected in
the Client Area.

The Output Window contains the Output, Debug and Build tab sheets. The Output sheet
is available to you as an area to output information via the $ENV.Ouptut message. The
Debug area is used by EsiObjects to display errors and the Build sheet is used by
EsiObjects to display compile and syntax checking information.

The Status Bar on the bottom of the main window provides information on the current
status of EsiObjects. It can be displayed toggling the main window's View|Status Bar
command.

Using the Main Window

Keyboard Shortcuts

Certain Main Window operations can be accessed via accelerator keys. They are:

• Alt+F4 shuts down EsiObjects, and closes the main window.

• Ctrl+F4 closes any currently active child window.

 EsiObjects Environment 6

Main Window Toolbar

The Main Window Toolbar provides quick access to a variety of important functions.
Most of these functions can be performed in other ways; the toolbar is one of the most
convenient ways to get at them. It can be shown or hidden from the Main Window's View
menu, by selecting the Toolbar item.

To see the names of each button, position the mouse pointer over the button and wait
about one second. A tool tip will appear with the name of the button.

The toolbar is detachable, and can be torn off simply by dragging its margin area
(without pressing one of the buttons). It can then be docked back to one of the four edges
of the main window by dragging it over to the desired edge. Note that its orientation is
horizontal when it is docked to the top or bottom of the window, and vertical when it is at
the sides. While dragging, you can toggle its orientation by holding down the Shift key.
You can also prevent it from docking at the edges of the main window by holding down
the Ctrl key when moving it. When it is free-standing, it is possible to move the toolbar
outside the EsiObjects main window.

 EsiObjects Environment 7

Main Window Menu

 Main Menu Commands

The Main Menu of EsiObjects is designed to display all functions available to EsiObjects
no matter what object is currently selected. In other words, the Main Menu will always
look the same and have the same commands on them. Only those commands that are
active for the selected object will be highlighted. All other commands will be grayed.
Good object oriented systems present a common view to the user, hiding the complexity
from them.

The following diagram illustrates and explains the general orientation of each main menu
item.

All commands on the Main Menu will be explained in general at this point. The
descriptions will apply to the object selected. Within this guide, each section that
describes functional areas of EsiObjects will contain a list of active commands.

 EsiObjects Environment 8

Main File Menu
Menu Command Description

File New|Session Invokes the New Session form that prompts for

the name of the session and the type of
connection: TCP or COM. A new session will be
created if you choose to continue.

 New|Routine Creates a new M routine.
 New|Library Invokes the Create Library form that prompts for

the required information needed to create a new
library. If you proceed, the library will be created
and its icon will be displayed in the Session
Browser.

 New|Class Invokes the Create Class form that prompts for
the required information needed to create a new
class within the selected library. If you proceed,
the class will be created below the selected
library or class icon.

 New|Interface Creates a new interface within the selected class
named Interface n where n is a sequential
number.

 New|Method Invokes the Add to Interface form that prompts
for the service name and lets you select the type
of service: Method, Property, Relationship or
Event.

 New|Property Invokes the Add to Interface form that prompts
for the service name and lets you select the type
of service: Method, Property, Relationship or
Event.

 New|Relationship Invokes the Add to Interface form that prompts
for the service name and lets you select the type
of service: Method, Property, Relationship or
Event.

 New|Event Invokes the Add to Interface form that prompts
for the service name and lets you select the type
of service: Method, Property, Relationship or
Event.

 New|Instance Variable Invokes the Add Variable form that prompts for
the variable name and lets you select the type of
variable: Instance or Class.

 New|Class Variable Invokes the Add Variable form that prompts for
the variable name and lets you select the type of
variable: Instance or Class

 New|Folder Adds a new folder to the session. If a folder is
selected, the new folder will be made a child of
the selected folder. If any part of a library
structure is selected, it will create a root folder.
Folders can be dragged to other folders.

 EsiObjects Environment 9

 New|Version When a code body has been selected (or any
object that supports versioning), executing this
command will create and save a new version of
it.

 New|Object… Not Implemented Yet.
 Save Saves the selected object to persistent storage.
 Revert When several edits have been made to the text

or code of the object, executing this command
will restore the object to its original state unless
you have saved it in the interim.

 Rename Lets you rename a object. The selected object is
put into edit mode and all the text is selected.
Any edit operation at this point will delete the
selected name, replacing it with the typed or
pasted characters. If you want to simply modify
the existing name, move your cursor to the
position and perform the edit. Clicking at the
point of edit with your mouse will also put you in
insert mode.

 Delete Deletes the selected object or the selected text if
in edit mode. When deleting an object you will
usually be prompted to continue or not.

 Print... Invokes the print dialog and then prints the
selected object or text to the selected printer if
you choose to proceed.

 Print Setup... Invokes the Printer Setup form and lets you
change the printer setup parameters. If you
choose to proceed, the printer and printing
options will be changed.

 Connections|Show Displays the Session Control Window. Sessions
can be created, deleted, modified, connected
and disconnected from this window.

 Connections|Connect Connects the selected session in the Session
Control Window.

 Connections|Disconnect Disconnects the selected session in the Session
Control Window.

 Exit Prompts to continue and then shuts the
EsiObjects system down if you answer in the
affirmative.

Main Edit Menu
Menu Command Description

Edit
 Undo Executing this command will undo the last

operations performed against a selected object.
 Redo Executing this command will redo the last undo

operation.

 EsiObjects Environment 10

 Cut This command will remove the selected item or
text and place it on the clipboard for future use.

 Copy This command will copy (not remove) the
selected item or text and place it on the clipboard
for future use.

 Paste Executing this command will cause the contents
of the clipboard to be inserted at the cursor
position if in text editing mode or replace a
selected region.

 Delete Executing this command will delete the selected
text or object. Generally, when the delete
operation is performed on an object, you will be
queried as to whether you want to proceed.

 Select All This command will select all objects or text.
 Find Invokes the Find dialog box to appear. After

specifying search criteria, it will search for that
criteria and stop for you to perform edit or
replace operations.

 Find Next This command will continue the Find operation,
continuing the search for the criteria established
in the original search.

 Replace This command operates in conjunction with the
Find and Find Next operations. Executing it will
replace the found instance with a specified
instance.

Main View Menu
Menu Command Description

View
 Toolbars|Main This command is a toggle command that toggles

the Main EsiObjects toolbar off and on. When the
toolbar is toggled on, a √√√√ will appear before
command. When toggled off, the toolbar will not
be displayed. When toggles on, it will be
displayed either docked or not.

 Toolbars|Class This command is a toggle command that toggles
the Class toolbar off and on. When the toolbar is
toggled on, a √√√√ will appear before command.
When toggled off, the toolbar will not be
displayed. When toggles on, it will be displayed
either docked or not.

 Toolbars|Browser Actions When the Object Browser is active in the Client
Area, this command will toggle the Browser
Actions toolbar in the browser off and on.

 Toolbars|Symbol Types When the Object Browser is active in the Client
Area, this command will toggle the Symbol Types
toolbar in the browser off and on.

 EsiObjects Environment 11

 Toolbars|Documentation This command is a toggle command that toggles
the Documentation toolbar off and on. When the
toolbar is toggled on, a √√√√ will appear before
command. When toggled off, the toolbar will not
be displayed. When toggles on, it will be
displayed either docked or not.

 Find in Tree This command is used to find a service that is
actively being edited within the library or folder
tree structures. It is used to synchronize the
Session Browser tree selection with the current
service being edited.

 Debugger This command will activate the Debugger
window. The Debugger window is a separate
window that is used to display the code, stack
and symbols of the object being debugged. It has
its own menu and is independent of the Main
Window.

 Documentation This command is a toggle command that toggles
the Documentation Window between a hide and
display state. When the command is toggled on,
a √√√√ will appear before command. When toggled
off, the Documentation Window will not be
displayed. When toggled on, it will be displayed
as docked.

 Output This command is a toggle command that toggles
the Output Window between a hide and display
state. When the command is toggled on, a √√√√ will
appear before command. When toggled off, the
Output Window will not be displayed. When
toggled on, it will be displayed as docked.

 Session Browser This command is a toggle command that toggles
the Session Browser between a hide and display
state. When the command is toggled on, a √√√√ will
appear before command. When toggled off, the
Session Browser will not be displayed. When
toggled on, it will be displayed as docked.

 Status Bar This command is a toggle command that toggles
the Main Window Status Bar between a hide and
display state. When the command is toggled on,
a √√√√ will appear before command. When toggled
off, the Main Window Status Bar will not be
displayed. When toggled on, it will be displayed.

 EsiObjects Environment 12

Main Browse Menu
Menu Command Description

Browse
 Look Into Within the context of the Object Browser, if a

variable is selected that has a OID associated
with it, executing this command will force the
Object Browser to migrate that link and display
the context of the object pointed to by the
subscript OID.

 Look In Subscript Within the context of the Object Browser, if a
variable is selected that has a OID as a
subscript, executing this command will force the
Object Browser to migrate that link and display
the context of the object pointed to by the
subscript OID.

 Pull Out Executing this command will force the Object
Browser to return to the object it came from and
redisplay its context.

 Watch Not Implemented Yet.
 Show Descendants Not Implemented Yet.
 Refresh This command, when executed, will totally

refresh the Object Browsers display of an object
state (variables and values).

 Show History The Object Browser keeps track of the objects it
migrates through. Executing this command will
force a List History list box to appear, displaying
the migration history.

 Edit Value When you have selected a variable within the
Object Browser that has a string value bound to
it, executing this command put you into edit
mode. The value of the variable can then be
modified.

 Goto Definition Not Implemented Yet
 Class Not Implemented Yet
 Evaluation Not Implemented Yet
 Recycle You have control over whether a completely new

Object Browser is instantiated every time you
migrate to a new object. The Recycle button on
the browser’s toolbar controls this. If the button is
depressed, that means that only one instance of
the browser will exist for all migrations. This
command will indicate that by a √√√√ in front of it.
Executing this command toggles the Recycle
button between the recycle and no recycle
states.

 EsiObjects Environment 13

 Auto Refresh If you are changing the state of an object using
the Object Browsers embedded Xecute Shell,
you can use this toggle command to turn auto-
refresh on and off. When on (indicated by a √√√√ in
front of the command), changing the state of the
object being browsed will automatically cause the
display to refresh. Toggling the Auto Refresh
command causes the equivalent Auto Refresh
button on the Object Browsers toolbar to pop in
and out.

Main Object Menu
Menu Command Description

Object
 Properties… Invokes the property sheet for the currently

selected object. The property sheet will display
all the public properties of the object and their
values.

 Edit Invokes the editor for the selected object if it has
one. For example, if you have a variable selected
in the Session Browser, the Variable Editor will
be brought up in the client area.

 Import Invokes a common file dialog that lets you select
a file that is the same type as the object selected
in the Session Browser. This command is used
to directly import the exported object into the
selected object; therefore, the objects must be
the same type.

 Export This command will export the selected object to
an external file on the EsiObjects workstation
client. The common file dialog will let you select
the file and directory to save the file in. It will also
let you store all object relationships if applicable.
The contents of the selected object will be stored
in ASCII format that is readable.

 Override When an object is selected in a subclass such as
an interface, service or variable and the object is
inherited from a superclass, this command will
copy the actual object into the currently selected
object. It is through this mechanism that you can
specialize the behavior of an object.

 Promote When an object is selected in a subclass such as
an interface, service or variable and the object
exists at the selected level and not at the
superclass level, executing this command will
copy the selected object to the superclass. It is
through this mechanism that you can generalize
an interface, service or variable, making it
available to all subclasses of the superclass.

 EsiObjects Environment 14

 Goto Ancestor When you have a service selected in a subclass
and it exists there as well as in a superclass,
executing this command will prompt EsiObjects
to transfer control to that superclass service.

 Compile|Release This command will compile the selected item or
all items for a release execution. The release
compile is what normally runs when the code is
executed. The compilation results are displayed
in the Build tab sheet of the Output Window.

 Compile|Debug This command will compile the selected item or
all items for debug execution. This is the code
that the Debugger uses in a debugging session.
The compilation results are displayed in the Build
tab sheet of the Output Window.

 Compile|Both This command will compile the selected item or
all items for release and debug execution. The
compilation results are displayed in the Build tab
sheet of the Output Window.

 Compile|Advanced This command is only active when a class is
selected within the Session Browser. A dialog will
display that lets you include all subclasses and/or
nested classes in the compile range as well as
the type of compile (Release or Debug).

 Compile|Syntax Check This command will syntax check the selected
method or property accessor. The results of the
check are put out to the Output Window.

 Purge Executing this command will cause a dialog box
to appear requesting the number of code body
versions you want to keep. After specifying the
number to retain, the EsiObjects structure from
the selected point down will be iterated and all
lower versions exceeding this number will be
deleted, leaving the highest numbered versions.

 Remove Debug This command causes the EsiObjects structure
to be iterated from the selected point down. All
debug compiles associated with encountered
code bodies will be deleted.

 Unlink This command applies to classes. When a class
is selected and it has superclasses (single or
multiple inheritance), the selected class will be
unlinked from its superclass. If the selected class
multiply inherits from two or more superclasses,
a dialog will appear, letting you make a choice as
to which class to unlink from.

 Link This command applies to classes. When
executed it causes the Link to Superclasses
dialog to appear. It queries for a class to be
linked to. A full Library$Class reference should
be given.

 EsiObjects Environment 15

 Xecute Shell This command invokes the Xecute Shell in the
context of the selected object. That is, if the
Xecute Shell is invoked in the context of a
selected method, you will have access the that
objects internals (state).

Main Tools Menu

All the commands listed in italics are Add-in commands. A programmer who
understands how to create an Add-in .dll file can add commands. See the next section for
a more detailed explanation of the Add-in concept.
Menu Command Description

Tools
 Global|Directory Invokes the Global selector letting you select a

range of globals for display. Only the global
name is displayed.

 Global|Save Invokes the Global selector letting you select a
range of globals for export to an external file.

 Global|Restore Invokes the Global file selector letting you import
a set of globals from an external file.

 Routine|Directory Invokes the Routine selector letting you select a
range of routines for display. Only the routine
name is displayed.

 Routine|Save Invokes the Routine selector letting you select a
range of routines for export to an external file.

 Routine|Restore Invokes the Routine file selector letting you
import a set of routines from an external file.

 Routine|Selective Restore Invokes the Routine file selector letting you
import a selected set of routines from an external
file.

 Routine|Editor Invokes the Routine selector letting you select a
routine to edit.

 Search|All Invokes the Search dialog that queries for search
criteria. Once you provide the information, the
search engine will be invoked. It will search all
levels within the EsiObjects library structure for
the criteria specified. When it gets a hit, it stores
the reference to the object in a workbox. You can
tear the workbox off and use this information to
perform operations on.

 Search|Selected Invokes the Search dialog that queries for search
criteria. Once you provide the information, the
search engine will be invoked. It will search the
selected structure object and all lower levels for
the criteria specified. When it gets a hit, it stores
the reference to the object in a workbox. You can
tear the workbox off and use this information to
perform operations on.

 EsiObjects Environment 16

 Goto Class Invokes a dialog that queries for the name (or
partial name using wildcard characters * and ?)
of a class. If it finds multiple classes matching the
search criteria, they are displayed in a list for you
to select from. Double clicking on the desired
class reference will prompt the system to transfer
control to that class in the Session Browser. The
class will be opened up, exposing the supported
interfaces, nested classes and subclasses if they
exist.

 Generic Import Invokes a common file selection dialog that lets
you select an export file that contains a
supported files extension. The generic import will
automatically import the contents of the file to the
correct object. For example, if a method was
exported into a file having a .opm file extension,
the Generic import would import the contents of
that file into the correct method.

 Options… Invokes the EsiObjects Options dialog. This
dialog contains User, Format and Preferences
tab sheets. The User tab sheet lets you enter
your name and initials to be used to identify code
bodies. Additionally, macrocode can be entered
that will expand when a new code or
documentation body is created.

Main Windows Menu
Menu Command Description

Windows
 Close When invoked the selected window in the client

area of the main window will be closed.
 Close All When invoked, all windows in the client area will

be closed.
 Next Selects the next window in the client area.
 Previous Selects the previous window in the client area.
 Cascade Arranges all windows in the client area into

cascading order.
 Tile Horizontally Arranges all windows in the client area

horizontally.
 Tile Vertically Arranges all windows in the client area vertically.

Main Help Menu
Menu Command Description

Help

 EsiObjects Environment 17

 Getting Started Activates the Acrobat Reader and displays the
Getting Started Tutorial. This tutorial is designed
to teach you some fundamental object oriented
concepts. It is primarily designed to teach you
how to use the EsiObjects tool set.

 Administrator’s Guide Activates the Acrobat Reader and displays the
Administrator’s Guide. This guide contains all the
information needed to start and shutdown the
EsiObjects system as well as how to install and
set up the servers for the supported M systems.

 Language Reference
Guide

Activates the Acrobat Reader and displays the
Language Reference Guide. This guide contains
all the information you will need to use the
EsiObjects language. Each language element is
explained in detail.

 Programmer’s Reference
Guide

Activates the Acrobat Reader and displays the
Programmer’s Reference Guide. This guide
contains all the information you will need to know
about objects and how to use them within your
application.

 Tools Guide Activates the Acrobat Reader and displays the
Tools Guide. This guide contains extensive
information about the EsiObjects tool set. Each
GUI object is described in detail along with
instructions on how to use it.

 About EsiObjects Invokes a dialog that displays current status
information about the EsiObjects Class
Development Environment.

Main Menu Add-in Programs

Add-ins are supplemental programs that extend the capabilities of EsiObjects by adding
custom commands and specialized features.

You can write your own Add-in programs. Writing your own is outside the scope of this
guide.

To use an add-in, you must install the add-in program in the EsiObjects root directory and
then register it. If the program has been implemented properly, it will appear as a
command in the Tools menu.

To take it off the menu, all you have to do is unregister it.

In the previous section, all the traditional MUMPS utilities are defined as an Add-in
program.

 EsiObjects Environment 18

Output Window

Output Window Explained

Components of the Output Window

The output window appears as a resizable window. It can be resized and docked to any
of the four edges of the Main Window.

Output Window Popup Menu

The Output Window popup menu is invoked by right clicking anywhere on the output
window.

 EsiObjects Environment 19

Docking the Output Window

The output window may be docked to any of the four edges of the main window. The
Output Window can only be docked - it cannot be undocked. However, you can freely
reposition it along any of the four edges of the Main Window. When you are first getting
used to the output window, it is easy to make the mistake of accidentally docking it while
repositioning. By holding down the Ctrl key while repositioning the output window
prevents it from docking, thereby avoiding this problem.

To reposition the Output Window, simply place the mouse pointer on the grab bar and
press and hold the left mouse button down. Now drag the Output Window to any edge of
the main Window and drop it. The window should dock to the edge. At this point you
may want to resize the window. Simply grab the edge and expand it.

Using the Output Window

Debug and Build Tab Sheets

The Debug and Build tabs sheet are used by the EsiObjects system. All tab sheets in the
Output Window are record oriented and output only. You can perform standard cut and
paste operations individual or multiple records. A popup menu invoked by right clicking
on the tab or on a selected item provides these operations as well as the main Edit menu.

 EsiObjects Environment 20

Output Tab Sheet

The Output tab sheet, however, is available to you for use. It can be used to display
status information and is also convenient for displaying trace information when
debugging your application.

If you are not familiar with the concept behind the EsiObjects special variable
$ENVIRONMENT, refer to the EsiObjects Server Environment section of this guide.

The EsiObjects environment object, accessed via the $ENVIRONMENT variable,
contains a method called Output. It takes one parameter - a string. The following example
illustrates who to put a line of text out to the Output Window.

Do $Env.Output(“This is a line of text”)

Documentation Window

Documentation Window Explained

Components of the Documentation Window

The Documentation Window is where all documentation is entered and displayed for the
object currently selected. For example, if a method is selected in the Session Browser, the
documentation for that method will automatically be displayed in that window. All text-
editing operations are common to operations commonly found in a word processor. The
text is stored in Rich Text Format (RTF). Associated with the window is a Toolbar and
Popup Menu that let you perform fundamental operations.

Documentation Pane

 EsiObjects Environment 21

Tool Bar

Popup Menu

The Documentation popup menu is invoked by right clicking in any documentation pane.
Each command of the popup menu is explained in the illustration below.

 EsiObjects Environment 22

Docking the Documentation Window

The Documentation Window can be docked to any of the four edges of the main window.
The Documentation Window can only be docked - it cannot be undocked. However, you
can freely reposition it along any of the four edges of the Main Window. When you are
first getting used to the output window, it is easy to make the mistake of accidentally
docking it while repositioning. By holding down the Ctrl key while repositioning the
output window prevents it from docking, thereby avoiding this problem.

To reposition the Documentation Window, simply place the mouse pointer on the grab
bar and press and hold the left mouse button down. Now drag the Documentation
Window to any edge of the main Window and drop it. The window should dock to the
edge. At this point you may want to resize the window. Simply grab the edge and expand
it.

Using the Documentation Window

Using the documentation window is comparable to using a word processor such as
Word or WordPad . Associated with the Documentation Window is a tool bar
(described above) that can be used to format text.

 EsiObjects Environment 23

The Session Browser

The Session Browser Explained

The EsiObjects development environment is designed to provide all the necessary tools
needed to develop an object oriented application.

The Session Browser component is a window that contains tab sheets. Each tab sheet
may contain a graphical representation of EsiObjects library and folder structures.
Browse operations are permitted on each structure. These operations let you find objects
quickly and easily. The following is a picture of the EsiObjects Session Browser.

Using the Session Browser

Two operations are fundamental to the Session Browser. They are:

1) Docking

2) Displaying and hiding.

Docking the Session Browser

The Session Browser window must be docked to any of the four edges of the main
window. The Session Browser can only be docked - it cannot be undocked.

 EsiObjects Environment 24

Displaying and Hiding the Session Browser

The Session Browser window may be hidden or displayed at your convenience. The Hide
or Display the window, pop out or depress the Session Browser button on the main
window toolbar with your mouse pointer. The Session Browser will appear where it was
when it was hidden. You may also hide the window by clicking on the hide button in
the upper right hand corner of the window.

Session Control
Session Control Explained

As illustrated below, Session Control allows the EsiObjects client to connect to a
supported M database via a TCP bridge connection. Access to multiple databases on
different servers through different sessions can be established on one client.

Session Control lets you maintain connections to multiple servers. When you connect to a
session, all library and folder structures available in that session are displayed on a tab
sheet within the Session Browser. The session name is displayed on the tab. The tab sheet
that has focus identifies the session that is active. Clicking on a session tab lets you
quickly switch between sessions.

 EsiObjects Environment 25

Session Control Window

Session Control Menus

There are two menus that are available for executing session control commands: the Main
Menu and the Session Control Window Popup Menu.

Session Control Main Menu

When the Session Control is displayed in the client area of the Main Window and is
selected, the Main Menu will highlight those session control commands that are active.
Each active command is described below.

 EsiObjects Environment 26

The File|Connections Commands

The File|Connections commands are used to display the session control window as well
as connect and disconnect to the EsiObjects server.

 EsiObjects Environment 27

The File|New|Session Command

The File|New|Session command is used to create a new session.

 EsiObjects Environment 28

Session Window Popup Menu

Right clicking on the session icon will display the session control popup menu. Each
command is described below.

Session Control Properties

See the EsiObjects Overview section in the EsiObjects Programmer’s Reference Guide
for an overview of Session Control in EsiObjects.

A sessions properties can be edited via the a property sheet that is brought up via the
File|Object|Properties command of the main menu or the Properties command on the
session window popup menu.

 EsiObjects Environment 29

General Tab Sheet
The General tab sheet shown below is general to all connection types.

 EsiObjects Environment 30

Connection Tab Sheet

The Connection tab sheet shown below is specific to a TCP/IP connection.

Using Session Control

When the EsiObjects client is first brought up, it may or may not automatically connect to
a session. If it is the first time you started EsiObjects it will not start a session. You must
create a session. However, this means that EsiObjects must reside on the server you are
connecting to. To find out how to install EsiObjects on the server, please refer to the
appropriate read me file for the M system you will be installing it on. .

Creating a New Session

If the Session Control window is not open, use the File|Session|Show menu option to
display it in the client area.

Once the session control window is open, right click in the open window region to open
the popup menu.

Select New to create a session. This will invoke a New Session dialog.

 EsiObjects Environment 31

Enter the Name of the session to be created. The name is only used to reference the
session and does not require any special naming conventions.

Select the connection Type from the pull down menu list. Currently the only supported
connection types are TCP/IP.

Click the OK button to save or the CANCEL button to exit the dialog without saving.

Now that a new session has been created and the type of connection indicated, it is
necessary to define the connectivity information.

Select the session just created by left clicking on the item once and then right click to call
the popup menu. Select Properties from the menu.

A dialog appears with the tabs General and Connection. (See the Session Control
Properties under the Session Control Explained section above for explanations of the
property sheets).

Once all the appropriate information has been entered in the Properties dialog, right
click on the session. Select Connect from the popup menu (or main menu) to start the
session. (Note that if AutoConnect is enabled, the session will connect when EsiObjects
is started without this step.)

The status of the session will change from Disconnected to Connected and all libraries
and folders available within that session will be available on a tab sheet of the Session
Browser.

In the event that a connection cannot be established refer to the section on
Troubleshooting Session Control below.

The Class Development Environment (CDE) cannot be accessed on a server until a
session has been connected. It should be noted that more than one session can be opened
at the same time to different servers and databases using different connections.

Create a Session by Copying and Renaming

A convenient way to create a new session is to Copy an existing session and rename.
Right click on the session to be copied and select Copy on the pop-up menu.

Next, move the mouse pointer over the blank window and right click. Select Paste from
the pop up menu. Notice a “copy” of the session appears next to the original session. This
copy has all of the exact characteristics and settings of the copied session and may need
to be edited to meet the users needs.

Right click on the new session copy and select Rename from the pop up menu. Rename
the session.

 EsiObjects Environment 32

Disconnecting a Session

To disconnect an EsiObjects session, right click on the session and select Disconnect
from the pop-up menu. The status of the session in the session control window will
change to Disconnected and it’s tab sheet in the Session Browser window will disappear.

Additionally, when the EsiObjects client is shut down, accordingly, the session(s) are
disconnected.

Deleting a Session

Select the session from the Session Control window that you want to delete.

Right click on the session name to bring up the popup menu.

Select the Delete command. The Session will be removed from the Session Control
window without confirmation.

Troubleshooting Session Control

If a user has trouble connecting to a server with session control, there are possible steps
that can be taken to isolate and correct the problem.

The Properties of the session being used to connect to a server should be reviewed first,
specifically the Connection tab settings.

1. Make sure the IP Address and Port name are correctly entered and correct.

2. Verify the server being connected to is started and that the TCP/IP listener is running
at this address and port.

User Options
User Options Explained
EsiObjects offers you numerous alternatives to customizing your development
environment.

You can personalize your environment by storing your user name and initials. Your
initials are associated with all code bodies you create or modify. Your initials can be one
of the key search strings used by the EsiObjects Search engine.

You can store macro templates that can stamp out new source code objects (methods,
properties and events) with text and code that is specific to the code body. These
templates can save a great deal of time.

You can also control the font and size of all text and code displayed in each of the
documentation and source code editing windows.

Finally, numerous options can be checked on or off fit your workflow patterns.

 EsiObjects Environment 33

Using the User Options
From the Tools menu, choose the Options item. A dialog box appears that contains three
tab sheets: User, Format and Preferences. The User sheet lets you create template
information for documentation and source code associated with each method, property or
event. The Format sheet lets you select how the text is rendered to you, that is, the font
and size of the text. The Preferences sheet lets you tailor your EsiObjects operating
environment to your needs.

User Tab Sheet

The User sheet is invoked by clicking on the User tab. The illustration below describes
all components of the User tab of the Options property sheet. The Name and Initials
fields identify you as a user. These fields are important in that they are used to stamp
objects created by you. Also, the Search engine uses your initials as one type of search
criteria.

The Initial Text section lets you create macrocode for each source code and
documentation objects in the system (methods, property accessors, events, routines). The
macrocode is expanded whenever you create a new object. You can use the macrocode to
set up default code and documentation templates for your project. For more information
on the available macros, see the section Macro Substitution Token List.

 EsiObjects Environment 34

Format Tab Sheet

The Format sheet is invoked by clicking on the Format tab. Illustrated below is the
Options property sheet Format. The Format sheet allows you to alter the text font and size
for the various text components of EsiObjects.

 EsiObjects Environment 35

Preferences Tab Sheet

The Preferences sheet is invoked by clicking on the Preferences tab. This sheet allows
specific options to be activated by checking the appropriate check box. Options that are
checked are enabled. Options that are not checked are disabled.

The following table contains a description of each option available on the Preferences
sheet.

Item Description
Auto Display Output If checked, the Output window will automatically appear if

hidden, when the results of a compile are sent to the Build tab
sheet.

Allow Delete of Folders If checked, the Delete command will appear in the folder
popup menus (and the main menu Edit|Delete command).
Since all actions within the Folder are directed to the object in
the library structure, unintended use of the delete command
can have damaging consequences. Therefore, use of it is left
up to the programmer as a personal preference.

Auto New Version When prompted to save source code, the New Version check
box on the Save dialog will default to what is set here. When
checked, the default action on saving source code will be to
create a new version of the source code on every save.

 EsiObjects Environment 36

Auto Open If checked, adding a new method, property, event or
relationship in the Session Browser will automatically open the
appropriate editor for that object.

Compile On Save When prompted to save source code, the Compile check box
on the Save dialog will default to what is set here. When
checked, the default action on saving source code will be to
compile the source code after saving.

Redisplay When checked, EsiObjects will search for an open editor or
search result window to reuse and bring forward, rather than
always creating a new window. This applies to the method,
property, event editors as well as the search results windows.

Reuse Search Window When a search is done, a search dialog box is displayed that
lets you identify search criteria and range. Checking this box
will ensure that it is reused if you specify another search.
Unchecked means a new dialog will be used every time a
search is done.

Verify Application Close If checked, EsiObjects will prompt you for verification of shut
down. If not checked, EsiObjects will simply shut down without
verification. It is advised to leave this checked all the time.

Macro Substitution Token List
The following special formatting tokens are available for use in the Initial Text field of
the User Options dialog. They can be typed directly into the Initial Text list box or they
can by automatically entered via the Macro button on the User tab sheet.

Using the Macro button and cascading menus lets you quickly create a template without
the burden of knowing what each token stands for.

Token Meaning
%1 Properties – Input Specification
%2 Properties – Body
%a Abbreviated weekday name.
%A Full weekday name.
%b Abbreviated month name.
%B Full month name.
%c Date and time representation appropriate for locale.
%#c Long date and time representation, appropriate for locale. For example,

"Wednesday, January 17, 1996, 12:34:56".
%d Day of month as decimal number, leading zeros included (01-31).
%#d Day of month as decimal number, no leading zeros (1-31).
%H Hour in 24-hour format, leading zeros included (01-24).
%#H Hour in 24-hour format, no leading zeros (1-24).
%I Hour in 12-hour format, leading zeros included (01-12).
%#I Hour in 12-hour format, no leading zeros (1-12).
%j Day of year as decimal number, leading zeros included (001-366).
%#j Day of year as decimal number, no leading zeros (1-366).
%m Month as decimal number, leading zeros included (01-12).
%#m Month as decimal number, no leading zeros (1-12).
%M Minute as decimal number, leading zeros included (00-59).
%#M Minute as decimal number, no leading zeros (0-59).
%p Current locale's AM/PM indicator for 12-hour clock.
%S Second as decimal number, leading zeros included (00-59).

 EsiObjects Environment 37

%#S Second as decimal number, no leading zeros (0-59).
%U Week of year as decimal number, with Sunday as first day of week,

leading zeros included (00-51).
%#U Week of year as decimal number, with Sunday as first day of week , no

leading zeros (0-51).
%w Weekday as decimal number with Sunday as 0 (0-6).
%W Week of year as decimal number with Monday as first day of week,

leading zeros included (00-51).
%#W Week of year as decimal number with Monday as first day of week, no

leading zeros (00-51).
%x Date representation for current locale.
%#x Long date representation appropriate for current locale, e.g. "Wednesday,

January 17, 1995"
%X Time representation appropriate to current locale.
%y Year without century, as decimal number, leading zeros included (00-99).
%#Y Year without century, as decimal number, no leading zeros (0-99).
%z Time zone name or abbreviation, if known - No characters, if not known.
%% Percent sign (%) appears in target text.
%u User name, from Options dialog.
%i User initials, from options dialog.
%n Name of entity to which the text applies.
%t Full title of entity to which the text applies.
\t Inserts a tab character (ASCII 9).
\n Inserts a newline character (ASCII 10). These generally don't appear in

source text, except in a CR+LF combination at the end of each line.
\r Inserts a carriage return character (ASCII 13). These generally don't

appear in source text, except in a CR+LF combination at the end of each
line.

Ctrl+Enter Inserts carriage return, line feed combination. Same as \r\n, but easier to
see visually.

\\ Inserts a backslash (\) in the target text.

Setting The Initial Text

To set the initial text for any code body, follow the step outlined below.

1. Select the Options… option from the Tools menu.

3) In the Section combo box, select the type of code body you wish to enter initial text
for. Code Default will apply to all method types. In the example below, Method was
selected.

2. Place the cursor where you want the macro to expand. Enter the macro and/or text
you wish to have expand in a new code body. Alternatively, use the Macro button to
popup a cascading menu to insert the macro automatically. Existing methods are not
affected by any changes made here. You can enter text or any of the macro
substitutions described in the table above.

See the following topic for an example of setting initial text using macro substitution.

 EsiObjects Environment 38

Initial Text Example

The following example illustrates how to set initial text for methods. It also shows how
macro substitution works, by showing the initial text as it appears before macro
substitution, and as the actual text might appear in a given example.

(Note that these examples can be cut out of this document and pasted into the Initial Text
list box.)

Initial Text

The returns in the following text were achieved by pressing Ctrl+Enter in the Initial
Text field of the User Options dialog. A less visually ambiguous alternative would be to
insert the text \r\n for each return; however, this is less visually appealing.

\t;;(c) ;Copyright (c) 1997-%Y ESI Technology Corp. Natick, MA

\t; %t

\t; Created: %c %p by %u

Input:\t(%4

\t)

\t; %3 method code begins here.

\tQUIT

Default Source Text

The following default source code text is produced for a method, when the preceding
macro text is used.

;;(c) ;Copyright (c) 1997-1998 ESI Technology Corp. Natick, MA

; Framework$ErrorBroker - Primary::GetError

; Created: 12/19/98 09:59:21 AM by Terry L. Wiechmann

Input: (

)

; method code begins here.

QUIT

Help Documentation
Help Documentation Explained
The EsiObjects Help documentation is available as Acrobat .pdf files. There are 4 guides
and one tutorial that are designed to cover all aspects of using the EsiObjects system. The
guides and tutorial are described in the following sections.

 EsiObjects Environment 39

Administrator’s Guide

Assumptions about reader:

• Have administrative skills at the OS and M levels.

• Have PC user skills.
Goals of this guide are:

• Explain the EsiObjects Client Server Environment.

• Describe how to use MSM’s RVG capability.

• Describe how to setup and use EsiObjects for each of the supported M systems:
MSM, DSM, GT.M and Cache.

Language Reference Guide

Assumptions about reader:

• Knows object oriented concepts.

• Has programmed in other languages.

Goals of this guide are:

• Explain all code body structures.

• Describe the syntax of the language.

• List and describe all Commands.

• List and describe all Functions.

• List and describe all Special Variables.

• List and describe all Operators.

Programmer’s Reference Guide

Assumptions about reader:

• Knows object oriented concepts.

• Knows the MUMPS language plus the EsiObjects extensions.
Goals of this guide are:

• Give an overview of EsiObjects.

• Describe how to use Objects.

• Describe how to Integrating Objects.

• Outline the Guidelines for using Objects.

• Describe Client Server Programming using EsiObjects.

 EsiObjects Environment 40

Tools Guide

Assumptions about reader:

• Knows object oriented concepts.

• Knows how to use PC applications.
Goals of this guide are:

• Give an overview of EsiObjects Environment.

• Describe each component of the EsiObjects Environment and how to use them.

• Describe each component of the Class Development Environment and how to use
each one.

• Describe the Transport tools and how to use each one.

Getting Started Tutorial

This tutorial is delivered with EsiObjects. It covers OO concepts and teaches you how to
use the EsiObjects tools by actually constructing a small application.

Using the Help Documentation
EsiObjects documents are accessible in three ways:

1. Through the EsiObjects Help menu. Simply click on the desired guide or tutorial and
the Acrobat Reader will be launched and the document displayed.

2. Via the EsiObjects installation subdirectory Help. All EsiObjects help documents
reside in the Help subdirectory. Access this directory and simply double click on the
desired document. Acrobat Reader will be launched and the document displayed.

3. Launch the Reader directly and open the desired file.

 Class Development Environment 41

Class Development Environment Tools
Tools Overview
The EsiObjects object model is based on the classification system. The CDE environment
contains all the tools needed to develop and test these classes. Class development tools
available in the CDE fall into the following 5 categories:

• Browser tools designed to let you migrate all components within an EsiObjects
session. You use browsers to find the definitional object you want to work on.
EsiObjects provides multiple views into definitional structures, either directly through
the library structure or indirectly through folders. Folders can be private to your
session or shared with other programmers connected to the same session.

• Editors are tools that let you modify an object found through the Browser.

• Search tools are used to search across a range of objects in the EsiObjects library
structure for specified criteria. The results of the search can be used to activate the
associated editor, wizard or property sheet for the object double clicked on.

• Debugger is an interactive tool that lets you step through the execution sequence of
your application. It automatically displays the stack and symbol table states after each
step.

• Transport tools are used to transfer definitional level and instance level data and
code between environments via external files. The transport tools can be used to share
your work within a project or to back up it up for safekeeping.

Browsers
The EsiObjects CDE contains Browser tools designed to migrate to all objects within an
EsiObjects library. You can use browsers to find the object you want to work on.
EsiObjects contains the following browsers:

• Session Browser

• Object Browser
The ability to browse objects is a major part of the EsiObjects CDE. A browser is a
development tool that provides a common way to migrate through relationships between
definitional objects for the purpose of interrogating or modifying the internals of the
object.

Everything in EsiObjects is an object including EsiObjects itself. The only difference is
the type. Therefore, the browsers can migrate and display any object in the system simply
because they are structurally identical although their content may be different.

 Class Development Environment 42

Session Browser

A Session Browser displays and provides migration services for all structures supported
within a session. Currently two structures are supported:

1) Library

2) Folder

The Session Browser is used to migrate only; it does not expose the internals of the
objects.

Object Browser

The Object Browser is used to browse any type of object. It can be used to browse
classes as well as instances of classes. It can browse static objects or objects that are
being modified by a running application. It displays the internal state of the object and
permits migration back and forth along object links. It has an integrated Xecute Shell that
can be used to evaluate EsiObjects expressions or execute a line of EsiObjects code.

Editors and Property Sheets
The ability to edit definitional objects is a major part of the CDE. Definitional objects are
based on the classification system and are called classes. Classes contain all information
needed to create an instance of the class commonly referred to as an object. Instances
always know who is responsible for making them. The parent class contains methods that
give the object behavior, properties to expose the object's state, relationships that link the
object to other objects and event templates needed to respond to unsolicited events.

An editor is a development tool that provides a common way to create, edit, delete, or
inquire into an object, whether it is a variable, method, property, relationship or event of
a class.

A property sheet typically presents itself as one or more tab sheets in a window that
contains fields that you may modify. Often the fields are read only, that is, only available
as information and not modifiable.

Search Tools
Browsers are used to directly access objects. The Session Browser can be used to access a
method, property, relationship or event within an interface of a specific class if you know
where it resides. Browsers are used when looking for a component that is in a known
location. You can migrate the library tree with the Session Browser or, if you know its
name, you can use the GoTo Class dialog to access it quickly.

Often, however, you will have a need to find a specific occurrence of an object that is a
part of the library structure, some attribute of an object or string within an object. You
generally do not know where it is or how many occurrences exist. In these cases, a search
tool is needed.

 Class Development Environment 43

The EsiObjects Search Tool lets you search through the library, class and interface levels
within a library for specific criteria. It records the object paths where a criteria match is
found. These paths are displayed in the search window. The programmer can then double
click on any one of the paths to launch the appropriate editor for the object found. If the
path of a property is selected, the property editor will launch. If the path of a method is
selected, the method editor will be launched. Regardless of the editor, each occurrence of
the search criteria will be highlighted within the edit pane.

Debugger Tool
The EsiObjects CDE contains an interactive debugger that is used to debug your code
whether they be methods, properties, relationships or event handlers. The debugger is
designed to give you control over the execution sequence. Additionally, it displays the
state of the object after each step is executed. All variables accessible to the execution
context are displayed as well as the execution stack. A tab sheet exists within the
debugger GUI that lets you change the state of an object at any step within the debugging
process.

Transport Tools

Object Transport Tools

The EsiObjects Transport Tools are used to package your application’s definitional
components for backup or transfer. EsiObjects libraries contain class hierarchies. These
hierarchies contain interfaces and they contain services such as methods, properties, etc.
Using the EsiObjects Transport Tools you can choose to start exporting components at
any level, transferring that level and sublevels to a flat file. These files can be used as
backup as well transfer work between systems.

Multiple components of the same level can be exported in the same file due to multiple
selections permitted by the export utility.

The Object Transport Tools only transfer the definitional components of your
application. They do not transfer any M level routines or globals. The next section
addresses that capability.

There are three transport tools available:

1. Export is used to export definitional components to flat files within the Windows
environment. The files are typed according to the level the transfer started with by
using a unique file extension. For example, if you started transferring at a class level,
the file extension would be .opc.

2. Import is used to import an exported file into the same type of component that it was
exported from. That is, if it were exported as a Class, it must be imported into a class.
File extensions are used to identify the file type.

 Class Development Environment 44

3. Generic Import is used to import a component or components into the same
component it was exported from. Generic Import knows how to import the
components

Traditional M Transport Tools

EsiObjects runs within any supported ANSI Standard M system. The model side (server)
of the system is written in M. It consists of M routines and globals. It will coexist with
any application that does not conflict with its namespace rules. All EsiObjects routines
and globals names begin with VES. The Veterans Administration has assigned this
namespace.

All definitional components (libraries, classes, methods, properties, …) created by
EsiObjects are mapped to routine and global namespaces when you create them.
EsiObjects gives you control over the mapping. It also gives you control over the
mapping of instances of those classes via the CREATE command. The Transport Tools
described above let you export and import all classes and their components. However, it
is often necessary to export and import object instances. Additionally, you may want to
import and export traditional M application routines and globals. The Traditional M
Transport Tools are designed for this purpose.

Session Browser Explained
The Session Browser is the tool used to browse through a specific class library or folder.
This tool is central to developing classes and folders.

You can add and remove classes, arrange the class hierarchy and build the class
definitions. Using this browser, you add methods, properties, events, relationships and
variables to define a class, and then launch the specific editors or wizards to define each
of the services.

The Session Browser also supports folders. You can add and remove folders, arrange the
folder hierarchy as well as populate the folders with objects that exist in the library
structure. When the folder is opened, all of its contents are displayed in a window. From
this folder you can access all the objects within it just as if you were working with them
directly.

The Session Browser appears as a consequence of connecting to a server session. It
contains all libraries and folders available in that session.

The picture below illustrates a Session Browser that contains a portion of the Base
library. The major components of the class hierarchy are generally described. Each
component in the hierarchy will be explained in detail in subsequent sections.

 Class Development Environment 45

Session Structures
There are two structures supported in EsiObjects: the library and folder structures. These
structures are made available in the Session Browser window at the time a session is
connected.

Library Structures

The Session Browser is used to migrate through and perform operations on class
components of the EsiObjects system.

The general class structure is a hierarchy as follows:

• A Library contains one or more classes.

• Classes contain, Interfaces, Variables, Nested Classes and Subclasses.

• Interfaces can be added as needed and contain the services of the Class, that is,
methods, properties, events and relationships.

• The Variables interface contains all the variables needed to define the internal state
of an object (instance). Two types of variables can be defined: Instance and Class.
Instance variables live within the actual object (instance) and Class variables live
within the Class object.

 Class Development Environment 46

• Nested Classes are classes that share the same namespace as their parents. They are
an integral part of their parent’s namespace. They do not inherit any of their parent’s
services.

• Subclasses are classes that do not share their parent’s namespace. They do inherit
their parent’s variables, interfaces and services.

The Session Browser is used to browse classes within a particular library. It is used to
traverse the class hierarchy, display the contents of the class interfaces and acts as a
launch pad for the method, property, relationship, event and variable editors. It offers
extensive functionality for the maintenance of the class hierarchy through popup and
main menu commands. Classes can be added, modified and deleted from the browser.

The Session Browser presents itself to you as a tab sheet at the time a session is
connected to.

Libraries Explained

EsiObjects supports Class Libraries. Libraries are used to group classes by some artificial
criteria that are usually based on application or organizational requirements. Libraries
provide a firewall between groups that prevent inadvertent damage to protected classes.

Two types of libraries are supported:

• Absolute

• Virtual
Absolute libraries physically contain classes. Virtual libraries do not physically contain
classes; instead, they can integrate classes contained in one or more absolute libraries. A
virtual library can also view some classes in absolute libraries by alternate names called
Aliases. It can even have multiple entries for a single class, each under a different name.

The relationship between virtual and absolute libraries is hierarchical, and never more
than one level deep. A virtual library imports classes from at least one absolute library,
but there is no restriction on the number of classes it can import, and the number of
absolute libraries from which they can come. Some or all of the classes in an absolute
library may be exported to any virtual library. An absolute library can export its class
names to many different virtual libraries. A virtual library is so flexible that it can view
any combination of classes in any absolute libraries by any valid names.

The following diagram illustrates these concepts.

 Class Development Environment 47

In this figure, there are two virtual and three absolute libraries. Absolute Library C
exports its Bag class to Virtual Library A, while Absolute Library E exports its Bag
class to Virtual Library B. This causes no conflict, but if Virtual Library A wants to
import Absolute Library E’s copy of Bag, it will have to do so under a different name.

Absolute Library D exports its FIFO and FILO classes to Virtual Library B under the
same names. It also exports them to Virtual Library A under different names: FIFO as
Queue, and FILO as Stack. The same class FILO can be viewed by one virtual library
as FILO and by another as Stack. Any number of virtual libraries under any combination
of names can view it.

To syntactically reference a class within a library, precede the class name with the library
name separated by a $. For example, FileManager$FMRoot would access the FMRoot
class within the FileManager library.

The Class Hierarchy Explained

In the Session Browser you can create new classes and link those classes in a hierarchy
that takes advantage of inheritance and/or private name spacing, providing for code reuse.
Additionally you can link these classes to classes in other libraries.

EsiObjects supports multiple inheritance. Therefore a class can inherit from any number
of superclasses. Though multiple inheritance can add complexity to your system and
should be used carefully, the benefits and flexibility provided can be worthwhile.

Additionally, EsiObjects supports nested classes. By default, classes in EsiObjects are
uniquely named within the library that contains them. A class is identified by a full name
of the form library$class. Nested classes provide additional flexibility in naming classes.

 Class Development Environment 48

EsiObjects allows a class to be nested within a containing class. The name of the nested
class is relative to the containing class. For example, if a class named Inner is defined as
a nested class within the containing class User$Outer, then the full name of the Inner
class is User$Outer>Inner. Nesting may be continued to any arbitrary depth. For
example, a class named Deeper can be defined within the container class
User$Outer>Inner, and its full name is User$Outer>Inner>Deeper.

The basic rule concerning the names of nested classes is that classes nested within a
given containing class must have different names. In this regard, the containing class
takes on some of the functionality of a library as being a scope for class names.

It is important to observe that nesting a class within a containing class does not make it a
subclass. A nested class does not inherit from the containing class unless it is explicitly
linked to it as a subclass.

A nested class always appears in the Session Browser as a subnode of the Nested Classes
node under its containing class. This is it’s principal node in the Session Browser. If a
nested class is linked as a subclass of another class, then it also appears in the Session
Browser under that other class, along with the subclasses of that class. But its node there
is identified by the special nested class icon . This nested class node cannot be expanded,
but double-clicking on it moves the Session Browser pointer to its principal node, which
can be expanded.

When a class is defined as a subclass of a nested class, it is not automatically nested
within the same container. To define a subclass that is also nested, first create the new
nested class and then link it to the desired superclass.

Reusable Libraries Explained

EsiObjects is delivered with a comprehensive set of pre-defined classes. These classes are
organized into libraries. Three libraries are delivered with EsiObjects, they are:

1. Master - a virtual library that contains a master list of classes in other libraries.

2. ESI - which contains system level support classes. Most classes are of little interest to
the application programmer. However, classes like TransportType are of great interest
since they provide the basic object transport capabilities needed for maximum
performance in a Client Server or Internet environment. They reside in the ESI library
because they are of great use to the EsiObjects system itself.

3. Base - which contains all the foundation classes supported by EsiObjects. They
represent extensive reusability. Some classes that are delivered with the EsiObjects
system are:

• Collections, a superset of the ODMG's Collections with associated iterator
classes.

• Immutables that support date and time stamping and ranges.

• Mix-In classes that, when dropped onto another class, provide its services through
multiple inheritance.

 Class Development Environment 49

• Name Pools that form instance hierarchies with full instance inheritance.

• Data Manager class that lets the programmer define nested Dictionaries for
maintaining instance indices based on the property of a class. The Data Manager
automatically maintains these instances using EsiObjects event processing
capabilities.

• Criteria classes that offer filter and range criteria functionality for searching
across instance ranges.

Folder Structures

Within a session, you can create hierarchical folders. These folders, when double clicked
on, will display a window. Within that window, you can drag any object displayed in the
Session Browser window including another folder.

Folders are useful when working on numerous objects that are disseminated throughout
the structures. They provide a way to keep your work concentrated, eliminating excessive
searching and migration to work on each component. It is a workflow enhancement that
increases your productivity.

Please note: Selecting an item within the Folder has the same affect as directly selecting
the item in library or folder structure. All menu operations will be performed indirectly
on the object selected, not directly on the item in the work window (The Remove
command is an exception to this rule).

 Class Development Environment 50

Session Browser Tools

Class Toolbar

Directly associated with the Session Browser is the Class Toolbar. If displayed, contains
buttons that let you perform class operations quickly based on the selected object within a
class. The toolbar is described below.

 Class Development Environment 51

Library Popup Menu

The Library popup menu is invoked inside the Session Browser's pane right clicking on
the library name or icon or by pressing Shift+F10 key combination or.

 Class Development Environment 52

Class Popup Menu

The Class popup menu is invoked inside the Session Browser's pane by right clicking on
a class or pressing Shift+F10 with the class selected. The pictures below illustrate the
functionality available on this popup menu.

 Class Development Environment 53

 Class Development Environment 54

Interface Popup Menu

The Interface popup menu is invoked inside the Session Browser's pane by right clicking
on an interface or selecting the interface and pressing Shift+F10.

 Class Development Environment 55

Service Popup Menu

The Service popup menu is invoked inside the Session Browser's tree by right clicking on
any property, method, event or relationship in the interface or pressing Shift+F10 with
the service selected.

Based on what service is selected, certain menu commands will be highlighted and others
will be grayed. However, all the functionality is the same no matter what type of object is
selected.

Multiple Inheritance Conflict

In the Session Browser, when a subclass inherits the same service from two separate
classes, this is known as a multiple inheritance conflict. An error results from this and is
indicated by an “E” with a circle around it (See the picture below).

If the user right clicks on the service and selects Properties from the pop up menu, a
window appears describing the problem or conflict. The window includes the service in
conflict, a description of the problem and the involved classes.

 Class Development Environment 56

To rectify the situation, you can override the service that is in conflict.

Using the Session Browser
In addition to migrating a library or folder structure, the Session Browser lets you
perform numerous operations within the structure. The operations you can perform are
defined by the popup of main menu for the object selected within the structure. The
following sections will describe the operations you can perform on these two structures.

Library Operations

Creating a New Library

This task is performed from the EsiObjects CDE Main Window.

1. Execute the File|New|Library command. The following dialog appears:

 Class Development Environment 57

2. Enter the Name of the Library. Library names, like many other EsiObjects names,
are from 1 to 31 characters long. The characters may be any combination of letters
and numbers, except that the first character must be a letter.

3. Enter an M global location for the Library’s objects. This should be distinct from
the other global locations in the dialog. Global locations can contain literal subscripts.
For performance reasons, it is recommended that all locations are stored within the
same global name, using distinct first level subscript name. For example
^CUST("Library"), ^CUST("Doc"), etc.

4. Enter an M global location for the Classes in the Library. This should be distinct
from the other global locations in the dialog.

5. Enter an M global location for the Library's Documentation objects. This should be
distinct from the other global locations in the dialog.

6. Enter an M global location for the Library's Source Code. This should be distinct
from the other global locations in the dialog.

7. Enter a Source Code Prefix to be used in naming all the M routines compiled down
from EsiObjects Source Code in the Library.

8. Press the OK button to create the library or press the Cancel button to discard all
entries and avoid creating a new library.

 Class Development Environment 58

9. EsiObjects then opens an empty Library Browser containing the name of the new
library in its title bar.

Source Code Prefixes—How Long?

The Source Code Prefix is a routine name prefix for the automatically generated M
routines in the library. ANSI Standard M routine names can be up to 8 characters long,
and there are 62 legal characters for each position (0-9, A-Z, a-z) after the first character.
The following table summarizes the number of possible routines, based on the number of
characters in the prefix you specify:

Chars Routines Possible
1 3,521,614,606,208 trillions
2 56,800,235,584 billions
3 916,132,832
4 14,776,336 millions
5 238,328 hundreds of

thousands
6 3,844
7 62

Note: If you have two projects whose source code prefixes accidentally overlap - it will NOT
cause problems. EsiObjects checks to see whether a routine name has been used, before using
it for a generated routine name. If the routine name has already been used, then EsiObjects
simply tries the next possible name. But source code prefixes should be helpful, making it
obvious which routines belong to a given library.

Source Code Prefixes should be long enough to reliably prevent conflicts between the
Library's automatically generated routines and all other routines on the system. However,
they should be short enough to guarantee a sufficient number of routine names. A four or
five character name, if it is unlikely to be used anywhere else, is usually safest.

Note: ESI Technology Corporation reserves the source code prefix VES. Do not use this prefix
for your source code. Likewise, do not use a one-character prefix of V or a two-character prefix of
VE since these prefixes may also generate conflicting routine names.

Same or Different Globals?

There is no restriction on overlapping global locations: it's possible to store all the source
code and documentation objects in the same global, for example. However, you may
experience reduced runtime performance when Class/Library information gets mixed in
with Source/Documentation objects.

One approach that makes sense is to assign different subscript locations within the same
global to the various components of a project.

 Class Development Environment 59

Deleting a Library

When deleting a library you need to be concerned about types of objects:

• Definitional

• Instance
A library object knows where its definitional objects are stored. This is the information
you give it when you create a new library. Every time you create a new class, interface,
service of a class or any documentation objects associated with these components, they
are automatically stored at the global roots specified at library creation time. Any M
routines generated as a result of compiling a code body are also mapped to the namespace
specified at library creation time.

However, instance objects are another matter. Instances will either be created as shared
or not shared (persistent or non-persistent). Non-persistent objects only have a lifetime as
long as the EsiObjects environment they were created in, consequently, we are not
concerned with them in the context of this discussion. Persistent objects, however, live
until explicitly deleted. These objects can be mapped to any location at creation time. The
EsiObjects CREATE command contains a Base keyword that lets you map instances of
a class to any M global root location (See the CREATE command in the EsiObjects
Language Reference Guide for a detailed description of the command). If you do not
specify a base location, EsiObjects will default the object to ^VESoshob.

Mapping instances to M global locations is totally up to you, consequently, you must
keep a record of what M global root locations these objects are stored under. It is up to
you to maintain the instance global nodes and their subscripts.

Follow the instructions below to delete a library.

1. Connect to the session that contains the library you want to delete.

2. Select the library you want to delete by clicking on its name or icon. (If the Session
Browser is not visible, make it visible by clicking on the Session Browser Tool Bar
button).

3. Execute the Edit|Delete command. You will be prompted with a warning. If you
want to proceed click on the Yes button.

At this point the library will be deleted. You will have to delete the instances manually by
killing the globals they live in. This can be done through the Xecute Shell.

Examining Library Properties

To invoke the Library Property Sheet, follow these instructions:

1) Select the library by clicking on the library name or icon in the Library Browser.

2) From the Object menu, select Properties.
The Library Property Sheet dialog contains only one tab, for the Library's General
properties.

 Class Development Environment 60

Class Operations

Creating Classes

Before you can create a new class, do the following:
1. Connect to the session that contains the library you want to add a class to.
2. Keep in mind that the Session Browser may not be visible. If this is the case, click on the

Session Browser button of the System Toolbar to make it visible.

Creating a Root Class

If you wish to add a new class to the library, without linking that class to any other class,
follow the steps below.
1. Either right click on the library name or icon and select the Add|Class command from the

popup menu or select the library and execute the File|New|Class command of the Main Menu
(or strike the Insert key and choose from the dialog).

2. The Create Class dialog appears. Enter the name of the class. Valid class names are
alphanumeric, with the first character being an alpha only. Class names can be up to 32
characters in length and must be unique within the library.

3. Select the class type: Concrete, Abstract, or Mix-in. The choice here does not affect the
behavior of the class, only the icon used to display the class in the tree panel.

 Class Development Environment 61

4. Select OK to create the class. The new class is displayed in the tree panel as a top-level class
directly below the library icon, in other words, with no super or subclasses.

Creating a Subclass

If you wish to add a new class as a subclass, follow these instructions
1. Either right click on the parent class name or icon and select the Add|Class command from

the popup menu or select the parent class and execute the File|New|Class command of the
Main Menu (or strike the Insert key and choose from the dialog).

2. The Create Class dialog appears. Enter the name of the class. Valid class names are
alphanumeric, with the first character being an alpha only. Class names can be up to 32
characters in length and must be unique within the library.

3. Select the class type either Concrete or Abstract depending on where the class is in the
hierarchy. If it is a terminal class (bottom of the hierarchy) it is Concrete. If it resides above
the bottom class, it is Abstract. The choice here does not affect the behavior of the class, only
the icon used to display the class in the tree panel.

4. Select OK to create the class. The new class is displayed in the tree panel directly below the
selected parent class.

Creating a Nested Class

If you want to create a Nested Class, follow the steps below. Nested Classes are
namespaced within a parent class. The parent class can be an Abstract, Concrete or Mix-
in class.
1. Either right click on the Nested Classes name or icon and select the Add|Class command

from the popup menu or select the Nested Classes by clicking on its icon and execute the
File|New|Class command of the Main Menu.

2. The Create Nested Class dialog appears. Enter the name of the class. Valid class names are
alphanumeric, with the first character being an alpha only. Class names can be up to 32
characters in length and must be unique within the library.

3. Select the class type either Concrete or Abstract depending on where the class is in the
hierarchy. If it is a terminal class (bottom of the nested hierarchy) it is Concrete. If it resides
above the bottom nested class, it is Abstract. The choice here does not affect the behavior of
the class, only the icon used to display the class in the tree panel.

4. Select OK to create the nested class. The new nested class is displayed in the tree panel
directly below the selected parent class.

Editing Class Properties

Editing class properties applies to any type of class, whether it be a root, subclass or
nested class.

Invoking the Class Property Sheet

There are several ways to invoke the class property sheet:

• From the Session Browser, right click on a class and select the Properties command
from the popup menu.

 Class Development Environment 62

• From the Session Browser, select a class and press Ctrl+Enter.

• Select the class and execute the Object|Properties command of the main menu.

General

Class General Properties are invoked by clicking on the General tab of the Class
Property Sheet. The General properties are presented when the property sheet dialog is
initially opened.

Alias

Aliases are used to map concrete class names to a virtual library under a different name.
For example, assume you have a virtual library where you want to map two classes that
have the same name from different libraries. Obviously you must change the name of one
of them to prevent a namespace conflict within the virtual library. This can be
accomplished by giving one of that classes an alias. Aliases are assigned to a virtual
library through the class’s property sheet.

Class Alias Properties are invoked by clicking on the Alias tab of the Class Property
Sheet.

 Class Development Environment 63

Linking Classes

If the class does not exist, go to the Creating Classes section and follow the instructions
for Creating a Subclass. If you wish to have an existing class be a subclass of another,
follow the steps below.

Linking Classes

To link two existing classes to each other in a super-subclass relationship, follow the
steps below.

1) In the Session Browser, select the class that is going to be the subclass in the
relationship.

2) Right click on the class name or icon and execute the Link command from the popup
menu or execute the Object|Link command from the main menu. You can also select
the class and press the Alt+L keys.

3) The Link to Superclass dialog appears.

4) Enter the name of the class to link as a superclass. If the class to link to is in another
library, specify the class name in the full library format: Libraryname$Classname.
For example, if you are linking to the class Array in the Base library, specify the
name as follows: Base$Array. If you are linking a nested class to another nested class,
you must use the special syntax Libraryname$Classname>NestedClassname>….

 Class Development Environment 64

5) Select the OK button to link the classes. The selected class becomes a subclass of the
class specified in Step 4.

Breaking Class Relationships

If you wish to break the linkage between two classes or nested classes, follow the steps
below. These instructions apply to normal and nested classes.

1) In the Library Browser, select the subclass (normal or nested) you wish to remove
from the relationship.

2) Right click on the class name or icon and execute the Unlink command in the popup
menu or execute the Object|Unlink command in the main menu. You can also select
the class and press the Alt+U keys.

3) If there are multiple superclasses you are prompted for which superclass to unlink
from. Select the superclass from the dialog.

4) The selected class and its descendants are automatically unlinked from the
relationship and are no longer subclasses to the parent. Note that the selected class
may disappear from the tree view if it was unlinked from another class in the same
library and is now a top-level class.

Using Drag-and-Drop to Build the Hierarchy

You can build the class hierarchy using drag-and-drop. This allows for a much easier way
to link classes than using menu options.

• In the Session Browser, select a class you wish to link to another either as a subclass
or a superclass.

• Holding the left mouse button down on the class name or icon, drag the mouse cursor
to the class name you wish to link too.

• If you need to scroll down or up to get to the class name to link to, drag the cursor
just below or above the tree panel. Doing so will cause the tree to scroll in that
direction.

• If you need to navigate down to a subclass, drag the cursor over the superclass and
press the Shift key. The display of the class will be expanded to show the subclasses.

• Once you have dragged the cursor over the desired class, lift the left mouse button to
drop the class. You will be prompted to link the dropped class as subclass or a
superclass.

• Selecting Superclass will make the dragged class the superclass. Selecting Subclass
will make the dragged class the subclass.

 Class Development Environment 65

Promotion and Generalization

Promotion and Generalization are two related class-restructuring operations that cause a
service (event, relationship, method or property) to be moved up "higher" in the class
structure. These operations apply to normal and nested classes.

• In Promotion, the service is simply moved up to the superclass without changes.
Generally (but not always) you should delete from the subclass unless you want to
override the service. The Promote command on the service popup menu, the Main

Menu Object|Promote command or the Class Toolbar button moves a service
up to the superclass.

• In Generalization, the service is moved up to the superclass and modified (or
rewritten entirely) in a more general way to accommodate a variety of possible
subclasses. Generally it is not deleted from the subclass. It is merely moved up the
class tree to the proper level of abstraction so that other subclasses can inherit the
service.

All services can also be moved up to the superclass by using drag-and-drop.

If you need to delete the subclass service, then simply select it and press the Delete key
(or use the Delete command on the popup menu).

Demotion and Specialization

Demotion and Specialization are two related class-restructuring operations that cause a
service to be moved down "lower" in the class structure. These operations apply to
normal or nested classes. You can demote a service by

1. Executing the Override command in the service popup menu.

2. Executing the Object|Override command of the Main menu.

3. Clicking on the Override button of the Class Toolbar.

Executing any one of these commands will move a method, property, event or
relationship down from the superclass from which it is inherited.

• In Demotion, the service is simply copied down to the subclass without changes. The
service remains in the superclass. You may want to keep it there for further
specialization (see next bullet) or you may want to delete it and use the inherited
service.

• In Specialization, the service is moved down to the subclass and modified (or
rewritten entirely) in a more specific way to accommodate the specific needs or
features of the subclass. Generally it is not deleted from the subclass.

Services can also be moved down to the subclass by using drag-and-drop.

If you need to delete the superclass service, then simply select it and press Delete (or
execute the Delete command in the popup or main menu.)

 Class Development Environment 66

Finding a Class in the Hierarchy

Large application libraries as well as the ESI and Base libraries contain a large number of
classes. Often you will know where the class resides in the library hierarchy. However,
often you won’t. To help you access a class quickly, EsiObjects provides a means by
which you can go to a class directly if you know the full or partial name of the class. To
find a class, follow the steps below.

1) To go to a class directly, click on the GoTo Class button that is on the Class
Toolbar, press the Ctrl G key combination or execute the Tools|Search|Goto Class
command on the main menu. A Find Class dialog box will display.

2) Specify a path name in the form of Libraryname$Classname or
Libraryname$Classname>NestedClassname>… .

3) Click on the Find button to initiate the search. The dialog to expand if two or more
hits are found. If only one hit is found, you will be transferred directly to that library
class. If the Class Name list is displayed, you may select the class you want to
transfer to by double clicking on the class name you want.

Please note that the search is confined to the library of the currently selected object in the
Session Browser. That is, if you have the Collection class selected in the Base library, the
search will be confined to the Base library only.

 Class Development Environment 67

Deleting Classes

Deleting a class is a straightforward Session Browser operation. Follow the steps below:

1) Select the class you want to delete.

2) Right click on the selected class and execute the Delete command in the popup menu
(or the Edit|Delete command in the main menu or press the Del key)

3) A warning dialog will appear. Click on the Yes button if you want to delete the class
from the library. If you do not, click the No button.

If you chose Yes, the class and all its interfaces and services will be deleted. The Library
structure within the Session Browser will be updated.

Please Note: If the class had subclasses, they will not be deleted. They will become root
classes.

Interface Operations

Interfaces are a means of partitioning class services into logical groupings. The Primary
interface is the default interface and does not need to be specified in the object message
structure. Other interfaces can be created at will. One other interface that has significance
besides Primary is Factory. Factory, if defined, is reserved and may contain constructor
and destructor methods that are automatically executed at object instantiation time.

Some benefits of being able to partition class services into separate interface are:

• Minimized the number of services the programmer has to view to find the one of
interest, increasing productivity.

• Minimizes the number of services the User Interface must display, increasing
response time.

• Offers the capability of adding security to the interface in the future.

Creating Interfaces

If you wish to add a new interface to the class, follow the steps below.
1) Either right click on the class name or icon and select the Add|Interface command from the

popup menu or select the class and execute the File|New|Interface command of the main
menu (or strike the Insert key and click on the Interface radio button in the dialog).

2) EsiObjects will automatically create a new interface giving it a name that begins with
Interface and ends with a number. To change its name:
a) Select it by clicking on the name and either

i) Right click and execute the Rename command on the popup menu.
ii) or, execute the Rename command on the main menu.

b) or, simply click the second time to go into Rename mode directly.
Valid interface names are alphanumeric, with the first character being an alpha only. Interface
names can be up to 32 characters in length and must be unique within the class.

 Class Development Environment 68

Deleting Interfaces

Deleting interfaces is a straightforward Session Browser operation. Follow the steps
below:

4) Select the interface you want to delete.

5) Right click on the selected interface and execute the Delete command in the popup
menu (or the Delete command in the main menu or press the Del key)

6) A warning dialog will appear. Click on the Yes button if you want to delete the
interface from the class. If you do not, click the No button.

If you chose Yes, the interface and all it’s services will be deleted. The class structure
within the Session Browser will be updated.

Variable Operations

Creating Variables

If you wish to add a new variable to the class, follow the steps below.

1) Left click on the Variable interface.

2) There are three ways to create a variable:
a) Right click on the Variable interface and select the Add command from the popup menu
b) or execute the File|New|Instance Variable or File|New|Class Variable command of the

main menu
c) or strike the Insert key.

3) In all cases you will be presented with a dialog box requesting the variable name.
Enter the name of the variable.

4) Only in case 1b will the correct type be selected. Use the pull down list box to select
the type of variable. EsiObjects supports Instance and Class variables.

Valid variable names are alphanumeric, with the first character being an alpha only. Names can
be up to 32 characters in length and must be unique within the variable interface.

Deleting Variables

Deleting interfaces is a straightforward Session Browser operation. Follow the steps
below:

1) Select the variable you want to delete.

2) There are three ways to delete the variable:

a) Right click on the selected variable and execute the Delete command in the popup
menu

b) or execute the Object|Delete command in the main menu

c) or press the Del key.

 Class Development Environment 69

3) A warning dialog will appear. Click on the Yes button if you want to delete the
variable from the interface. If you do not, click the No button.

If you chose Yes, the variable will be deleted. The structure within the Session Browser
will be updated.

Modifying a Variable Declaration

By creating a variable in the Variable interface of a class, you have declared it to the
compiler. EsiObjects contains a Variable Definition Editor that lets you specialize the
declaration. To learn more about specializing a variable, refer to the Variable Definition
Editor section of this guide.

Service Operations

Creating Services

Within an Interface, you may create one or more object services. They are, Methods,
Properties, Events and Relationships. Follow the steps outlines below to add a service.

1) Select the interface by left clicking on it in the Session Browser.

2) There are three ways to create an interface service:
a) Right click on the interface and select the Add command from the popup menu
b) or execute the File|New|Method, Property, Event or Relationship command on the

main menu
c) or select the interface and then strike the Insert key.

3) In all cases you will be presented with a dialog box requesting the service name.
Enter the name of the service.

4) Only in case 1b will the correct type be selected. Use the pull down list box to select
the type of service.

Valid service names are alphanumeric, with the first character being an alpha only. Names can be
up to 32 characters in length and must be unique within the interface.

Deleting Services

Deleting a service is a straightforward Session Browser operation. Follow the steps
below:

1) Select the service you want to delete.

2) There are three ways to delete the service:

a) Right click on the selected service and execute the Delete command in the popup
menu

b) or execute the Object|Delete command in the main menu

c) or press the Del key.

 Class Development Environment 70

3) A warning dialog will appear. Click on the Yes button if you want to delete the
service from the interface. If you do not, click the No button.

If you choose Yes, the service will be deleted. The structure within the Session Browser
will be updated.

Modifying a Service

EsiObjects contains an editor for methods, properties and events. It contains a wizard for
relationships. The description and use of these editors are described in the following
sections:

• for Methods, refer to the Method Editor section.

• for Properties, refer to the Property Editor section.

• for Events, refer to the Event Template Editor section.

• and for Relationships, refer to the Relationship Wizard section.

Synchronizing the Tree Selection

Often when editing a service of a class, you will be browsing in the tree structure of one
of the libraries that is a part of the current session. You will most likely want to
synchronize the tree selection in the Session Browser with the currently active service
editor. You can do this by using the Find in Tree function. To use the Find in Tree
function, follow these steps:
1. Select the editor for the service you want to synchronize.
2. Execute the View|Find in Tree command or, if the Class Toolbar is visible, click on the Find

in Tree button.

The tree in the Session Browser will readjust and expand if necessary. The service
associated with the selected editor will be selected and highlighted.

Folder Operations
Folders are folders in the traditional Windows sense. Folders can be organized into
hierarchical structures. Each folder may have subfolders. Within each folder, you can
store library, class, interface or service objects that exist in any library structure. All
menu operations that are normally available to the object in the library are available to
you through the folders. Folders provide an indirect means of accessing all the objects in
a library structure.

Folders are used to store objects that you are currently working on. They can also be used
to store disparate objects that you want to export as a unit. Folders are general-purpose
objects that can be used for a number of different reasons.

The picture below illustrates a typical folder structure in the Session Browser and it’s
Folder Content window in the client area.

 Class Development Environment 71

 Class Development Environment 72

Folder Structure Operations

The Session Browser is used to perform folder structure operations. The operations can
be accessed through a popup menu. The following illustrates the popup menu that
appears as a result of right clicking on a folder name or icon.

Most of the operations are the same operations that apply to the library structure. The
Add, Delete and Edit operations will be explained here.

Creating a New Folder

If you wish to add a new folder to the class, follow the steps below.
1) First determine where you want the folder. Select an existing folder if you want the new

folder to be a subfolder. If you want it to be a root (top level) folder, select any object in a
library.

2) To invoke the New folder dialog, do one of the following:
a) Right click on the selected item and execute the Add command.
b) Execute the File|New|Folder command in the main menu.

3) Enter the name of the folder in the Create Folder Name field. Pull down the Type combo-box
field and select the type of folder. Two types of folders are available: Common and Private.
Common is shared among all programmers sighed into the session. Private is private to you

 Class Development Environment 73

and not shared. Private is based on you current initials. The two types are available under the
following conditions:
a) Common and Private only when the folder is a root or subfolder to another Common

folder.
b) Private only when it is a subfolder to another Private folder.
Click on the OK button to create the folder.

Valid folder names are alphanumeric, with the first character being an alpha only. Folder names
can be up to 32 characters in length.

Deleting a Folder from the Structure

Deleting a folder is a straightforward Session Browser operation. Follow the steps below:

1) Select the folder you want to delete.

2) Right click on the selected folder and execute the Delete command in the popup
menu (or the Edit|Delete command in the main menu or press the Del key)

3) A warning dialog will appear. Click on the Yes button if you want to delete the
folder. If you do not, click the No button.

If you chose Yes, the folder and all its contents will be deleted. The Folder structure
within the Session Browser will be updated.

Note: If the folder has subfolders, they will be deleted also!

Moving a Folder and its Content to another Folder

By default, all drag and drop operations on a folder are deep copy operations. That is, if
you drag a folder onto another folder and drop it, only the contents will be transferred.
The actual folder structure will remain unaltered. All pointers from the folder being drug
and dropped will be merged with the contents of the target folder. However, the source
folder will be unaltered.

If you want to move the folder and its contents, there are two ways to do this.

1) Left click on the folder and drag it to the folder you want to move it to as a subfolder.
Press the Ctrl key down and then drop the object. The folder will become a subfolder
of folder you dropped it on and it will be removed from its original position in the
tree.

2) Right click on the folder and drag it to the folder you want to move it to as a
subfolder. Drop it. At this point a popup menu will appear giving you the option to
Copy, Move or Cancel. Select the Move. The folder will be inserted as a subfolder
and removed from its original location.

 Class Development Environment 74

Copying a Folder’s Content to another Folder

As discussed under the Move operation, all drag and drop operations on a folder structure
are by default deep copy operations. The copy operation only moves the content of the
folder to another folder. There are two ways of copying the contents of a folder.

1) Left click on the folder and drag it to the folder you want to move it to as a subfolder.
Drop it. The folder contents, if any, will be copied to the target folder. The source
folder will remain in its original position and the contents will be unaltered.

2) Right click on the folder and drag it to the folder you want to move it to as a
subfolder. Drop it. At this point a popup menu will appear giving you the option to
Copy, Move or Cancel. Select the Copy. The source folder contents will be copied to
the target folder and the original folder will remain unaltered.

Invoking the Folder’s Content Editor

Each folder in the structure may or may not have content. You can invoke the Folder
Editor by simply double clicking on it or alternatively, performing the following steps:

1) Select the folder you want to edit.

2) Right click on the selected folder and execute the Edit command in the popup menu
(or the Object|Edit command in the main menu or press the Enter key)

3) A folder content editor window will appear. It will display the pointers to the objects
in the library structures if those objects were dragged into the edit window.

Refer to the Section Folder Content Editor for information on how to use the editor.

Finding Library Objects and Folders
As a programmer, you generally remember class names, or at least, part of the name.
EsiObjects contains a structural search feature called GoTo Class. This feature is a part
of the Session Browser window. This function can be invoked by first selecting the
library (or an object in the library) and then pressing the Ctrl+G keys or executing the
View|Toolbars|Class command of the Main Menu. A Find Class dialog will be displayed
in the client area. You can enter a class name to search for. The name may contain the ‘*’
wildcard character. If it does not contain the character, the name will be searched for
literally.

For example:

• If the class name ‘Collect’ is entered, the system will search specifically for a class
called ‘Collect’.

• If you enter the class name ‘Collect*’, the system will look for a class name that
begins with the characters ‘Collect’ and ends with any other valid name characters. If
one class is found with a name fitting this pattern, the system will automatically go to
that class in the selected Session Browser, opening up the tree structure at that point.
However, if the system finds more than one class matching this pattern, you will be

 Class Development Environment 75

presented with a list of the hits. Selecting the class you want will then prompt the
system to go to that class and open up the library structure.

• If you enter a class name with more that one wildcard characters, the system will look
for that pattern. If you enter a ‘*Collect*’ for example, the system will search for
class names that begin with any valid characters and end with any valid characters
having the literal characters ‘Collect’ anywhere in between.

Folder Content Editor
Associated with a folder in the folder structure is its content. The content can be viewed
by invoking the Folder Content Editor.

Folder Content Editor Explained
The Folder Content Editor is a window that contains object pointers to the actual objects
in the library structures. The content window may contain any object in a library
structure: library, class, interface or service (method, property, relationship or event) as
well as subfolders. Since all objects in the folder window are pointers to object in the
library structure, any menu operation performed on a selected object is actually
performed on the target object.

 Class Development Environment 76

Property Sheet

The picture below illustrates and describes the folder property sheet. You can change the
characteristics of a folder by modifying its properties. Various check boxes exist for the
purpose of permitting or inhibiting menu operations on the folder content objects or the
folder itself.

Popup Menu

Menu operations performed on each object in the Folder Editor window are the same
operations performed on the object when directly accessed via a library structure. For
example, the method popup menu (and main menu commands) will contain the same
commands and, indeed, look the same. The same is true of any other object and its popup
and main menu commands.

 Class Development Environment 77

There is one exception to this rule however. Each popup menu will have two additional
segments attached to the bottom of the common popup that will contain three commands.
These commands are specific to the folders (See each of the appropriate sections in this
guide for information about menu commands specific to the library object type.). The
following illustrates the specific folder commands.

Using the Folder Content Editor

Linking a Library Object to a Folder

You may move any object from a library structure (including the library itself) or folder
to a target folder in two different ways.

1) Drag the object from a library or folder to the target folder using the left button of the
mouse and drop it. The object will be placed in the folder.

2) Drag the object from a library or folder to the target folder using the right button of
the mouse and drop it. A popup menu will appear with two commands: Link and
Cancel. Cancel will let you abort the operations and Link will complete the
operation. If Link is chosen, the object will be placed in the folder.

Removing a Library Object Pointer from a Folder

Removing a object pointer from the folder is simple.

 Class Development Environment 78

1) Within the Session Browser, double click on the folder that contains the object
pointer you want to remove.

2) Select the object pointer from the Folder Editor window.

3) Right click on the selected object pointer to invoke the popup menu.

4) Execute the Remove command.

Note: Performing this operation will remove the object pointer from the folder; it will not delete the
actual object form the library structure.

Indirect Library Operations using the Folder Contents

As stated in the Popup Menu section, all objects in the folder are pointers to the actual
object in a library structure that is a part of a session. Any operation you perform on a
selected item via a popup (or main) menu will be applied to the object in the library
structure.

Activating the Indirect Delete Command

Because the operations are indirect, it is possible to become confused and perform certain
operations that have unintentional consequences. The Delete command is one of those
operations. Because the Delete command can have undesirable consequences, it has been
made a personal preference. That is, you will not see the Delete command unless that
preference is enabled. See the Preference Tab Sheet subsection of the Using User Options
section in the guide for more information.

Populating the Folder Content

Populating folders is accomplished using drag and drop. Objects can be drug in the
following ways:

1. From a library structure and dropped onto a folder in the folder structure.

2. From a library structure and dropped onto a Folder Editor window.

3. Between Folder Editor windows.

Performing Operations on the Folder Content

Operations are performed on a folder object by selecting it and then using the popup
menu or the appropriate main menu command.

Note: All operations performed via the Folder Content window are indirectly applied to the actual
object in the library structure except the New Folder, Remove and Find in Tree.

 Class Development Environment 79

Synchronizing the Library Object with the Folder Selection

Often when working out of a folder window, you may want to synchronize the
definitional object pointed to with the actual object itself in the Session Browser. You can
do this by using the Find in Tree function. To use the Find in Tree function, follow these
steps:
1) Select the definitional object pointer in the folder you want to synchronize.
2) There are three ways of executing the Find in Tree command:

a) Execute the main menu View|Find in Tree command
b) or, if the Class Toolbar is visible, click on the Find in Tree button
c) or, right click on the selected item invoking the popup menu and execute the Find in

Tree command.

The tree in the Session Browser will readjust and expand if necessary. The definitional
object pointed to by the selected object will be selected and highlighted.

Variable Definition Editor
Variable Definition Editor Explained
The Variable Definition Editor lets you declare variables within a class. It may be
invoked by double-clicking a variable name in the Variable interface of a Class in the
Session Browser.

Objects are distinguished by a unique identifier known as an OID (object ID). The
externally visible behavior of an object is defined by its methods and properties. An
object encapsulates state information, which is stored using instance and class variables.
Their values are accessible only within the definition of the methods and properties of the
class.

EsiObjects supports two atomic value types: a string and an Object Identifier (OID). The
string definition is based on the ANSI MUMPS definition of a string. The OID has been
added to the language specification as a part of the EsiObjects object model.

A variable may be bound to a simple literal string (or number), or it may refer to another
object by its OID. The EsiObjects Variable Definition Editor is used to declare these
variables and the type of value they will be bound to. You can control if and when a
variable is initialized at object creation time and what its initial value will be.

An instance variable for a class may be initialized when an object of the given class is
instantiated (created). Initialization may be deferred until the value of the variable is first
referenced in code. Alternatively, initialization can be bypassed entirely. In this case, the
programmer must explicitly assign the value of the variable.

The initial value may be specified as an expression or an object pointer. In the latter
case, you specify the class of the target object, which is created when the variable is
initialized.

 Class Development Environment 80

In addition, if the variable is initialized with the OID of another object, there are
advanced features that enable you to define the parameters used when that object is
created and the parentage of the object. In other words, is the object referenced by the
variable owned by the parent object? Or it is an external object that is a peer of the
parent?

General Tab Sheet

The Variable Definition Editor is used to declare and edit EsiObjects Variable
Definitions. It is invoked by selecting the Variable interface within the Session Browser
and then double-clicking on a variable icon in the detail pane. The editor contains two
different displays, covering both General and Advanced topics.

The Variable Definition Editor's General display supports the basics of variable
creation. In many cases, it is all that is needed to create a variable definition.

 Class Development Environment 81

Advanced Tab Sheet

The Variable Definition Editor's Advanced display allows more detailed levels of
information to be specified when creating a variable definition. It includes direct support
for CREATE command parameters, and allows the variable's definition to be manually
maintained by writing the relevant code "by hand".

 Class Development Environment 82

Variable Properties

The Variable Properties property sheet can be invoked from the Main Menu
Object|Properties command or the Variable popup menu Properties command when the
variable is selected in the Session Browser It displays the properties of a specific
variable.

 Class Development Environment 83

Variable Menus

Interface Popup Menu Commands

The Variable popup menu is invoked from the Session Browser, by right clicking on the
Variables interface of a class or pressing the Shift+F10 key combination.

 Class Development Environment 84

Variables Popup Menu Commands

The Variables popup menu is invoked from the Session Browser, by right clicking on a
specific class or instance variable or pressing Shift+F10 key combination.

Using the Variable Definition Editor

Invoking the Variable Definition Editor

There are four ways to invoke the Variable Definition Editor. From within the Session
Browser, select the variable by clicking on its icon or name then:

1) Double click on the icon or name.

2) Press the Enter key.

3) Pull down the Main Edit Menu and select the Edit command.

4) Invoke the popup menu by right clicking on it (or by pressing Shift+F10). Choose
the Edit command.

 Class Development Environment 85

Editing Variable Properties

There are three ways to invoke the Variable Property Sheet. From within the Session
Browser, select the variable by clicking on its icon or name then:

1) Press the Ctrl+Enter key.

2) Execute the Object|Properties command.

3) Invoke the popup menu by right clicking on it (or by pressing Shift+F10). Choose
the Properties command.

The Variable Definition Property Sheet dialog contains only one tab that contains all the
properties of a variable. Those properties that can be changed are highlighted and those
that cannot are grayed out.

Deleting a Variable

There are three ways to delete a variable. From within the Session Browser, select the
variable by clicking on its icon or name then:

1) Press the Del key.

2) Pull down the Main Edit Menu and select the Delete command.

3) Invoke the popup menu by right clicking on it (or by pressing Shift+F10). Choose
the Delete command.

Method Editor
The Method Editor enables you to write a method. A method is a body of code that
performs a specific operation within the object. Unlike a property, which usually
represents the data within the object, a method represents an operation. A method gives
the object some of its behavior.

The Method Editor allows you to enter code, check its syntax, compile and save multiple
versions of the source code. Compiling a method means compiling the source code for
runtime use. The code can be compiled for release or debugging.

A Method Editor is invoked by double clicking on a Method Icon in the Session Browser.
Note that once changes are made to the method code, the code must be compiled to
reflect the changes in the actual invocation of that method.

 Class Development Environment 86

Method Editor Explained
The Method Editor is used to edit EsiObjects methods. It appears in the client area of
the EsiObjects Main Window . It can be invoked by double-clicking on a Method icon in
the library tree structure. The illustration below describes all of the components of the
Method Editor.

Method Properties

Selecting the Properties entry from the appropriate pull-down or pop-up menu accesses
the Method Properties dialog. It lets the user view and edit the properties of the method.

 Class Development Environment 87

General Method Property Sheet

The General property sheet of a method contains editable information about the method.
It lets you change this information, changing the behavioral characteristics of the method.

Information Method Property Sheet

The Info property sheet contains information about the method. It cannot be edited.

 Class Development Environment 88

 Class Development Environment 89

Method Menus

Access to method functionality is available through the Main Menu as well as popup
menus within each windowpane. The popup menu commands are explained below.

Source Code Popup Menu

The Source Code popup menu is invoked by right clicking inside the source code pane of
the Method Editor window or pressing Shift+F10 key combination.

 Class Development Environment 90

Version Popup Menu

The Version popup menu is invoked by right clicking inside the version history pane of
the Method Editor Window or pressing the Shift+F10 key combination.

Using the Method Editor

Creating a Method

To create a method, follow the steps below.

1) In the Session Browser, expand the class to which you wish to add a method by
clicking on the expansion box (box with the + in it).

2) Now expand the interface that will hold the method. This will display all exiting
services as a sub-tree to the interface.

3) Click the right mouse button on the interface name to bring up the popup menu.
Select the Add option. (Note that you also could press the Insert key to add an item.)

4) The Add to Interface dialog appears. Enter the name of the method. Valid names must
begin with an alpha character and can contain up to 32 alphanumeric characters.
Make the name something that gives a sense of what behavior the method provides.

 Class Development Environment 91

5) Pull down the combo box and select Method from the list.

6) Click on the OK button to add the method to the interface.

Editing a Method

Once a method has been added to the interface, you can manipulate it in many ways. By
selecting the method and right clicking on it, a popup menu is displayed that allows you
to delete, edit, and rename the method among other operations. Note that each operation
has a keyboard equivalent that will invoke the action directly.

To edit a method, perform the following steps:

1. Select the method to edit. As described above, clicking the right mouse button on the
method name will display a popup menu from which you can select the Edit option.

2. The method editor will appear in the client area of the Main Window. It will contain
the source code to be edited. You can now create or modify the code. You can also
create new versions as well as compile and/or syntax check the code. If you want to
create or modify documentation on the method, make sure the Documentation
Window is active. Simply click in the Documentation Window and start typing the
text. If the Documentation Toolbar is not active, chose the
View|Toolbars|Documentation to activate it.

3. Additionally, pressing the Enter key or double-clicking on the method name in the
interface will also invoke the editor.

Deleting a Method

To delete a method, follow these steps:

1) In the Session Browser select the method that you want to delete.

2) Right click on the method icon and select the Delete command from the menu.

3) A verification dialog will ask you if you want to continue. Answer Yes. At this point
the method will be deleted and the library structure will readjust to the deletion.

Reusing the Method Editor Window

User Option Preference

The User Option Preference tab sheet contains a check box call Redisplay. When this box
is checked, EsiObjects will always look of a method editor in the client area before
creating a new one. If one exists, it will reuse that Method Editor Window, displaying the
newly selected method code in that window. If the method in that window had changes
made to it, the window will let you save it before proceeding.

Drag-and-Drop

Another approach to reusing a Method Editor window that is already displayed in the
client area is to drag-and-drop the method name into an open editor as outlined below:

 Class Development Environment 92

1. There must be a Method Editor already open in the client area. And some portion of
the code pane must be visible.

2. Select the method to edit from the Session Browser, hold down the left mouse button
on the item name and drag the cursor to the editor's code pane.

3. Note that the cursor will indicate when a valid area to drop the item is reached by
changing to an cursor arrow with a plus box attached to it. When the cursor shows
this indication, lift the left mouse button to drop the method.

4. The context is switched to the Method Editor context.

5. If the original method being edited has been modified without being saved, you will
be prompted to save the changes prior to the context being switched. Click Save to
save the changes, Discard to throw away the changes, or Cancel to cancel the drop
operation.

Editing Method Properties

Properties of a method can be edited using the Method Property sheets. There are at least
3 ways to invoke the Method Property sheet:

1) From within the Session Browser, select the appropriate method and press
Ctrl+Enter.

2) From within the Session Browser, select the appropriate method and invoke the
popup menu by right clicking on the name or icon, or by pressing Shift+F10. Choose
the Properties menu item.

3) From within the method editor, select Properties from the Edit menu.

Once the property sheet is displayed in the client area, you can edit those fields that are
changeable.

See the Method Properties under Method Editor Explained section above for a complete
description of all the fields.

Managing Source Versions

Explicit Source Management

When saving the source code of a method (using the source code popup menu) there are
four distinct options related to compiling and managing source code versions:

1) Save Current Save the source code under the version number currently being
edited.

2) New Version Save the source code under a new (highest) version number.

3) Syntax Check Check the syntax of the current source text.

4) Compile Compile the current source text.

 Class Development Environment 93

Source Code User Options

In the EsiObjects User Options, there are two specific options related to source code
version control:

Auto New Version When prompted to save source code, the New Version check box
on the Save dialog will default to what is set here. When checked, the
default action on saving source code will be to create a new version of
the source code.

Compile On Save When prompted to save source code, the Compile check box on the
Save dialog will default to what is set here. When checked, the default
action on saving source code will be to compile the source code after
saving.

Default Save Options

If the user closes a source code object without saving changes, then the Save Source
Code dialog shown below will be displayed.

The options that are selected, by default, will be determined by the appropriate user
options.

 Class Development Environment 94

Property Editor
The Property Editor is a tool that enables you to define a property within a particular
interface within a class. A property is a specialized method that supports up to 10 types of
access known as accessors. Properties are typically used to expose the state of an object.
For example, the Value accessor can retrieve the value of an instance variable and return
it to the caller. It could also perform some calculation on the values internal to the object.
In addition to retrieving a value from an object, the Assign accessor is designed to alter
the object's state. It can do this by assigning new instance variable values to the object.

One important thing to remember is that each accessor is associated with the EsiObjects
language. For example, the Value accessor would be invoked in the following construct:

Set A%Temp=I%Customer.Name

This statement will cause the Value accessor of the Name property associated with the
object accessed by I%Customer to be executed. The value returned form that accessor
would be bound to the temporary variable A%Temp for local use.

Conversely, the Assign accessor would be invoked for the following construct:

Set I%Customer.Name="ACME Tire Company"

The Assign accessor of the Name property associated with the I%Customer object would
be passed a parameter that would contain the name string on the right. The Assign
accessor code would associate the value passed in with the proper instance variable.

The Property Editor enables you to define the code (if any) for the particular types of
access you are going to allow on the property.

Property Editor Explained
The Property Editor allows you to enter code, check its syntax, compile and save
multiple versions of the source code for each accessor. Compiling a property accessor
means compiling the source code for runtime use. The code can be compiled for release,
debugging or both.

A Property Editor is invoked by double clicking on a Property Icon in the Session
Browser. Note that once changes are made to the property accessor code, the code must
be compiled to reflect the changes in the actual invocation of that accessor.

 Class Development Environment 95

Property Editor Window

The Property Editor is used to edit Properties. It appears as a client area of the
EsiObjects CDE Main Window.

The picture below illustrates the general components of the Property Editor. Keep in
mind that for a specific accessor, most of the functionality is the same as a method. In
fact, internally to EsiObjects, each accessor is a method.

One of the User Preferences provided by EsiObjects in its Tools|Options menu entry is
the Compile on Save feature. When this preference is selected, a release compile is
automatically performed whenever a version is changed and saved. Checking this
preference causes the check box in the Save Source Code dialog to be checked. If
Compile on Save is not selected, the user can save changes to the source code without
compiling it. When the code is invoked, the source code shown on screen may be out of
sync with what actually gets executed. EsiObjects detects an out of sync condition when
the current release or debug version was modified and saved after compilation. It alerts
the user to this condition by displaying a red x after the release or debug compilation
timestamp. The out of sync marker goes away when a release and debug compile are
done against the same source code.

 Class Development Environment 96

Property Editor Accessor Tab Bar

The tab bar contains the name and implementation status of each of the properties ten
accessor methods.

The icon that appears to the left of each accessor name contains a color that indicates the
accessor’s status. A description is given below:

Icon Meaning

 Not implemented. The specified accessor is not implemented; even
so, default template source code appears as a user preference.

 Implemented here. The accessor is implemented by the selected
interface. In the case of an inherited interface, "here" refers to the
class that implements the interface.

 Inherited. The accessor is implemented at a class that is an
ancestor of the class that implements the selected interface.

There are ten different accessor methods, each used for a different purpose.

Item Description

 Class Development Environment 97

Assign Invoked whenever there is an attempt to assign a value to
the property. The accessor's first argument is the value
assigned to it; the remaining arguments, if any, are array
subscripts specified for the property.

Create Invoked when there is an attempt to initially create the
property. The accessor's first argument is the value
assigned to it; the remaining arguments, if any, are array
subscripts specified for the property.

Kill Invoked when there is an attempt to kill the property. The
accessor's arguments, if any, are array subscripts specified
for the property.

Value Invoked whenever there is an attempt to reference the
property's value. The accessor's arguments, if any, are
array subscripts specified for the property.

$Data Invoked whenever the $DATA function is applied to the
property. The accessor's arguments, if any, are array
subscripts specified for the property.

$Get Invoked whenever the property is the first argument of the
$GET function. The accessor's first argument is the default
value to be returned if the property considers itself to be
undefined; the remaining arguments, if any, are array
subscripts specified for the property.

$Normalize Invoked whenever the property is the first argument of the
$NORMALIZE function, which is used to normalize a
potential value to one that is appropriate for the property.
For example, an integer-valued property might always
return an integer. The accessor's arguments are input
values to be normalized.

$Order Invoked whenever the property is the first argument of a
$ORDER function. The accessor's first argument is the
direction (1 by default, -1 for reverse $ORDER); the
remaining arguments are the array subscripts specified for
the property.

$Query Invoked whenever the property is the first argument of a
$QUERY function. The accessor's arguments are the
subscripts, if any, specified for the property.

$Valid Invoked whenever the property is the first argument of the
$VALID function. The accessor's first argument is the value
to be validated; the remaining arguments, if any, are the
array subscripts specified for the property.

Property and Accessor Properties

There are two levels of property properties. The property level properties are on the
property itself. Accessor level properties are on each accessor of the property. Accessors
are, in essence, individual methods associated with the property.

The following sections identify each property type.

 Class Development Environment 98

Accessor Properties

Right clicking on the selected accessor’s tab and choosing the Properties command from
the popup accesses the Accessor Properties dialog. It lets you view and edit the properties
of the selected accessor.

 Class Development Environment 99

Property Properties

Selecting the Object|Properties command from the Main Menu accesses the Property
Properties dialog. It lets you view and edit the properties of the property.

These are the items on the General tab:

 Class Development Environment 100

The Accessors tab shown below lists of all the accessor methods defined for the property.
You must click on the name of an accessor method from this list in order to show
information about the particular accessor method.

 Class Development Environment 101

Property Menus

Access to Property functionality is available through the Main Menu as well as popup
menus within each windowpane and the Accessor popup menus. The popup menu
commands are explained below.

Source Code Popup Menu

The Source Code popup menu is invoked by right clicking inside the source code pane of
the Property Editor window or pressing Shift+F10 key combination.

 Class Development Environment 102

Version Popup Menu

The Version popup menu is invoked by right clicking inside the version history pane of
the Property Editor Window or pressing the Shift+F10 key combination.

 Class Development Environment 103

Accessor Tab Popup Menu

The Accessor tab popup menu is invoked by right clicking on an accessor tab in the
Property Editor or pressing Shift+F10 key combination.

Using the Property Editor

Creating a Property

The illustration below represents the EsiObjects Session Browser. It exists as a tab sheet
in the Session Browser window.

To create a Property, follow the steps below.

1) In the Session Browser, expand the class to which you wish to add a property by
clicking on the expansion box (box with the + in it).

2) Now expand the interface that will hold the property. This will display all exiting
services as a sub-tree to the interface.

3) Click the right mouse button on the interface name to bring up the popup menu.
Select the Add option. (Note that you also could press the Insert key to add an item.)

 Class Development Environment 104

4) The Add to Interface dialog appears. Enter the name of the property. Valid names
must begin with an alpha character and can contain up to 32 alphanumeric characters.
Make the name something that gives a sense of what behavior the method provides.

5) Pull down the combo box and select Property from the list.

6) Click on the OK button to add the property to the interface.

Editing a Property

Once a property has been added to the interface, you can manipulate it in many ways. By
selecting the property and right clicking on it, a popup menu is displayed that allows you
to delete, edit, and rename the method among other operations. Note that each operation
has a keyboard equivalent that will invoke the action directly.

To edit a property, perform the following steps:

1) Select the property to edit. As described above, clicking the right mouse button on the
property name will display a popup menu from which you can select the Edit option.

2) The property editor will appear in the client area of the Main Window. It will contain
the source code to be edited. You can now create or modify the code. You can also
create new versions as well as compile and/or syntax check the code. If you want to
create or modify documentation on the property, make sure the Documentation
Window is active. Simply click in the Documentation Window and start typing the
text. If the Documentation Toolbar is not active, chose the
View|Toolbars|Documentation to activate it.

3) Pressing the Enter key or double-clicking on the property name in the interface will
also invoke the editor.

Deleting a Property

To delete a property, follow these steps:

4) In the Session Browser select the property that you want to delete.

5) Right click on the property icon and select the Delete command from the menu.

6) A verification dialog will ask you if you want to continue. Answer Yes. At this point
the property will be deleted and the library structure will readjust to the deletion.

Reusing the Property Editor Window

User Option Preference

The User Option Preference tab sheet contains a check box call Redisplay. When this box
is checked, EsiObjects will always look of a property editor in the client area before
creating a new one. If one exists, it will reuse that Property Editor Window, displaying
the newly selected property code in that window. If the property in that window had
changes made to it, the window will let you save it before proceeding.

 Class Development Environment 105

Drag-and-Drop

Another approach to reusing a Property Editor window that is already displayed in the
client area is to drag-and-drop the property name into an open editor as outlined below:

1) There must be a Property Editor already open in the client area. And some portion of
the code pane must be visible.

2) Select the property to edit from the Session Browser, hold down the left mouse button
on the item name and drag the cursor to the editor's code pane.

3) Note that the cursor will indicate when a valid area to drop the item is reached by
changing to an cursor arrow with a plus box attached to it. When the cursor shows
this indication, lift the left mouse button to drop the property.

4) The context is switched to the Property Editor context.

5) If the original property being edited has been modified without being saved, you will
be prompted to save the changes prior to the context being switched. Click Save to
save the changes, Discard to throw away the changes, or Cancel to cancel the drop
operation.

Editing Property Properties

Properties of a property can be edited using the Properties Property sheets. There are at
least 3 ways to invoke the Properties Property sheet:

1) From within the Session Browser, select the appropriate property and press
Ctrl+Enter.

2) From within the Session Browser, select the appropriate property and invoke the
popup menu by right clicking on the name or icon, or by pressing Shift+F10. Choose
the Properties menu item.

3) From within the property editor, select Properties from the Edit menu.

4) Once the property sheet is displayed in the client area, you can edit those fields that
are changeable.

See the Property Properties under Property and Accessor Properties section above for a
complete description of all the fields.

Managing Source Versions

Explicit Source Management

When saving the source code of a property (using the source code popup menu) there are
four distinct options related to compiling and managing source code versions:

1) Save Current Save the source code under the version number currently being
edited.

2) New Version Save the source code under a new (highest) version number.

 Class Development Environment 106

3) Syntax Check Check the syntax of the current source text.

4) Compile Compile the current source text.

Source Code User Options

In the EsiObjects User Options, there are two specific options related to source code
version control:

Auto New Version When prompted to save source code, the New Version check box
on the Save dialog will default to what is set here. When checked, the
default action on saving source code will be to create a new version of
the source code.

Compile On Save When prompted to save source code, the Compile check box on the
Save dialog will default to what is set here. When checked, the default
action on saving source code will be to compile the source code after
saving.

Default Save Options

If the user closes a source code object without saving changes, then the Save Source
Code dialog shown below will be displayed.

 Class Development Environment 107

The options that are selected, by default, will be determined by the appropriate user
options.

Event Template Editor
Event Template Editor Explained

Event Template Editor Window

The Event Template Editor is different from the other editors (method, property, and
variable) in that the information entered here is not used at any time. It is used primarily
for documentation purposes. But this does not lessen the importance of this editor and the
need to use it whenever an object triggers an event.

The Event Template Editor is illustrated below. Each component is explained.

In EsiObjects, events are used throughout the system. For example, the modification of a
property will automatically generate an event so that other processes using that property
may be notified of the event. They must be watching for that event to receive the
notification.

Any object developed using EsiObjects may throw an event when some condition must
be broadcast. This is accomplished via the Event command. The EsiObjects Language

 Class Development Environment 108

Reference and Programmers Reference Guides discuss the Event, Watch and Ignore
commands and event processing in EsiObjects.

The Session Browser allows you to add events to an interface. The Event Template
Editor is used to enter the handler prototype that the event requires. Therefore, anytime
you use the Event command in a method, make sure that the event is added via the
Session Browser (to document the fact that an event of that name is thrown by the object)
and the necessary protocol is specified via this editor.

If a user of the class wishes to hook a handler to the event, they merely invoke this editor
to access the template. They can then copy the template code to the handler method to
insure that their handler has the proper protocol in place.

Event Template Menus

Template Popup Menu

The Event Template popup menu is invoked by right clicking in the Event Template
Editor or pressing Shift+F10 key combination.

Using the Event Template Editor

Creating an Event Template

To create a method, property or event template, follow the steps below.

1) In the Session Browser, expand the class to which you wish to add an event template
by clicking on the expansion box (box with the + in it).

2) Now expand the interface that will hold the event. This will display all exiting
services as a sub-tree to the interface.

3) Click the right mouse button on the interface name to bring up the popup menu.
Select the Add option. (Note that you also could press the Insert key to add a service.)

4) The Add to Interface dialog appears. Enter the name of the event. Valid names must
begin with an alpha character and can contain up to 32 alphanumeric characters.
Make the name something that gives a sense of what event within the object can be
hooked to.

5) Pull down the combo box and select Event from the list.

6) Click on the OK button. The event template will be added to the interface.

Editing an Event Template

Once an event has been added to the interface, you can manipulate it in many ways. By
selecting the event and right clicking on it, a popup menu is displayed that allows you to
delete, edit, and rename the event among other operations. Note that each operation has a
keyboard equivalent that will invoke the action directly.

 Class Development Environment 109

To edit an event:

1) Select the event to edit. As described above, clicking the right mouse button on the
event name will display a popup menu from which you can select the Edit option.

2) The Event Template Editor will be displayed in the Main Window client area for the
event. You can now create or modify the documentation for the event. Please note
that the Event Template is just that, it is a template for the event. Defining it in the
interface of the class has significance, however, what is entered in the text area of the
editor has only documentation significance. Use it to document the event protocol
(The formal structure of the Input Specification of the method that will receive the
callback when an event is fired).

3) Additionally, pressing the Enter key or double-clicking on the item will also invoke
the editor.

Using Drag-and-Drop to Edit an Service

Each time you edit an event, a new editor may be created for the item. To edit an event
without creating a new editor, drag-and-drop the item to an open editor as outlined
below:

1) There must be an Event Template Editor already open and some portion of the code
panel must be visible somewhere on the desktop.

2) Select the item to edit from the Session Browser, hold down the left mouse button on
the item name and drag the cursor to the editor's text area

3) Note that the cursor will indicate when a valid area to drop the item is reached by
displaying a cursor with a plus character in a box. When the cursor shows this
indication, lift the left mouse button to drop the event.

4) The context of the browser is switched to the dropped event.

5) If the original event being browsed had been modified without being saved, you will
be prompted to save the changes prior to the editor context being switched.

Deleting an Event

To delete an event template, follow the steps below.

1) In the Session Browser, expand the class to the event template by clicking on the
expansion box (box with the + in it).

2) Click the right mouse button on the event template name to bring up the popup menu.
Execute the Delete command. (Note that you also could press the Del key to add a
service.)

3) The Delete validation dialog will appear. Click the Yes button to delete the event
template of No to abort the delete.

 Class Development Environment 110

Relationship Wizard
Relationship Wizard Explained
EsiObjects provides Method, Properties and Events services within any of its interfaces.
In keeping with the philosophy to hide complexity and provide you, the programmer,
with tools that eliminate redundant work, EsiObjects also contains a wizard to assist you
in creating a relationship between two classes. Additionally, the runtime component of
EsiObjects takes over the responsibility of maintaining the relationship.

A binary relationship is an association between two classes, a source class and a target
class. A binary relationship may view as an attribute of its source class. Within a
relationship, an object of the source class may be associated with zero or more objects of
the target class. A source class may contain multiple relationships to the same or different
target classes. For a particular relationship, there is usually a corresponding inverse
relationship from the target class back to the source class.

A relationship may have a cardinality of “one” or “many”. In the former case, an object
of the source class may be associated with at most one object of the target class. In the
latter case, an object of the source class may be associated with a collection of objects in
the target class.

The specific object-to-object mappings of a relationship are established dynamically.
There are two rules that the associations must obey:

• Referential integrity must be maintained. This means that when an object in a
relationship’s target class is deleted, objects in the source class can no longer
maintain their associations with it.

• A relationship and its inverse (when the inverse exists) must map consistently relative
to each other.

EsiObjects treats relationships as objects belonging to the class ESI$Relationship.

Using the Relationships Wizard

Creating a Relationship

To create a relationship, you must select an interface of the source class and invoke the
“Add to Interface” dialog using the Interface popup menu. If you choose “Relationship”
as the kind of item to add to the given interface, then a new wizard (sequence of dialogs)
guides you through setting up the relationship. We use a wizard because relationships
require this information at creation time, and we do not expect you to have to pull up a
Properties dialog sheet to set it.

You must specify the following information when creating a relationship:

 Class Development Environment 111

• Target class. The name of the relationship’s target class. This is an editable field.
(A dropdown selection box allows existing classes to be chosen. A separate button
allows the user to change the library from which classes may be selected.)

• Cardinality. Selected as a radio button, either “One” or “Many”. Default is “One”.

• Public flag. Whether the relationship is accessible from classes outside the source
class. Selected as a checkbox. Enabled by default.

• Inheritable flag. Whether the relationship may be inherited by subclasses of the
source class. Selected as a checkbox. Enabled by default.

You may specify the following optional information, also within the wizard, when
creating a relationship:

• Shape. For a relationship of cardinality “many”, the type of collection (e.g. Set, List,
Array, Bag) of objects in the target class to which an object in the source class will be
associated. Default is Set. (A dropdown selection box allows you to select from
among the subclasses of Base$Collection.)

• Inverse. The name of the inverse relationship in the target class. This may be left
blank, as it is not required that the inverse relationship be defined. This is an editable
field, which may also be modified by a drag and drop operation. You also need to
identify the interface to which the inverse relationship belongs, with a default of
Primary.

The relationship creation wizard will offer you a choice of options for the inverse
relationship: None, New, or Existing. If you select New, the wizard would step you
through the creation of a new inverse relationship. If you select Existing, the wizard
would let you choose the inverse from a list of existing relationships mapping from the
target class to the source class. This list includes only relationships with no inverses.

Editing a Relationship

Unlike the other kinds of items in a class’ interface, a relationship contains no editable
code and therefore has no editor in EsiObjects. It does have a property sheet, which in
addition to the above information also contains:

• Source class. The name of the source class that the relationship belongs to. It may
not be changed.

• Interface. The name of the interface in which the relationship is defined. It may not
be changed.

• Name. The name of the relationship. Editable (as with property sheets for methods,
properties and events).

Deleting a Relationship

There are three ways to delete a relationship. From within the Session Browser, select the
relationship by clicking on its icon or name then:

 Class Development Environment 112

• Press the Del key.

• Pull down the Main Edit Menu and select the Delete command.

• Invoke the popup menu by right clicking on it (or by pressing Shift+F10). Choose
the Delete command.

Promote, Override and Copy Command Not Supported

Methods, properties and events are class services. In the case of methods and properties,
they are simply code bodies. An event is simply a definition. These services are available
at the definitional level. When invoked, they simply execute within the context of an
instance. They do are not associated with instance structures.

However, relationships are actually structures that exist between two objects. Once
instantiated, they are typically immutable during their lifetime. Like most features of
object orientation, they are dependent upon their definitions being unaltered.

As a consequence of the immutability of relationships, operations like Promote, Override
and Copy are not permitted as they are for the other services.

Search and Edit
Application libraries often contain many classes, and in many cases, the application will
contain numerous libraries. As the application increases in size, it becomes harder for the
programmer to keep track of all the classes and services they contain. EsiObjects itself
consists of two large libraries of classes, most of which are reusable by the application.

Search and Edit Explained
EsiObjects provides a powerful search engine for searching within a particular library.
Once the objects are found based on the criteria specified, they are displayed as pointers
in a record oriented window in the same format that folders display their contents.

As explained in the section Session Structures section above, a session consists of two
types of structures: the library structure and the folder structure. The library structure
contains hierarchical class structures and is used to partition the classes logically,
according to some application requirement. Folders contain pointers to definitional
objects within a library. Folders are used to condense a disparate set of definitional
objects into one window list for easy access.

The Search tool is a useful programming tool that allows you to search in EsiObjects
libraries for occurrences of specific strings and associated information such as the
author’s initials and date ranges. In general, this tool is used to search for string
occurrences that are numerous and may be disseminated throughout a library. This can
save a significant amount of time as the programmer may want to modify, replace and/or
remove selected strings and associated information.

The Search tool of EsiObjects lets you select the search range by first pointing to a
component using the Session Browser (the range). There are three levels within the

 Class Development Environment 113

library tree that constitute a search range: the entire library, a specific class or a specific
interface within a class. Selecting the appropriate level within the tree and then executing
either the popup menu Search command (or the main menu Tools|Search|Selected
command) will bring up the Search In form (shown below). Within these permitted
search ranges, you can also specialize the search to a service source code body and/or the
name of the service by checking the appropriate check boxes (Source Code and Name)
on the Search In form.

The first tab sheet shown below, Search, contains two groupings of fields, that is,
Containing and Matching. Each group of fields lets you enter specific search criteria.
The Text field lets you enter a sting of characters to search for. If specified, this search
will be confined to the source code of those services specified on the Advanced tab sheet.
The Matching group contains two fields. The Initials field, if specified, specializes the
search to the initials of the programmer that are associated with the specified code body.
The Name field, if specified, specializes the search to the name of the object being
searched.

The Text Match string search can be modified to either search for the literal specification
of the string by checking the Match Case check box or you can force a search
independent of case by clearing the check box. Additionally, you can search for a whole
word by checking the Whole Word check box. If you clear the check box, the search will
treat the search string as a partial string. A whole word search has a specialized meaning.
Read the description in the illustration above.

 Class Development Environment 114

The second tab sheet shown below, Modification Date, contains three radio buttons.
They let you ignore the date check, specify a date range (the Between radio button) or
specify a number of days, hours or minutes prior to the current time (the During the last
button). If you specify a range, it will specialize the search to that date range.

The important thing to remember is that, if specified, these four search criteria form a
logical and at search time. That is, if you specify the Text string “I%Cardinality”, the
Initials “JAM”, a name “List” and a date range of 20 days, the search engine will find and
report all objects that contain the specified source code text string and initials and name
and in the date range specified. This lets you narrow the search down to only those
objects that meet the criteria.

The diagram below illustrates and explains all the fields that let you specify the search
range specialization and search criteria.

 Class Development Environment 115

The third tab sheet shown below, Advanced, allows you to further specialize the search
range to components contained in a class. Within the Search In group, the Events,
Methods, Properties, Relationships, Variable Definitions and Nested Classes check
boxes let you limit the search to these particular objects. They are selected by default.
Deselecting them will eliminate these items from the search range.

The Constraints section defines global limitations on the search. EsiObjects implements
source code versioning. Using the Versions combo box, you can select the range of
versions to search. Additionally, selecting the direction of the search in the Direction
combo box can modify the search range. See the illustration above for details on these
fields.

 Class Development Environment 116

The fourth tab sheet, Interfaces, allows you to specialize the search range to a selected
set of class interfaces. Selecting from the list box, you can search all interfaces by
accepting the default <Search All Interface> or specify each individually in the Add
Interface field. This tab is only accessible when a class or class library is being searched.

Each Search In form that is invoked is specific to the level in the library tree that it was
selected from as indicated in the form title.

 Class Development Environment 117

The results of a search are displayed in a detached window. The window is record
oriented and is similar to a Folder window. The diagram below illustrates the results of a
search in the List class for the instance variable “I%Cardinality” and the initials “JAM”.
Each object path listed under the Name column is identical to the path used in a folder
window. The commonality is no coincidence. Once found, these objects can be selected
and transferred to a folder via drag and drop where you can store their pointers for future
work or export. Like folders, the appropriate editor or property sheet for any object in the
collection can be invoked by double clicking on the pointer.

Using Search and Edit

Performing the Search

Follow these steps to initiate a search.
1. To begin a search, first open the Session Browser, then highlight a library, class or interface

on the tree view in which you want to search.
2. Then right click on an item to invoke the pop-up menu and execute the Search command (or

execute the Tools|Search|Selected command).
3. The Search In form will appear. Specify the search criteria and click on the Search button.
4. Once the search has finished and if it found objects conforming to the search criteria, a

detached window will appear containing the object pointers found in the selected hierarchy.

 Class Development Environment 118

Using the Search Results

Once the search has completed, a detached window will appear containing pointers to the
definitional object conforming to the search criteria. You can use the results in the
following ways:
1. Select all or a part of the entries and drag them to a folder which is persistent. The search

window is not, it will be deleted when you shut the EsiObjects client down. This will make
them available in future sessions.

2. Select any one of the objects and perform any permitted operation on it indirectly, just like
you would as if it were a folder.

Debugging Tools
Interactive Debugger
Because developing software systems is usually a complex process and the mere fact that
human beings make mistakes, Interactive Debuggers have become an integral part of
software development environments.

The fundamental purpose of a debugger is to let the programmer control the execution of
a software component so that the context of execution can be observed as each instruction
is executed. A good debugger will let the programmer set break points, control the flow
of execution in various ways and modify the state (variables) of objects. It will display
the sequence of code execution, the variable states at each step and the execution stack
contents.

The Interactive Debugger Explained

The EsiObjects Interactive Debugger is normally used when an error terminates the
execution of an application and the cause is not obvious. However, debuggers are
actually good tools for learning the internals of applications as well. Programmers who
are given responsibility for maintaining existing applications find that using the debugger
to explore the code and object state is a fast way to learn the application internals.

Using a debugger is a habit the programmer must learn. Rather than wasting time looking
at the code, activating the debugger and stepping through the execution sequence usually
exposes the problem immediately, saving an incredible amount of development time.

Interactive Debugger Window

The Interactive Debugger contains a toolbar and a Debugging Window. The Debugging
Window contains a status bar and three major panes. The following sections will describe
each component.

Debugger Execution Toolbar

 Class Development Environment 119

The Debugger Execution Toolbar contains buttons that active/inactive the debugger as
well as control the execution flow of the debugger. The buttons on the toolbar are
explained below.

Debugger Symbol Toolbar

The Debugger Symbol Toolbar contains a button for each symbol scope supported by
EsiObjects. Often, when debugging, you are only interested in seeing specific variables.
These buttons let you toggle the display of scoped variables on and off. If the button is
depressed, the system will display that variable in the Symbols tab sheet of the Debugger
Window.

Refer to the Variables section of the EsiObjects Language Reference Guide for more
information on symbols and scoping.

 Class Development Environment 120

The Symbol toolbar is illustrated below. Each button is described.

 Class Development Environment 121

Debugger Window with Symbol Display

The Debugger Window is not a part of the EsiObjects Main Window. It is a separate
window. It has it’s own menu and is used exclusively for displaying the execution
context of a code body that has a debug compile associated with it. The picture below
illustrates the Debugger Window with the Symbol tab sheet exposed. The Symbols tab
sheet is part of the State window that displays all the relevant symbols and their values
after the last execution step.

Debugger Window Symbol Display Popup Menu

The symbol popup menu is invoked by right clicking on a variable in the Symbol tab
sheet. Any variable can have two types of values: string or object. The menu commands
highlighted on the object popup menu are dependent upon what value type is bound to
the variable.

 Class Development Environment 122

String Value Popup Menu

The illustration below describes the string commands you can use to modify the variable
or its value.

Class Value Popup Menu

The illustration below describes the object commands you can use to modify or migrate
the object.

 Class Development Environment 123

Debugger Window with Stack Display

The picture below illustrates the Debugger Window with the State windows Stack tab
sheet displayed. The Stack tab sheet contains the stack state before the command or
command argument outlined in the red box is to execute.

 Class Development Environment 124

Debugger Window with Xecute Display

The picture below illustrates the Debugger Window with the State window Xecute tab
sheet displayed.

The Xecute shell is different from the normal stand-along Xecute Shell in that it operates
off the execution stack. This means that all context symbols are available to you.

The Xecute tab sheet contains a field that you can use to enter full EsiObjects commands
and a list box that retains a history of all the commands entered in the event that you may
want to re-execute them at a later time.

In addition to executing commands within the Xecute field, you can evaluate expressions
by simply preceding the expression with an equals sign (=). If there was not an error, the
expression will display with its value separated by an equal character. For example:
=10+20 would appear as 10+20=30.

 Class Development Environment 125

Debugger: Main Menu Items

The Debugger Window is separate from the EsiObjects Main window and consequently
has a separate menu. However, all menus that are in common to the Main Window are
identical at the command level. The Debugger Window has one menu item specific to
the debugger – the Debug menu item.

Main File Menu

Menu Command Description

File Print... Invokes the print dialog and then prints the
selected object or text to the selected printer if
you choose to proceed.

 Print Setup... Invokes the Printer Setup form and lets you
change the printer setup parameters. If you
choose to proceed, the printer and printing
options will be changed.

 Exit Shuts down the Debugger Window.

Main View Menu

Menu Command Description

 Class Development Environment 126

View
 Toolbars|Debugging Actions Executing this command will toggle the

Debugging Actions toolbar to hide and appear.
 Toolbars|Symbol Types Executing this command will toggle the Symbol

Types toolbar to hide and appear.
 Toolbars|Browse Actions Executing this command will toggle the Browse

Actions toolbar to hide and appear.
 State This command toggles the State window

display off and on. The State window contains
the Symbols, Stack and Xecute tab sheets.

Main Debug Menu

Menu Command Description

Debug
 Go Executing this command will cause the program

to execute to completion or the next break point.
 Run to Cursor Causes the program to execute up to the current

cursor position in the code window.
 Step Into Causes execution to step into the next code

block.
 Step Out Causes the execution to continue until the

execution stack is popped.
 Step Over The next block of code will be executed. The

debugger will stop upon returning to the current
level of execution.

 Debugger Active Toggles the debugger as active or inactive.

Main Browse Menu

Menu Command Description

Browse
 Look Into Within the context of the Object Browser, if a

variable is selected that has a OID associated
with it, executing this command will force the
Object Browser to migrate that link and display
the context of the object pointed to by the
subscript OID.

 Look In Subscript Within the context of the Object Browser, if a
variable is selected that has a OID as a
subscript, executing this command will force the
Object Browser to migrate that link and display
the context of the object pointed to by the
subscript OID.

 Pull Out Executing this command will force the Object
Browser to return to the object it came from and
redisplay its context.

 Watch Not Implemented Yet.

 Class Development Environment 127

 Show Descendants Not Implemented Yet.
 Refresh This command, when executed, will totally

refresh the Object Browsers display of an object
state (variables and values).

 Show History The Object Browser keeps track of the objects it
migrates through. Executing this command will
force a List History list box to appear, displaying
the migration history.

 Edit Value When you have selected a variable within the
Object Browser that has a string value bound to
it, executing this command put you into edit
mode. The value of the variable can then be
modified.

 Goto Definition Not Implemented Yet
 Class Not Implemented Yet
 Evaluation Not Implemented Yet
 Recycle You have control over whether a completely new

Object Browser is instantiated every time you
migrate to a new object. The Recycle button on
the browsers toolbar controls this. If the button is
depressed, that means that only one instance of
the browser will exist for all migrations. This
command will indicate that by a √√√√ in front of it.
Executing this command toggles the Recycle
button between the recycle and no recycle
states.

 Auto Refresh If you are changing the state of an object using
the Object Browsers embedded Xecute Shell,
you can use this toggle command to turn auto-
refresh on and off. When on (indicated by a √√√√ in
front of the command), changing the state of the
object being browsed will automatically cause the
display to refresh. Toggling the Auto Refresh
command causes the equivalent Auto Refresh
button on the Object Browsers toolbar to pop in
and out.

Main Help Menu

Menu Command Description

Help
 Getting Started Activates the Acrobat Reader and displays the

Getting Started Tutorial. This tutorial is designed
to teach you some fundamental object oriented
concepts. It is primarily designed to teach you
how to use the EsiObjects tool set.

 Class Development Environment 128

 Administrator’s Guide Activates the Acrobat Reader and displays the
Administrator’s Guide. This guide contains all the
information needed to start and shutdown the
EsiObjects system as well as how to install and
set up the servers for the supported M systems.

 Language Reference
Guide

Activates the Acrobat Reader and displays the
Language Reference Guide. This guide contains
all the information you will need to use the
EsiObjects language. Each language element is
explained in detail.

 Programmer’s Reference
Guide

Activates the Acrobat Reader and displays the
Programmer’s Reference Guide. This guide
contains all the information you will need to know
about objects and how to use them within your
application.

 Tools Guide Activates the Acrobat Reader and displays the
Tools Guide. This guide contains extensive
information about the EsiObjects tool set. Each
GUI object is described in detail along with
instructions on how to use it.

 About EsiObjects Invokes a dialog that displays current status
information about the EsiObjects Class
Development Environment.

Using the Interactive Debugger

Because developing software systems is usually a complex process and the mere fact that
human beings make mistakes, Interactive Debuggers have become an integral part of
software development environments.

The fundamental purpose of a debugger is to let the programmer control the execution of
a software component so that the context of execution can be observed as each instruction
is executed. A good debugger will let the programmer set break points, control the flow
of execution in various ways and modify the state (variables) of objects. It will display
the sequence of code execution, the variable states at each step and the execution stack
contents.

The EsiObjects Interactive Debugger should be used when an error terminates the
execution of an application and the cause is not obvious. Using a debugger is a habit the
programmer must learn. Rather than wasting time looking at the code, activating the
debugger and stepping through the execution sequence usually exposes the problem
immediately, saving a lot of development time.

To use the debugger, follow the steps outlined below.

1) From the main menu, select the View| Debugger command. This will invoke the
debugger, displaying the window with three empty panes.

2) The debugger should be started in active mode. This is indicated by Enable

Debugging button being depressed. If it is not, depress the button to activate it.
You may pop it out to de-activate the debugger at any time. In active mode, the

 Class Development Environment 129

debugger will automatically react when a BREAK command is encountered while
executing a code body that has a compiled debug version.

3) To actually force the debugging session to start, you must physically insert a BREAK
command in the code to be debugged. Make sure you insert it prior to the suspected
problem area. You must compile a debug version of the code.

4) Now run the application such that the code will encounter the BREAK command. At
this point, the debugger will automatically be activated. The panes will fill in and
control will be handed over to you. Note: The EsiObjects system is modal at this
point. The debugger has control of the system. To use any other tool in the EsiObjects
system, the debugger must be deactivated.

At this point you may use the Step buttons to execute the code. The Step and other
buttons are described as follows:

 This is the Go (F5 accelerator key) button. Clicking on this button will terminate
step mode and continue normal execution of the code until it execute to the end or it
encounters another BREAK command. All buttons will gray out indicating the end of this
debugging session.

 This is the Step Into (F9 accelerator key) button. Clicking on this button will tell
the debugger to step into the next message, subroutine or extrinsic function if it has a
compiled version. If it does not have a compiled version, it will execute as normal.

 This is the Step Over (F8 accelerator key) button. Clicking on this button will tell
the debugger to step over the next message, subroutine or extrinsic function.

 This is the Step Out (Shift+F9 accelerator key) button. Clicking on this button will
tell the debugger to step out of the current message, subroutine or extrinsic function.

 This is the Run to Cursor button and is currently not implemented.

 This is the Watch Variable button and is currently not implemented.

Here are some important things to remember when using the Interactive Debugger:

• The Interactive Debugger must be started (window present) and activated (Enable
Debugger button depressed).

• The code body must have a BREAK command inserted at the appropriate point and
the code body must have a Debug compile available. (Bug icon next to the version
number in the appropriate editor window).

• At any point within the step-by-step process, you may depress the Go button or pop
out the Enable Debugging button to continue normal execution.

 Class Development Environment 130

Xecute Shell

The Xecute Shell Explained

The Xecute Shell is the EsiObjects equivalent of the M programmer's prompt. It allows
you to enter commands and send messages.

Most programming operations can be accomplished with the EsiObjects browsers and
editors. However, sometimes it is necessary to enter commands at a prompt. The Xecute
Shell lets you do this. The important thing to remember about the Xecute Shell is that it
operates within the context of an object. The Xecute Shell is invoked from the
Object|Xecute Shell command of the Main Menu. Remember that when an object is
active within the client area or in the Session Browser window, commands active within
the context of that object are highlighted in the Main Menu. They operate on the object. If
you invoke the Xecute Shell command, a window will be brought up that lets you enter
commands for direct execution. These commands operate within the context of the active
object.

Some things you can do from the Xecute Shell are:

• Invoke the Object Browser to explore the internals of the current or another object.

• Instantiate objects directly.

• Send messages to objects.

• Enter standard M code. For example, it is acceptable to call a conventional M routine
that runs in the main console window. Run the routine, switch to the console window,
and go.

A line of code entered from the Xecute Shell works just like a line of code in one of the
object's methods.

Xecute Shells are also found in other contexts, including in the Object Browser. The
Object Browser can be invoked from the Xecute Shell via the ZVIEW command. The
Object Browser has a Xecute Shell built into it. In addition to executing lines of code, the
Object Browser shell lets the programmer evaluate expressions.

The advantage of using the Object Browser is that it shows you the instance variables of
the browsed object. In addition to the Xecute Shell functionality, it gives you the
opportunity to examine, browse and edit variables interactively.

Xecute Shell Window

The Xecute Shell window allows commands to be entered in the context of any object. It
is a simpler tool than the Object Browser, and its purpose is more tightly constrained.
The Xecute Shell for the Environment is invoked from the EsiObjects CDE Main
Window, by selecting the Xecute Shell item of the Object menu.

 Class Development Environment 131

The picture below illustrates and describes the components of the Xecute Shell.

Using the Xecute Shell

The Xecute Shell Window contains a Command Line field and a Result field. The
Command Line field accepts EsiObjects commands and is similar to the direct mode
prompt (>) on an M system.

To open the Xecute Shell:

1) Execute the Main Menu command Object|Xecute Shell.

Note: Notice that the Xecute Shell is operating within the context of your environment object
assigned to when you started your session. This environment is always available to you through
the $ENV special variable. Because you have programming access to the environment, you must
exercise caution. The environment uses variables. You do not want to alter or delete these
variables. Since you will often use the environment to create test objects and set test variables,
you should confine variable name creation to a namespace that does not conflict with the
environments. For example, I%Test is not used.

2) To use the Xecute Shell, enter a command line in the Command Line drop-down
combo box. The Command Line field is a drop down box, which allows you to
retrieve commands that were entered previously. You can select a command from the

 Class Development Environment 132

list and edit it or execute the command line as it is again. Note that these commands
are lost if you close the Xecute Shell window.

3) Click Xecute button to execute the command.

If the command is an EsiObjects language construct that returns a value, it will appear in
the Result field. Most lines of code do not have return values unless they set the
$RETURN special variable. If you want to execute an expression and return it to the
Return field, you can use the Set $Return=Expression or Quit Expression construct. In
either case the return value will be sent to the Return field of the Xecute Shell window.

Executing a command does not close the Xecute Window. You can keep the Xecute Win-
dow open during your EsiObjects programming session. Like an M prompt, it is always
available for entering commands and sending messages. If you find that the Xecute Win-
dow gets in your way when working with other browsers, you can minimize the window.

6. Click Exit to close the Xecute Window.

Object Browser

The Object Browser Explained

The Object Browser allows the internals of any object in the system to be examined.
The browser exposes the internal state of the object - it is a programming tool. It is a
static debugging tool that lets you examine the internals of an object as well as actually
change the values of variables. Normally, it is invoked by first issuing the ZVIEW
command via the Xecute Shell. See the EsiObjects Language Reference Guide See the
section Xecute Shell of this guide for more information on this subject.

 Class Development Environment 133

Object Browser Window

The following picture illustrates and describes the major components of the Object
Browser.

The Object Browser contains two toolbars, a status bar. Each will be explained in detail
in the following sections. For information on the embedded Xecute Shell, see the section
in this Guide called Xecute Shell.

 Class Development Environment 134

Object Browser Actions Toolbar

The Object Browser Actions Toolbar buttons let you migrate through objects, control
the refreshing of the browser as well as the instantiation of new browsers. The picture
below illustrates and describes all the buttons.

Object Browser Symbol Toolbar

The Object Browser Symbol Toolbar contains a button for each symbol scope
supported by EsiObjects. Often, when developing an application, you are only interested
in exploring the internals of an object. While doing so, these buttons let you toggle the
display of scoped variables on and off. If the button is depressed, the system will display
that variable.

Refer to the Variables section of the EsiObjects Language Reference Guide for more
information on symbols and scoping.

 Class Development Environment 135

The Symbol toolbar is illustrated below. Each button is described.

 Class Development Environment 136

Object Browser Status Bar

The Object Browser Status Bar displays the status of a selected symbol. The picture
below illustrates and describes each component of the status bar.

Browsing Dead Objects

If an instance variable contains a reference to an object that no longer exists, or if the
currently browsed object has been destroyed, then the object browser's display will be
adjusted as follows:

• Dead objects will show MIA in the status area when they are selected.

• The value column for a dead object will read "Dead Object…" or "Dead Protected
Object…", depending on its type.

• When you browse a dead object, the text and background colors will be inverted in
the object browser window.

• Dead objects will show the $REFERENCE value as zero (0).

 Class Development Environment 137

Object Browser Popup Menu

The Object Browser popup menu is invoked by right clicking on a variable in the Object
Browser's main panel or pressing Shift+F10 key combination after selecting the
variable. Any variable can have two types of values: string or object. The menu
commands highlighted on the object popup menu are dependent upon what value type is
bound to the variable.

String Value Popup Menu

The illustration below describes the string commands of the Object Browser.

 Class Development Environment 138

Class Value Popup Menu

The illustration below describes the object commands of the Object Browser.

Using the Object Browser

The Object Browser is used to view and modify the internals of an object. It is a static
debugging tool. The EsiObjects Interactive Debugger is designed to let you control the
execution of a code body and view the state of the object in terms of its symbol table and
its execution stack. It is a dynamic tool. The Object Browser lets you view and actually
modify the state of a object in a static state, outside of the execution context of a code
body.

Invoking the Object Browser

First you must determine what object you want to browse. You must have access to its
OID or you can select one of the objects in the Session Browser window or Client Area.
Note: If you want the Xecute Shell to come up in the context of the current session’s
environment object, click in the Documentation or Output Windows.

 Class Development Environment 139

To invoke an Object Browser, follow the instructions below:

1) Execute the Main Menu command Object|Xecute Shell. This will bring the Xecute
Shell up in the client area of the Main Window.

2) The ZVIEW command is used to invoke the Object Browser. It can take an argument
that must evaluate out to an OID or it can be argumentless. If it is argumentless, the
object context that the Xecute Shell was brought up in will be browsed. Enter the
ZVIEW command in the Command Line field of the Xecute Shell to invoke it on the
object you want to browse.

At this point the Object Browser will display in the client area. Refer to the section The
Object Browser Explained for a complete description of the Object Browsers
components.

Note: When the Object Browser first displays it will display variables that are
available on the stack at that time. However, upon returning to this stack level
subsequently, you may not see these variables. This is normal behavior.
Setting Up for Browsing

The Object Browser can be set up to:

• Recycle the current browser every time a new object is migrated to

• Refresh the contents of the display automatically or manually whenever the state of
the viewed object has been altered either interactively or via the embedded Xecute
and evaluation shell.

• View only selected scoped variables.

Recycling the Object Browser Window

On the Actions Tool Bar, the Recycle button , when in the depressed state, lets you
reuse the current browser window. If it is not depressed, a new browser window will be
created when migrating into a new object.

Refreshing the Object Browser Display

Also on the Actions Tool Bar, when the AutoRefresh button is depressed, the
display area of the browser will automatically refresh when the objects state changes. If
you do not want it to refresh, simply pop the button out. This lets you refresh the state

manually using the Refresh button . Simply click on it whenever you want the
display refreshed to its current state.

Viewing Selected Symbols

Object can have a large umber of symbols stored in them. Often you are only interested
in certain symbols such as Instance variables and no others. It is possible to select those

 Class Development Environment 140

symbols that you want displayed and eliminate those you do not want displayed by using
the Symbols Tool Bar. This tool bar (and the Show cascading menu on the popup menu)
let you select which symbols and values you want displayed. Selecting the symbols you
want to see speeds up the display if there are a large number of symbols in an object.

Migrating Object Hierarchies

The Object Browser is capable of migrating links between objects and displaying the
target object’s internal state. The Actions Tool Bar contains all the buttons needed to
migrate through an object hierarchy.

On the Actions Tool Bar, the Step Into button is used to step into the object that is
currently selected in the display area. If the selected item is an <Atomic> type (literal),
the Step Into button will not be highlighted. If it is an internal object, the Object Browser
will step into that object and it’s state will be displayed. Alternatively, to step into an
object, simply double click on the selected item in the display window.

Another approach to migrating into an object is to use the popup menu that can be
invoked by right clicking on the selected item. This provides all the functionality that the
tool bar contains plus more. Since an EsiObjects object can contain primitive M data
structures (arrays), often an array will have an OID in a subscript that you may want to
look into. There are commands on the popup menu that permit you to migrate to objects
pointed to by array subscripts.

Next to the Step Into button is the Step Out button . Once you have stepped into an
object, the Step Out button will highlight indicating that you may step out of the current
object, returning to the context of the previous object. Once clicked on, the Object
Browser will return to the previous object, redisplaying its state in the display area of the
browser.

Viewing and Modifying an Objects State

Once you have migrated to the object you are interested in, there are several approaches
to viewing and modifying an objects state. the following sections explain each approach.

Viewing the Definition of a Symbol

When browsing an object, you are often interested in the definition of a symbol. You can
access the definition of an object (if it exists) by executing the Goto Definition command
on the popup menu. Executing this command will bring up the Variable Definition
Editor. See the section titled Variable Definition Editor in this guide for more
information.

Using the Xecute and Evaluation Shell

At the bottom of the Object Browser is an embedded Xecute and Evaluation Shell that
lets you execute a full line of EsiObjects code or evaluate an EsiObjects expression.

 Class Development Environment 141

The Shell is operating in the context of the object being browsed. Consequently, you may
change any symbol that resides in that object. Additionally, you can evaluate an
expression by entering it in the Command field and then clicking on the Evaluate button.

Directly Modifying Symbol Values

Directly modifying values consists of double clicking on the symbol name that has an
<Atomic> value associated with it. The browser then goes into edit mode and you can
change the value associated with the symbol. To get out of edit mode you must hit the
Enter key. Clicking outside of the symbol will not perform this operation.

Note: When editing a value, remember to place quotes around the string if they are
required. The compiler will check any symbol you modify. If it incorrect, you will receive
an error message.

Transport Tools
Transport Tools Explained
Within the EsiObjects system there are two levels of content that is defined when writing
an object-oriented application. They are the:

1) Definitional Content

2) Instance or Legacy Content

Transporting Definitional Content

The Definitional Content of an EsiObjects application consists of libraries, classes,
variables, services and documentation. These are objects that contain definitional
information and documentation used to create instances. This information is exported and
imported via ASCII text files. Upon import, these definitional objects are mapped to M
globals and routines.

EsiObjects contains import and export functionality needed to transfer definitional
objects to external file. Exporting means saving the definition of the object to an ASCII
text file. Importing means restoring an object definition from an export file.

In EsiObjects, the following definitional objects can be exported: libraries, classes, nested
classes, interfaces, method and property source code versions, event source code,
relationships and variable definitions. It should be noted that exporting a class library
would export the entire library including all classes, nested classes and all methods,
properties, relationships, events and variable definitions within the classes.

Generic Import

Generic Import is a special type of import. Typically, when you import you will have
selected an object and have chosen the Import option to import directly to the object
currently selected. For example, if you had an export for Subclass A, which is a subclass

 Class Development Environment 142

of Example Class 1 (see the diagram below), you would select that class in the Session
Browser and choose the Import option. After selecting the proper file, Subclass A would
be overwritten with the contents of the file. If you were to import the same export file
over Subclass B, the system would allow you to do so. Selecting an object and importing
will directly import to that object. Note that you could overwrite a class with an export of
a completely different class. Of course, you could not import an object definition of a
different type. For example, you could not import a method export file to a class.

In the above diagram note that Subclass A has been exported to the text file Class.opc.
This file can be imported back into Subclass A. Also, Class.opc can be imported into
Subclass B overwriting the definition of that class with the definition stored in Class.opc.

Keep in mind that in many cases you will want to import a definitional object to the same
location from which it was exported. For example, let’s say a fellow developer is working
on a class and has coded a new method. She exports the method and tells the
programming staff to import the file “NewMethod.opm”. Instead of using the Session
Browser to find the class, and then find the method (Note: If the method doesn’t exist yet,
you would have to create it), before executing the import, members can simply select the
Tools|Generic Import command from the main menu and select the “NewMethod.opm”
file. The system will import the objects to the same location from which it was exported.
Even if the class or method does not exist. The system creates any necessary objects
along the path of the object before restoring it.

 Class Development Environment 143

If Generic Import is used, as the user imports the file NewMethod.opm, all necessary
objects will be created. A library is the exception to this rule since it knows what M
globals to store the objects in and what name prefixes to use when creating an M routine
at compile time. However, when exported, libraries can be instructed to retain this
information. The Generic Import of a whole library would then know where to store the
M globals and routines.

When to use Import vs. Generic Import

Use Import whenever you want to import a definitional object to a specific location or to
overwrite one object with a definition of another. By selecting the object in the Session
Browser, you can select the Import option (see the Import Option section) and you will
import the saved definition over the selected object.

1) Use Generic Import to import the object definition to the same location from which it
was exported. This is especially useful if you don’t know exactly where the object
was exported from but you need to import it to the same location it came from.

You do not need to have a Session Browser open to use Generic Import. It is available
through the main menu Tools|Generic Import command.

 Class Development Environment 144

Import/Export File Extensions

Many of the elements of the EsiObjects library structure can be exported to and imported
from the host operating system via ASCII files. These files are in a special text format
and have the extension OPx where x specifies the type (property, method, etc.).

The following is a list of generated OPx file extensions.

Extension Type of File

.OPS Save file: Generic - Mix of all types.

.OPB Code Body

.OPC Class

.OPD Documentation

.OPE Events

.OPF Folders

.OPI Interface

.OPL Library

.OPM Method

.OPP Property

.OPV Individual Variables

.OPX Full Variable Table

The extensions are generated automatically based on what object (s) are being exported.
For example, if the Export command for a method is selected, the .OPM extension will be
generated. If the Export command for a library is selected, the .OPL extension will be
generated.

Transporting Instance and Legacy Content

The Instance Content of an EsiObjects application consists of the instances of the
definitional objects (classes). These instances are mapped to M globals via the object
creation process. Traditional M Global Tools exist within EsiObjects for the purpose of
transporting these object instances.

The Legacy Content consists of those M routines and globals that make up a legacy M
application. It may be wrapped using EsiObjects wrapping technology. The Global and
Routine Transport tools are used to move legacy globals and routines into and out of the
EsiObjects system.

 Class Development Environment 145

These tools are grouped into two groups:

1) Global Transport Tools

2) Routine Transport and Editing Tools

Global Transport Tools

Two Global Transport Tools exist of exporting and importing M globals. They are the
Global Save and Global Restore respectively.

Routine Transport and Editing Tools

Two Routine Transport Tools exist for exporting and importing M routines. They are the
Routine Save and Routine Restore respectively. In addition to the transport tools,
EsiObjects provides a Routine Editor. It is used to modify routines if required.

Using Definitional Object Transport Tools
EsiObjects provides extensive support for import and export operations. Definitional
objects may be imported or exported:

1) directly via the Session Browser (library or folder structures) popup menus or main
menu Tools|Generic Import command

or, indirectly via a Folder. See the Folder Operations section for more information on
folders.

Direct Import and Export

Export Option

Any objects that are a part of the definitional structure (classes, libraries, methods,
properties, property accessors, etc.) can be exported directly from the Session Browser or
its descendant applications (property editor, method editor, etc.).

To export a definitional object, follow the instructions below.

1) Select the object you wish to export using the Session Browser. Please note that you
may invoke an editor if exporting methods and properties. Within that editor, you
may export specific versions.

2) Select the Export command from the object's popup menu. If you want to export a
specific version of source code, bring up the popup menu by right clicking on the
version number.

3) The Export dialog will appear as illustrated below. Fill in all the fields properly based
on the type of object being exported.

 Class Development Environment 146

Note: The check boxes that appear in the Options area are specific to the type of definitional
object being exported. Only two types require specializing for export: Libraries and Classes. All
other object type exports do not require specialization.

Library Export Dialog

 Class Development Environment 147

Class Export Dialog

7) Once all fields have been filled in properly, click on the Export button to export. At
this point you may chose to abort the operation by clicking on the Cancel button.

A status dialog box will display the progress of the export. Once the status box
disappears, the export will be complete. You may click on the Cancel button of the status
dialog to abort the export at any time.

Import Option

To import a definitional object follow the instruction below.

The imported object must already exist to use the Import function. If the object does not
yet exist, then you must create it. Alternatively, you may use the Tools|Generic Import
since it will create the definitional object before the contents are imported. (See the next
section labeled Generic Import below).

1) Using the Session Browser, select the correct object type. If the file being imported is
a source version, you should bring up the appropriate source editor and select the
version you want to import into.

 Class Development Environment 148

2) Invoke the Import command from the object or source version’s popup menu (or the
main menu Object|Import command).

3) The Import dialog will appear similar to the one shown below. Select the directory
that the import file resides in.

4) The export file will appear in the list box (Library import example shown below).
Double click on it or select it and click on the Import button to start the import.

Generic Import

To generically import definitional objects, follow the instruction below.

1) From the main menu, execute the Tool|Generic Import command.

2) The Import dialog box shown below will appear. Using the ‘Look in’ combo box,
select the external directory that contains the export file. All supported file types will
appear.

3) You may select multiple files by holding the Ctrl key down and clicking on each file
name. Alternatively, you may hold the Shift key down and select a range of files.

 Class Development Environment 149

Note: Classes and any constituent objects contained in the files need not exist in the library
structure—they will be automatically created when generically imported. For example, generically
importing a property will automatically create the interface and class if they do not exist in the
library the property came from. A library will not be recreated under these circumstances. If you
want a library recreated automatically, you must export the full library with the Generate Class
Library Bootstrap box checked in the Export dialog.

4) Click on the Import button to start the import.

5) At this point a dialog box will appear. It will ask you if you want to continue. You
have the opportunity to terminate the import at this point. Selecting Yes will continue
the import. Selecting No will terminate the import. If you chose to continue, the
Import status dialog box will appear giving you a running status of the import. You
have the opportunity to terminate the import at an point by clicking on the Cancel
button.

Warning: If you terminate the import, your definitional database will be left in an indeterminate
state. You will be responsible for rolling it back to it’s original state if that is required.

 Class Development Environment 150

The AutoLoad Method

If a class with the method 'Factory::AutoLoad' is imported, then this method will be
automatically executed after the entire class has been loaded successfully. (This method
is not run if the import is canceled before the class has finished loading.)

This is a convenient way of doing specialized processing of a class if required.

Indirect Import and Export

EsiObjects supports Folder structures within the Session Browser. To learn more about
Folders, see the Folder Operations and Folder Content Editor sections of this guide.

In a nutshell, folders permit a programmer to store pointers to definitional objects within
a library structure. Import and Export operations can be performed on the whole folder or
individually on each object pointer stored in the folder.

Export Option

Exporting from the Folder Structure

EsiObjects implements two types of folders: Shared and Private. Shared folders are
available within a session. Anyone who connects to the session will be able to use the
folder. Private folders are private to each user. Any other user signed onto the session
does not see folders private to your session.

Follow these instructions to export the contents of a folder.

1) Select the folder you wish to export using the Session Browser.

2) Select the Export command (or execute the Object|Export command) from the
folder's popup menu.

3) The Export dialog will appear as illustrated below for either a Shared or Private
folder.

Note: The check boxes that appear in the Options area are specific to the type of folder being
exported.

 Class Development Environment 151

Shared Folders

 Class Development Environment 152

Private Folders

4) Once all fields have been filled in properly, click on the Export button to export. At
this point you may chose to abort the operation by clicking on the Cancel button.

A status dialog box will display the progress of the export. Once the status box
disappears, the export will be complete. You may click on the Cancel button of the status
dialog to abort the export at any time.

Exporting from the Folder Content Editor

Exporting a definitional object from the Folder Content Editor is the same as exporting
the object directly from the library structure.

Follow the instructions for exporting in the Direct Import and Export section.

Import Option

Importing from the Folder Structure

To import a folder follow the instruction below.

1) Using the Session Browser, select the folder you want to import into.

 Class Development Environment 153

2) Invoke the Import command from the folder’s popup menu (or the main menu
Object|Import command).

3) The Import dialog will appear similar to the one shown below. Select the directory
that the import file resides in.

4) The exported file will appear in the list box (Folder import example shown below).
Double click on it or select it and click on the Import button to start the import.

Importing from the Folder Content Editor

Importing a definitional object from the Folder Content Editor is the same as importing
the object directly from the library structure.

Follow the instructions for importing in the Direct Import and Export section.

Generic Import

Generically importing a folder is the same as importing an object directly. The only
difference is it is a folder that is being imported (file extension .opf) as opposed to a
definitional object.

Follow the instructions for generically importing in the Direct Import and Export section.

 Class Development Environment 154

Using Instance and Legacy Transport Tools
Traditional M Tools have been added to the EsiObjects toolbox to assist you in importing
and exporting traditional M routines and globals. They were never designed to provide
the full functionality that you would expect in a traditional M development environment.
EsiObjects is an object oriented development environment. These tools are primarily
available for:

• Importing and exporting legacy M database routines and globals

• Importing and exporting object instance data contained in globals.

• Editing legacy routines.

Using Routine Tools

Using the Routine Editor

There are two ways to invoke the EsiObjects Routine Editor:

• To create a new routine, use the following menu path: Tools | Routines | Editor.

• To edit an existing routine, double-click on that routine's name in the Routine
Directory window.

 Class Development Environment 155

The EsiObjects Routine Editor provides a simple editing window for creating and
modifying routine source code. The picture below illustrates the component parts of the
Routine Editor.

To save changes, you can right click to invoke a popup menu, or simply type Alt+S. A
variety of other useful editing functions are also available through the popup menu.

 Class Development Environment 156

Routine Source Code Popup Menu

The Routine Source Code popup menu is invoked by right clicking (or pressing
Shift+F10) inside the source code pane of the Routine Editor.

 Class Development Environment 157

Using the Routine Directory

This utility is used to view a routine directory listing:

To view a listing of routines, use the following menu path: Tools | Routine Tools |
Routine Directory.

Type an identifier to narrow the search, and click the Search button. A listing of the
matching routines then appears in the list box below. The following special characters
may be used in specifying a search identifier:

Char. Description
* Wild Card (anything or nothing can go here.)
% Single Character (any single character can go here.)

 Class Development Environment 158

Routine Directory Popup Menu

The Routine Directory popup menu is invoked by right clicking (or pressing Shift+F10)
inside the routine list pane of the Routine Directory.

 Class Development Environment 159

Using the Routine Save

This utility is used to export one or more routines to a formatted file.

To create an export file containing routines, use the following menu path: Tools |
Routine Tools | Routine Save. A dialog appears, allowing the user to specify an output
file name.

 Class Development Environment 160

Click the Routines button.

A Routine Selector window appears like that illustrated below, allowing the user to
specify exactly which routines to export.

There are three ways to mark routines using this dialog:

1) Clicking on Buttons. The Mark button adds selected names to the export list, while
the Clear button removes all the names from the export list.

2) Double-Clicking on Names. Double-clicking on a name in the name list at top, adds
that name to the export list. Double-clicking on a name in the export list at bottom,
removes that name from the export list.

3) Popup Menus. When you have selected a group of names, you can right click on
them (or press Shift+F10) to invoke a popup menu with useful options.

After the selector window is closed successfully, the earlier file dialog re-appears,
allowing the user to specify an output file name.

 Class Development Environment 161

Clicking the Save button causes the routines to be exported to the specified file. The
Output Window shown below displays the save progress.

Using Routine Restore

When Routines are restored, you will be prompted via a common Windows file selection
dialog box to select a file that contains routines to be restored. Once selected the routines
will restore and the status will print in the Output Window.

Note: it is important to be careful not to accidentally use the Global Restore option to import
Routines, or vice versa.

 Class Development Environment 162

Using the Global Tools

Using the Global Directory

This utility is used to view a global directory listing. To view a listing of globals, use the
following menu path: Tools | Global Tools | Global Directory.

Type an identifier to narrow the search, and click the Search button. A listing of the
matching globals then appears in the list box below. The following special characters
may be used in specifying a search identifier:

Char. Description
* Wild Card (anything or nothing can go here.)
% Single Character (any single character can go here.)

In the global directory, the ^ prefix is optional. In other words, ^ESI* and ESI* will
both produce a listing of all globals whose names begin with the three letters, ESI.

 Class Development Environment 163

If there are many matching entries, the list will take longer to produce. The following
strategies are helpful in reducing the search time:

• Specify a prefix. A* (all routines beginning with A) will run considerably faster than
*A (all routines ending with A).

• Narrow the search as much as possible. A search with few matches will run faster
than a search with many matches.

Note that EsiObjects does not allow you to see M routines and globals whose name
begins with the % character.

Using the Global Save

This utility is used to export one or more globals to a formatted file. To create an export
file containing globals, use the following menu path: Tools | Global Tools | Global
Save. A dialog appears, allowing the user to specify an output file name.

There are two choices for the save file format:

1) Standard: A Global Save will be performed using the M standard. If a subscript of
one of the globals selected or any of the values in the globals contains control
characters, then the save operation should use ESI format.

 Class Development Environment 164

2) ESI: A Global Save will be performed using an ESI proprietary format that handles
control characters. This format is unknown to M and only understood by EsiObjects.

Click the Globals button. A Global Selector window appears, allowing the user to
specify exactly which globals to export.

There are three ways to mark globals using this dialog:

1) Clicking on Buttons. The Mark button adds selected names to the export list, while
the Clear button removes all the names from the export list.

2) Double-Clicking on Names. Double-clicking on a name in the name list at top, adds
that name to the export list. Double-clicking on a name in the export list at bottom,
removes that name from the export list.

3) Popup Menus. When you have selected a group of names, you can right click on
them (or press Shift+F10) to invoke a popup menu with useful options.

 Class Development Environment 165

After the selector window is closed successfully, the earlier file dialog re-appears,
allowing the user to specify an output file name. Clicking the Save button causes the
globals to be exported to the specified file. The Output Window shown below displays
the save progress.

Using the Global Restore

When Globals are restored, the user is allowed to specify a file name, containing the
globals to be imported. Once the file name has been specified, the process of importing
globals can begin.

Note: it is important to be careful not to accidentally use the Routine Restore option to
import Globals, or vice versa.

Management Tools
If the developer starts up the EsiObjects Development UI on a client PC with the /Admin
(or /ESI) command line qualifiers, access to management functions are permitted through
the Management main menu option. The Management menu option is an add-in and will
only appear if these qualifiers are specified. There are two commands supported at this
level.

1. Version, which simply displays the current version of EsiObjects.
2. Security, which provides a command path to system and user level security commands.

Version
The Version command simply displays the installed version of EsiObjects.

 Class Development Environment 166

Security
EsiObjects supports a simple username and password security scheme. There are two
areas supported by this scheme.

3. User Management is where all the commands reside for creating and maintaining the
user files on each server (session). The User Management command will invoke a
window that displays each user in the rows and their attributes as columns. This window
permits all the editing functions.

4. Policies is where system level security is maintained.

User Management
The User Management command is a graphical tool used to maintain the user’s information
stored on a particular M server.
The following illustrates the User Management window and its component parts.

 Class Development Environment 167

Using the Popup Menu Commands

The User Management window supports a popup menu. The menu lets you perform all
the functions of the VESOTCMN program. The menu is illustrated below.

 Class Development Environment 168

Using the New Command

The New command is used to add new users to the user file. The Add User dialog is
illustrated below. All fields are described in the callouts. When a new user is added to
the server, security is, by default, turned on for that user.

Using the Delete Command

The Delete command is used to expunge a user from the user file. Selecting the Delete
command will invoke a dialog that lets to verify the deletion. Deleting a user is final. To
put the user back into the system, you must use the New command and reenter all the
user information.

Using the Rename Command

The Rename command is used to change the user’s Identifier only. Selecting this
command will change the selected Identifier in the User Management window to rename
mode. At that point you can change the identifier.

Using the Properties Command

The Properties command will invoke the user’s property sheet. The sheet is illustrated
below.

Picture goes here!

 Class Development Environment 169

Using the Reset Password Command

The Reset Password command lets you change the user’s password. When you enter a
new password, you must enter the Verify Password field as well. The Password is
checked for validity and then compared with the Verify Password entry. If they pass, the
password is changed. If not, you will receive an error dialog.

Policies

Security can be enabled and disabled at two levels within the EsiObjects system. First, it
can be enabled or disabled at the system level. Second, it can be enabled or disabled for
each user.

Selecting the Policies command invokes a dialog box that lets you enable or disable
security checks for everyone at the system level. When enabled, all users will be required
to enter a username (Identifier) and password if security has been enabled at the user
level. When disabled, no security checks will be made.

The Security Policies dialog is illustrated below with descriptions.

 Class Development Environment 170

	Introduction
	Document Conventions
	Overview of EsiObjects
	Model-View-Controller
	EsiObjects Client Environment Overview
	EsiObjects Server Environment

	Class Development Environment Overview
	Main Window and Components
	Main Window Explained
	Using the Main Window
	Keyboard Shortcuts
	Main Window Toolbar

	Main Window Menu
	Main Menu Commands
	Main File Menu

	Main Menu Add-in Programs

	Output Window
	Output Window Explained
	Output Window Popup Menu

	Docking the Output Window
	Using the Output Window
	Debug and Build Tab Sheets
	Output Tab Sheet

	Documentation Window
	Documentation Window Explained
	Components of the Documentation Window
	Documentation Pane
	Tool Bar
	Popup Menu

	Docking the Documentation Window
	Using the Documentation Window

	The Session Browser
	The Session Browser Explained
	Using the Session Browser
	Docking the Session Browser
	Displaying and Hiding the Session Browser

	Session Control
	Session Control Explained
	Session Control Window
	Session Control Menus
	Session Control Main Menu
	Session Window Popup Menu

	Session Control Properties
	General Tab Sheet
	Connection Tab Sheet

	Using Session Control
	Creating a New Session
	Create a Session by Copying and Renaming
	Disconnecting a Session
	Deleting a Session
	Troubleshooting Session Control

	User Options
	User Options Explained
	Using the User Options
	User Tab Sheet
	Format Tab Sheet
	Preferences Tab Sheet

	Macro Substitution Token List
	Setting The Initial Text
	Initial Text Example

	Help Documentation
	Help Documentation Explained
	Administrator’s Guide
	Language Reference Guide
	Programmer’s Reference Guide
	Tools Guide
	Getting Started Tutorial

	Using the Help Documentation

	Class Development Environment Tools
	Tools Overview
	Browsers
	Session Browser
	Object Browser

	Editors and Property Sheets
	Search Tools
	Debugger Tool
	Transport Tools
	Object Transport Tools
	Traditional M Transport Tools

	Session Browser Explained
	Session Structures
	Library Structures
	Libraries Explained
	The Class Hierarchy Explained
	Reusable Libraries Explained

	Folder Structures

	Session Browser Tools
	Class Toolbar
	Library Popup Menu
	Class Popup Menu
	Interface Popup Menu
	Service Popup Menu
	Multiple Inheritance Conflict

	Using the Session Browser
	Library Operations
	Creating a New Library
	Source Code Prefixes—How Long?
	Same or Different Globals?

	Deleting a Library
	Examining Library Properties
	Class Operations
	Creating Classes
	Editing Class Properties
	Linking Classes
	Promotion and Generalization
	Finding a Class in the Hierarchy
	Deleting Classes

	Interface Operations
	Creating Interfaces
	Deleting Interfaces

	Variable Operations
	Creating Variables
	Deleting Variables
	Modifying a Variable Declaration

	Service Operations
	Creating Services
	Deleting Services
	Modifying a Service

	Synchronizing the Tree Selection

	Folder Operations
	Folder Structure Operations
	Creating a New Folder
	Deleting a Folder from the Structure
	Moving a Folder and its Content to another Folder
	Copying a Folder’s Content to another Folder
	Invoking the Folder’s Content Editor

	Finding Library Objects and Folders

	Folder Content Editor
	Folder Content Editor Explained
	Property Sheet
	Popup Menu

	Using the Folder Content Editor
	Linking a Library Object to a Folder
	Removing a Library Object Pointer from a Folder
	Indirect Library Operations using the Folder Contents
	Activating the Indirect Delete Command
	Populating the Folder Content
	Performing Operations on the Folder Content
	Synchronizing the Library Object with the Folder Selection

	Variable Definition Editor
	Variable Definition Editor Explained
	General Tab Sheet
	Advanced Tab Sheet
	Variable Properties
	Variable Menus
	Interface Popup Menu Commands
	Variables Popup Menu Commands

	Using the Variable Definition Editor
	Invoking the Variable Definition Editor
	Editing Variable Properties
	Deleting a Variable

	Method Editor
	Method Editor Explained
	Method Properties
	Method Menus
	Source Code Popup Menu
	Version Popup Menu

	Using the Method Editor
	Creating a Method
	Editing a Method
	Deleting a Method
	Reusing the Method Editor Window
	Editing Method Properties
	Managing Source Versions
	Explicit Source Management
	Source Code User Options
	Default Save Options

	Property Editor
	Property Editor Explained
	Property Editor Window
	Property Editor Accessor Tab Bar
	Property and Accessor Properties
	Accessor Properties
	Property Properties

	Property Menus
	Source Code Popup Menu
	Version Popup Menu
	Accessor Tab Popup Menu

	Using the Property Editor
	Creating a Property
	Editing a Property
	Deleting a Property
	Reusing the Property Editor Window
	Editing Property Properties
	Managing Source Versions
	Explicit Source Management
	Source Code User Options
	Default Save Options

	Event Template Editor
	Event Template Editor Explained
	Event Template Editor Window
	Event Template Menus
	Template Popup Menu

	Using the Event Template Editor
	Creating an Event Template
	Editing an Event Template
	Using Drag-and-Drop to Edit an Service

	Deleting an Event

	Relationship Wizard
	Relationship Wizard Explained
	Using the Relationships Wizard
	Creating a Relationship
	Editing a Relationship
	Deleting a Relationship
	Promote, Override and Copy Command Not Supported

	Search and Edit
	Search and Edit Explained
	Using Search and Edit
	Performing the Search
	Using the Search Results

	Debugging Tools
	Interactive Debugger
	The Interactive Debugger Explained
	Interactive Debugger Window
	Debugger Window with Symbol Display
	Debugger Window Symbol Display Popup Menu
	Debugger Window with Stack Display
	Debugger Window with Xecute Display
	Debugger: Main Menu Items

	Using the Interactive Debugger

	Xecute Shell
	The Xecute Shell Explained
	Xecute Shell Window

	Using the Xecute Shell

	Object Browser
	The Object Browser Explained
	Object Browser Window
	Object Browser Actions Toolbar
	Object Browser Symbol Toolbar
	Object Browser Status Bar

	Browsing Dead Objects
	Object Browser Popup Menu
	String Value Popup Menu
	Class Value Popup Menu

	Using the Object Browser
	Invoking the Object Browser
	Setting Up for Browsing
	Migrating Object Hierarchies
	Viewing and Modifying an Objects State

	Transport Tools
	Transport Tools Explained
	Transporting Definitional Content
	Generic Import
	Import/Export File Extensions

	Transporting Instance and Legacy Content
	Global Transport Tools
	Routine Transport and Editing Tools

	Using Definitional Object Transport Tools
	Direct Import and Export
	Export Option
	Import Option
	Generic Import
	The AutoLoad Method

	Indirect Import and Export
	Export Option
	Exporting from the Folder Structure
	Exporting from the Folder Content Editor

	Import Option
	Importing from the Folder Structure
	Importing from the Folder Content Editor

	Generic Import

	Using Instance and Legacy Transport Tools
	Using Routine Tools
	Using the Routine Editor
	Using the Routine Directory
	Using the Routine Save
	Using Routine Restore

	Using the Global Tools
	Using the Global Directory
	Using the Global Save
	Using the Global Restore

	Management Tools
	Version
	Security
	User Management
	Using the Popup Menu Commands
	Using the New Command
	Using the Delete Command
	Using the Rename Command
	Using the Properties Command
	Using the Reset Password Command

	Policies

