
ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

11

HistoricalHistorical
Events LeadingEvents Leading

toto
ObjectObject

OrientationOrientation

This lesson covers some significant historical events that lead to the object
oriented paradigm.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

22Lesson ObjectivesLesson Objectives

 Upon completion of this lesson, the student should be able to:

• List the significant historical events throughout the evolution of

software engineering.

• Describe the most significant aspects that grew out of the

evolutionary process.

Read and understand the objectives of this lesson. We will take a short tour of
the most significant historical events that lead to present-day object orientation
principles.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

33

• Assemblers introduced symbolic representation of the
underlying machine instructions

• FORTRAN introduced:
– variables
– arrays
– control structures

Problem: FORTRAN variable names would conflict in different
parts of a program

Software Evolution: Early1950’sSoftware Evolution: Early1950’s

Lets start by reviewing some historical events. Assemblers were the earliest
languages that introduced symbolic representation of the underlying machine
instructions. Although the programmer was still working at a very low level
within the machine, interaction with the machine was at a symbolic level
rather than at a numeric representation level. Symbolic instructions were
generally aimed at memory locations that had symbolic names. For example:
Add Cnt Total

FORTRAN was the first milestone of high-level programming; it introduced
new concepts such as: Variables, Arrays and Control Structures. It was
specialized in mathematical operations and flourished. In a general sense, it
helped evolve software engineering languages to higher levels of abstraction.

In general, Fortran introduced the concept of procedural programming.
Associated with this concept of programming were the problems that come
along with a lack of data encapsulation. Data was generally manipulated in
memory. Managing data in very large programs was a challenge.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

44

• High-level programming languages such as PL/1, COBOL and

Algol succeed FORTRAN

• Algol provides barriers to isolate variable names within program

segments

– Begin...End Blocks

– Variables appearing within a block are scoped to that block

– First attempt at providing protection or “encapsulation”

within a programming language

Software Evolution: Late 1950’sSoftware Evolution: Late 1950’s

In the late 50’s, other high-level programming languages such as PL/1,
COBOL and Algol evolved beyond FORTRAN. These languages were
targeted for business applications whereas FORTRAN was used in scientific
applications.

Algol was one of the first languages to provided barriers to separate variable
names within program segments, hence the birth of Begin...End Blocks
(ALGOL 60). Additionally, variable names appearing within a block appear
only to that block, hence the concept of variable scoping was introduced. This
was a first attempt at providing protection or "encapsulation" within a
programming language.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

55

• Third Generation languages developed: Pascal, Simula,

MUMPS, etc.

• Simula gave birth to the concept of “classes” and formed the

basis for object orientation

• Start of structured programming

• Concept of “data abstraction” evolved

Software Evolution:1960’sSoftware Evolution:1960’s

Within the 1960’s, third generation languages like Pascal, Simula,... (and
MUMPS!) were developed. In particular, Simula is considered to be the
language that gave birth to Object-Orientation. The concept of "classes" was
first introduced and formed the basis for today’s concept of Object
Orientation.

Structured Programming was introduced. The movement to data abstraction
was underway.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

66

• Concept of “data abstraction” pursued

• Foundation for abstract data types developed

– Provided a rigorous basis for object orientation

• Ada and Smalltalk developed (Smalltalk was the first premier

object oriented language)

• Algorithmic Structure gives way to Object Structure

Software Evolution:1970’sSoftware Evolution:1970’s

The 1970’s evolved the art of computer programming to a new level. Within
the United States, we had entered into the ‘post Sputnik’ era. That era
produced large numbers of engineers and scientist. By the 1970’s, the growing
demand for programmers attracted a large number of these individuals.
Educational institutions were starting to offer degrees in computer science.

Coincidentally, the concept of programming-in-the-large (calling
modules/macros) evolved from programming-in-the-small (one large
program). This move put pressure on the hardware, and software industry to
evolve computer languages, databases, development tools to new levels.

Concept of "data abstraction" evolved even further - forming the foundation
theory for abstract data types.

Programming languages Ada and Smalltalk were developed (Smalltalk was
the first premier Object Oriented language).

Algorithmic and procedural structure started to gives way to object structure.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

77

• In the 1980’s object-oriented concepts from many languages
(Smalltalk, C, C++, Pascal, and others) were further developed.

• The 1980’s was the decade that launched the Object-oriented era
of computation.

• Coincidental to the evolution of computer languages and data
abstraction was the introduction of the personal computer. Its
emergence, over time, brought computer programming to the
desktop.

Software Evolution:1980’sSoftware Evolution:1980’s

The 1980's launched the era of Object Orientation.

One can see that over the decades, software has evolved. As the needs of
programmers and end users have become more complex and required more
flexibility, programming languages have developed capabilities to provide for
the increasing demands. Object Orientation has been called a revolution in
software development. Yet it is more an evolution than a revolution.

With the emergence of the personal computer, computer programming was to
take on a whole new significance.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

88

• In the 1990’s, object orientation took off and established itself
for the next generation of software engineering.

• C++ (hybrid of C) won the language wars over Smalltalk and
other OO languages.

• Java, a refinement of C++ crashed upon the scene and
established itself as a compromise be between C++ and
environment oriented languages like Smalltalk.

• Object Oriented databases made their debut and are in the
process of finding their spot in the world of Information
Technology.

Software Evolution:1990’sSoftware Evolution:1990’s

With the advent of the personal computer and distributed computing, object
orientation took on a whole new meaning. By the 1990’s, it had evolved into a
combined set of features that we based on good software engineering principles.
(These principles will be developed in the next lesson.)

Competition produced an apparent winner in the object oriented programming
language wars. C++ appeared to have the most support. It implemented good, sound
OO features and provided excellent performance, However, it was not without its
faults.

As an answer to many of the problems that come along with C++ (mainly memory
leaks and hard to use), Sun introduced Java. Java evolved the C++ language into a
simpler-to-use language that resides in an environment and avoids the memory
management problems of C++. It married many of the best features of C++ and
Smalltalk - another point on the evolutionary path to object oriented programming
languages.

Within the 90’s, Object Oriented Database Management Systems (OODBMS) were
introduced. In general, it was assumed that the IT industry would readily leave
relational technology behind to reap the benefits of object orientation. This did not
happen because of numerous reasons. First, object orientation requires a major leap in
knowledge - old knowledge gets in the way. Organizations that boldly tried OODBMS
implementation often created object models that were reminiscent of ‘old design’
criteria. We simply did not have the rich OO knowledge base that we have today
(Check out the number of books on OO design patterns). Additionally, most of the
OODBMS implementations were new and immature. We can go on to list other
reasons for the false start, but suffice it to say, OODBMS systems are finding their
niche. The Internet is a natural place for this technology.

Within the 1990’s, attempts were made to evolve the MUMPS database and language
technology to objects. ESI Technology Corporation lead the effort followed by
InterSystems Corporation. These two implementations will be used throughout this
tutorial.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

99

• Over the decades, as needs have become more complex and
required more flexibility, languages have evolved with new
capabilities.

• Today, businesses are putting more demands on technology,
particularly the move to the Internet.

• Object orientation has been called a revolution in software
development. Yet it is more an evolution than a revolution.

Software Evolution: The Next Decade?Software Evolution: The Next Decade?

Where will technology lead software engineering within the next decade? We
have already seen a strong rally around object orientation. Not only have
strong object oriented languages evolved over the last two decades, OODBMS
systems have evolved. Languages like Java that have targeted the Internet,
entrench object orientation even more as the ‘paradigm of choice’.

Although this was a short tour through the history of computing (sufficient for
the tutorial), the object oriented paradigm evolved to where it is today - a
powerful concept that models the world as it exists. More importantly, because
the object paradigm provides the features needed to build abstract or
generalized solutions, it provides for extensibility not realized before.
Additionally, it offers accelerated development due to reusability.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

1010SummarySummary

What have we inherited from the short history of software engineering that has
lead to present day object oriented concepts?

First and foremost is the concept of abstraction. This evolved out of a need to
generalize software modules and to provide reusable components. One OO
feature that evolved out of this is the concepts of classification and inheritance
- the ability to derive definitional information and behavior from ancestors.

Another fundamental concept that evolved is the concept of encapsulation, or
information hiding. It became important for programs to protect data. The
initial efforts, as we saw, started with variable scoping. Today, the concept of
encapsulation is absolutely fundamental to good software quality.

Although not explicitly talked about in our historical journey, the concept of
loose binding became more and more important to extensibility. Tightly
bound software packages were not reusable - forcing wholesale rewrites.
Distributed systems are dependent upon loosely bound software packages.
Inherent to loose binding are well defined interfaces and a messaging.

ESI

Copyright © ESI Technology CorporationCopyright © ESI Technology Corporation

1111End of Lesson - What’s Next?

The next lesson, Lesson 2, will concentrate on laying a rigorous foundation for
Object Orientation as explained in Bertrand Meyer’s book Object-Oriented
Software Construction. The principles Meyer derives, although not used
directly by engineers, should always provide guidance to developing quality
software packages.

Proceed to the next lesson titled A Foundation for Object Orientation when it
is published.

	Historical Events Leading to Object Orientation
	Lesson Objectives
	Software Evolution: Early 1950's
	Software Evolution: Late 1950's
	Software Evolution: 1960's
	Software Evolution: 1970's
	Software Evolution: 1980's
	Software Evolution: 1990's
	Software Evolution: The Next Decade?
	Summary
	End of Lesson - What's Next?

