A Foundation
for
Object Orientation

Thislesson lays a foundation for Object Orientation that will be used in
ensuing lessons and workshop exercises.

@ L esson Objectives 2

Upon completion of this lesson, the student should be able to:

* Briefly introduce the modern day software development
process.

« List and describe the software quality issues that effect the
development of software systems today.

» List and describe criteriathat can be applied to the software
quality issues to produce good, sound software engineering
principles.

» Describe and apply (throughout this tutorial) the principles of
software engineering.

Read and understand the objectives of this lesson. We will refer back to these
ideas as we explore object oriented concepts and more advanced features of
the object orientation within the workshop exercises.

This lesson may seen academic to many, however, it lays arigorous foundation
for justifying the features of object orientation. Although, as software
engineers, you should always apply the principles derived in this lesson.These
principles should always serve as a guide in your engineering efforts. Asa
source of justification for object orientation, we will refer back to the the
principles as we go through future lessons and apply the concepts of object
orientation.

@ Software Development Process 4

Requirements sl

—
< _
Scenario A
Description

Prototype
| mplement

Scenario
Story A

n j
uence
Diagram
UseCa%
(Events& Sets)

Although we will not be elaborating on the Software Development Process, it
isimportant to understand it from a modern day perspective. The diagram
aboveillustrates what is called the Iterative Process. Fundamentally, this
approach makes a simple statement - software evolves! The old approach to
developing software, commonly called the Waterfall Approach, has fallen by
the wayside. Today software is developed in iterative stages - starting with a
simple concept and evolving it to afinal product rather than trying to create a
final product in one step and then realizing it does not match the requirements.

Aswewill learnin thislesson, in order for the process to flow naturaly, it is
important that it all be founded on a common paradigm. That is, moving from
one phase to the next should not require the engineer to change paradigms.
Thiswas the reason CASE failed in the 70's and 80’ s. There was no common
paradigm linking each phase of process together.

Aswe go through the rest of the lesson, we will refer back to the diagram
illustrated above.

For an excellent reference on the modern software development process refer
to Jesse Liberty’ s book Cloudsto Code. Additionally, for a complete
description of Use Cases, read Ivar Jacobson’s book Object-Oriented
Softwar e Engineering.

@ A Foundation for Software Engineering °

\ \ \
Modular \Decomposable Linguistic Units
Readable
Documented Composable Few Interfaces
Correctness -
Extendibility Understandable Explicit Interfaces
Compatibility
RObUSINESS Continuity Small Interfaces
Reusability Information Hiding
Others Protected

Quality Issues Criteriato Apply Principles Derived

Object-Oriented Software Construction, Bertrand Meyer; Prentice Hall International Seriesin Computer Science

Throughout the history of software engineering, software quality issues have
helped form the evolutionary foundation for the next generation of software.
As engineering techniques evolved, so did the need to insure quality products.
Today, the software industry is a multi-billion dollar industry. Software has
invaded all aspects of our everyday lives. Consequently, quality issues have
been cast into the [ime-light. The Object Oriented paradigm grew out of the
need to insure higher quality products.

Bertrand Meyer lays an air tight foundation for object orientation is his book
Object-Oriented Software Construction. The diagram above illustrates his
approach by starting with the most salient software quality issues. He then
appliesa set of criteriato those issues and derives a set of principles that
identify the desired features of any software system.

The next few slides will briefly describe each of stages. It is not our intent to
delveinto these issues in depth, but to merely outline them in an axiomatic
way. (We recommend reading Meyer’ s book if you are interested in the
details.) However, the derivation process used by Meyer will be used
throughout this tutorial to justify various aspects of the Object Oriented
paradigm.

@ Software Quality | ssues ©

Modular
Readable
Documented
Correctness
Extendibility
Compatibility
Robustness
Reusability

| Others

Quality Issues

Software quality issues have manifested themselves over the evolutionary life
of software engineering. These issues are at the foundation of good software
engineering principles. They can be viewed asinternal and external.

INTERNAL

Readable - Can the engineer easily read and understand the code?
Modular - Isthe software modular and well structured?
Documented - Is the software well documented, on-line and off-line?

EXTERNAL

Correctness - Does the software perform tasks according to the requirements
and specifications?

Extendibility - Does the software adapt to changes in specification or
requirements?

Compatibility - Can the software products may be combined with others
easily?

Robustness - Can the software function properly under abnormal conditions?

Reusability - Can the software to be reused, in whole or in part, in new
applications?

Others - Isthe software efficiency, verifiable, easy-to-use, portability, of high
integrity, etc.

@ Criteria to Apply to Quality I ssues !

\ \ \
Modular \Decomposable
Readable
Documented Composable
Correctness
Extendibility Understandable
Compatibility
Robustness Continuity
Reusability
Others Protected

Quality Issues Criteria to Apply

To derive the software quality principles, Meyer applies a set of criteriato the
Quality Issues.

Decomposability - Can the problem domain can be broken into sub-problems?
Composability - Can sub-problem domains be mapped into software modules?

Under standability - Can any one module be looked at in isolation and
understood?

Protection - Isan anomaly at run-time confined to the module?

Continuity - Can asmall specification change can be directed to a module
without changing the architecture.

After listing the criteria, we can then extract a set of principles by applying the
criteriato the quality issues. These extracted principles can then be applied to
the software process.The next five slides will elaborate upon these criteria
dightly.

@ Decomposability Criteria 8

Subproblem

Subproblem

} Decompose>

Domain

The Decomposability Criteria, when applied to the problem domain, should
produce subproblem domains. Thisis afundamental, prerequisite step to
developing modules.

Within the object oriented software development process, it isimportant to
develop scenarios consisting of one or more use cases. A use caseissimply a
description of how a user would perform a function within the proposed
application.Collectively, the use cases identify all the objects, attributes, as
well as responsibilities and collaboration between the objects. It is this process
that decomposes the problem domain into sub-problem domains.

@ Composability Criteria °

Module

|
Compose Module || Module || Module

|

Module

The Composability Criteria, when applied, should transform the sub-
problem domain into implementation module structures. Please note that the
term module is used in ageneral sense, it could refer to aroutine or an object.

Use cases should identify all the objects that will collaborate within the
applications. They should also identify how these objects collaborate with each
other and what their respective responsibilities are. Transforming (composing)
these objects, their attributes and behavior into an object diagram is the first
step to devel oping software modules. Tools exist today to assist in that process.

@ Understandability Criteria 10

Module

Module Module Module Understandable

Module

The Under standability Criteria, when applied to a module, means the
module should make sense viewed by itself. In other words, it should have a
well defined sense of its responsibilities and not be totally dependent upon
other modulesto do its job. Responsibility boundaries should be clearly
established.

Within the object oriented devel opment process, once modules have been
designed, a walk-through should be conducted to make sure the objects display
the proper responsibilities and collaborate with each other according to the use
cases.

@ Continuity Criteria

Module

11

(e 2

Module

Requirements

Module

Architecture

The Continuity Criteria, when applied, insures that when a change is made to
the specification, the architecture will absorb that change with minimal impact
upon the reset of the system. In other words, it is easily extensible and will not

require aredesign to accommodate the change.

By applying the iterative approach and making sure that the previous criteria
are adhered to, the continuity criteria can be applied with confidence.
Reusability is an important promise of object orientation. Continuity insures

the fulfillment of that promise.

@ Protection Criteria 12

Module
| |
Module Module
4L
Module
Module

The Protection Criteriameansthat when an anomaly occurs, it is confined
to that module and does effect other modules. It does not produce the infamous
‘ripple effect’. I1t's when modules are tightly bound and do not have a clear
delineation of responsibility that we witness the problem.

Enforcement of this criteriais difficult in traditional procedural systems.
However, it isanatural consequence of proper application of the object
orientated paradigm WHEN encapsulation is enforced. Encapsulation will be
elaborated upon in the next lesson. It isa simple concept. It simply states that
an object’ s data and code are encapsulated and only accessible (by other
objects) viaawell defined, public interface.

It isafact that when encapsulation is enforced, bugs remain confined
to their respective modules (objects!

@ Derived Principlesfrom Applied Criteria *3
\ \
Modular \Decomposable Linguistic Units
Readable
Documented Composable Few Interfaces
Correctness
Extendibility Understandable Explicit Interfaces
Compatibility -
RObUSINESS Continuity Small Interfaces
Reusability ; i
Ry Protected Information Hiding
Quality Issues Criteriato Apply Principles Derived

The following principles are derived form the software quality issues when the
criteria isapplied:
Linguistic Modular Units - The formalism used to express the system to the

outside world, as well as to the computer, should be the same throughout
phases of the development process.

Few Interfaces - The number of communication channels or entry points of a
module should be minimized.

Explicit Interfaces - Communications between two modules should clearly

indicate what is happening. The interface structure should be common between
modules.

Small Interfaces- Keep the amount of information transferred between
modules small.

Information Hiding - All information about a module should be private to the
module unless declared public.

The next few slides will elaborate upon these principles.

@ Linguistic Modular Units Principle 14

The Linguistic Modular Units principle states that within all phases of the
software engineering process, the syntactic formalism used to express the
requirements, specification, design and implementation should be based upon a
common paradigm.

Object Orientation provides this formalism. Design specifications can be
expressed in terms of objects. Designs can be created today using object
oriented tools such as Rational Rose™ . If the design consist of objects,
properties, relationships, etc., then the language and devel opment tools should
permit implementation of the model without any hassle.

If the object paradigm provides the common thread through each phase,
moving from one phase to another is a smooth process. The impedance
mismatch commonly experienced by old CASE tools disappears.

@ Few | nterfaces Principle 15

Module

The Few I nterfaces principle states that the number of entry pointsinto a
module should be absolutely minimized, preferably one. Multiple entry points
to amodule can cause problems and subsequent integrity problems.

In good object oriented systems, an object usually will have one public entry
point. Although the content will certainly differ, the structure of the entry point
should be consistent and common to all objects within that system.

@ Explicit | nterfaces Principle 16

Module

Module | Module

* MOdUIE
Module
.|
. |

The Explicit I nterface principle states that a modules interface should be well
defined and unambiguous. Its structure should be common to all modules. This
facilitates communi cations between modules.

A good object model, if implemented consistently, provides a common,
consistent interface to objectsin most commercial systems. All objects should
obey the same protocol.

@ Small I nterfaces Principle o

Module

Module | Module

* MOdUIE
Module
| .|

The Small Interfaces principle states that a module should not have to take in
awholelot of information to perform its responsibility. Generaly, if amodule
must have inordinate amounts of information to operate properly, the modul€e's
responsibilities have been improperly allocated and it may be time to review
the design. In object orientation, a small interface generally means the design
isoptimal and that responsibilities have been properly allocated. If interfaces
are small, this usually has an impact on performance.

@ | nformation Hiding Principle 18

Module Module Module

B &

The Information Hiding principle states that all information about a module,
or information the module is responsible for, should be private to that module
unlessit isdeclared as public.

The Information Hiding principle is fundamental to the Object Oriented
paradigm. It manifestsitself through the concept of encapsulation.
Encapsulation will be elaborated upon during the OO Concepts lesson.

@ Lesson Summary 19

In summary, software quality issues have arisen out of the historical evolution
of software. Aswe evolved from writing simple linear programs to highly
complex systems that required more structured development techniques and
tools, we evolved some common software engineering principles. The
principles outlined in this lesson are universal to all kinds of software
engineering. However, the object oriented paradigm is clearly based upon
these principles as we will see in the next lesson.

@ End of Lesson - What’s Next? 20

The next lesson (Lesson 3) will introduce you to Object Oriented Concepts. It
attempts to lay a solid conceptual foundation to build upon as you begin your
object oriented programming career. Concepts learned in the next lesson are
universal and independent of any specific OO implementation. They are
concepts that are considered essential to agood OO system.

Proceed to the next lesson Object Oriented Concepts once it is published.

	A Foundation for Object Orientation
	Lesson Objectives
	Foreward
	Software Development Process
	A Foundation for Software Engineering
	Software Quality Issues
	Criteria to Apply to Quality Issues
	Decomposability Criteria
	Composability Criteria
	Understandability Criteria
	Continuity Criteria
	Protection Criteria
	Derived Principles from Applied Criteria
	Linguistic Modular Units Principle
	Few Interfaces Principle
	Explicit Interfaces Principle
	Small Interfaces Principle
	Information Hiding Principle
	Lesson Summary
	End of Lesson - What's Next?

