
Page 1

1ESI

Copyright © ESI Technology Corporation

Object Oriented
Concepts:

Classification, Hierarchies
and

Abstraction

This is the first lesson of a series that describes basic Object Oriented
Concepts within the context of a story. The story takes place in a Las Vegas
casino where a software engineer has been sent to work with an Poker expert.
The story walks you through the process of defining the problem domain
(Poker Game), abstracting out objects as well as their behavior and state. It
goes on to show how the game is modeled in a step by step fashion. At
appropriate points throughout the story, enough object oriented concepts are
covered to get you started building the Poker Game on your own.

Page 2

2ESI

Copyright © ESI Technology Corporation

Lesson Goals

 Upon completion of this lesson, the student should be able to:
• Describe the concept of an Abstract Data Type and

Encapsulation.
• Show how the concepts of classification and abstraction

work together to enable:
– Inheritance.
– Polymorphic behavior.

• Understand the concept of polymorphic behavior.
• Explain how messaging and polymorphic behavior work

together.
• Implement one or more game classes using the OO tools

of your choice.

Read and understand the objectives of this lesson.

Page 3

3ESI

Copyright © ESI Technology Corporation

Your Assignment: Build a Poker Game

Create Player=PG$Player
Set Player.Name=“Jane” $ $ $

Assume you work for a company that sells computer games. After conducting
a careful business analysis, your management assigns you the job of creating a
computerized poker game.

You’ve played a little poker with your college roommates, however, to really
understand the game, you’ve made arrangements to sit in on a game at a well
known casino in Las Vegas. When you arrive at the casino, you are introduced
to the Dealer. Upon learning that you are a top notch software engineer she
asked if she could work more closely with you. She said she knew a couple
programming languages but wants to learn more about object oriented
programming. She heard you could get rich as an object oriented programmer.
You agree to teach her object orientation as you build the system.

Of course, being a top notch object oriented engineer, you know that you
should work within a well defined process that is iterative in nature. You also
know from experience that building an object oriented system is labor
intensive up front - during the Analysis and Design phases. Getting the initial
design as generalized as possible will ultimately lead to a great deal of
reusability and extensibility. You explain the object oriented approach to
building systems to your new student and agree to meet daily for a lesson.

Since you discovered that the Dealer had some free time before her shift, you
decided to give her some background that would help her understand the
concepts as you proceed through the process of designing and developing the
game.

Page 4

4ESI

Copyright © ESI Technology Corporation

Evolution of Abstract Data Types

88

Integer

3.141593.14159

Floating Point
ZZ

Character

“Blue Eyes”“Blue Eyes”

String 11

Boolean

1 + 1
ADDADD

1
1

2

type
DAY = (SUNDAY,MONDAY,TUESDAY,

WEDNESDAY,THURSDAY,FRIDAY,
SATURDAY);

WEEKDAY = MONDAY..FRIDAY;

var
TODAY : DAY;
SCHOOLDAY : WEEKDAY;

Instance Variables

Dealer

Hand

HandAnalyzer

Value

Instance Methods

AcceptCardAcceptCard

ValueValue

Class methods

Class Variables

CreateCreate

NumberOfPlayers

Name

TextNameTextName

NameName

Levels of Abstraction

You tell her that preliminary to understanding object orientation is the concept
of Abstract Data Types (ADT) and that the concept of ADT’s has evolved over
the years as computing became more sophisticated. Today, we refer to them as
‘objects’.

You draw the diagram above on a napkin and start to explain the concepts.

Page 5

5ESI

Copyright © ESI Technology Corporation

Built-in Types

88

Integer

3.141593.14159

Floating Point

ZZ

Character

“Blue Eyes”“Blue Eyes”

String
11

Boolean

Let’s start with the basic concept of a “data type”. The need for data types
arises whenever data must be categorized for a particular usage. Over the
years, as computer languages evolved, the concept of data types evolved as
well.

Today all computer programming languages support ‘built-in’ types. Built-in
types are an integral part of the language specification. Some computer
languages are referred to as ‘weakly’ typed. Weakly typed languages generally
support one type. Other languages are referred to as ‘strongly’ typed. These
languages support more than one type such as strings, integers, floating point
numbers, etc. Generally, proper use of these types is enforced by an interpreter
or compiler. Obviously, there is something to be said about both approaches.

So far, so good! She said she understood this concept. Although most of her
experience was with the MUMPS computer language, she had some
experience with Basic. You told her you were a MUMPS programmer years
ago but you moved on to an Object Oriented implementation of MUMPS. She
said: “Cool! At least we speak the same base language.”

Page 6

6ESI

Copyright © ESI Technology Corporation

Abstract Data Types

1 + 1

ADDADD
1
1 2

You take one step up the abstraction ladder and explain just what an ADT is.
In its most fundamental form, an ADT can be defined as the encapsulation of
an operation (such as Add) and the data it operates upon.

You explain that we use the concept of an ADT more than we realize. When
we mentally add two numbers, the numbers we learned in elementary school
are operated upon the Add function that we also learned to produce a sum.
When you mentally perform the addition the operation and underlying storage
of numbers are hidden from the external world. They are encapsulated. For
example, the dealer of the poker game has the responsibility of calculating the
values of each player’s hand and identifying the winner. In this case, you need
to have knowledge of each card’s value as well as how to combine them for
their collective value.

You explain to her that the same thing happens in a computer. The numbers
are supplied to an Add function. The compiler or interpreter transforms the
external representation of the operation into an underlying representation that
it understands. The Add operation is applied to the numeric representation to
produce the sum. We only specify the correct syntax to have the result
calculated. The subtle point in both cases is that the operation and data are
encapsulated. The complexity of the operation is hidden from the user as it
should be.

Page 7

7ESI

Copyright © ESI Technology Corporation

User Defined Types

type
DAY = (SUNDAY,MONDAY,TUESDAY,

WEDNESDAY,THURSDAY,FRIDAY,
SATURDAY);

WEEKDAY = MONDAY..FRIDAY;

var
TODAY : DAY;
SCHOOLDAY : WEEKDAY;

She indicated that she was still with you so you take one more step up the
abstraction ladder and explain the concept of UDT’s.
You explain that using data types built into a programming language proved
very limiting. Eventually, languages supported User-Defined Types (UDTs)
as illustrated by the Pascal example above. The user-defined type added more
flexibility. However, one problem still remained - data could be manipulated
by any code active within the scope of the data type, thereby destroying
encapsulation.
You explain that encapsulation is often berated as something that is not
necessary to enforcing true ADT behavior. Although you may get along
without it, not having it is in direct violation of the information hiding
principle. Not having it is one of the primary reasons for low software quality.
She said that made sense since she had introduced some bugs into her first
MUMPS program by not hiding a variable with the NEW command. It got
changed later in the program and she wasted two hours debugging the
problem. You explained that if those variables were properly scoped, she
wouldn’t have to worry about using a NEW command, the compiler would
take care of generating the correct code. “But that’s another story for later on.”
You explain that the abstract data type (ADT) extended the UDT by specifying
both the structure of the type and the operations of the data type. The ADT
adds the concept of encapsulation.
You ask her if she understands everything up until this point and she says she
does. You think: Hmm! Maybe we’ve found a new employee here!

Page 8

8ESI

Copyright © ESI Technology Corporation

What is Object Orientation?

Card

Real World Objects Model of Real World

Linguistic Units

Few Interfaces

Explicit Interfaces

Small Interfaces

Information Hiding

Player

Dealer

Deck

Hand

“So how does this relate to object orientation?” she asked. Of course the
answer came easily to you.

“First,” you said confidently “object orientation lets developers model real
world objects as real world objects. It does not force them to create a data
model and a separate functional module that operates upon that data like you
had to in most procedural languages. It combines the code and the data so that
when the code executes, it operates within the context of that object where the
data is hidden. It picks up where the a concept of the ADT leaves off. Adding
the concepts of classification and abstraction enables such features as
inheritance and polymorphism. I know, I know! Big words! Have faith, we’ll
deal with them later on!”

“Second,” you explain “object orientation is based upon sound software
engineering principles. Essentially, it integrates time-proven software
engineering practices with the real world modeling approach. Classification
and abstraction go a long way to implement these principles.”

You show her the diagram (that you just happened to have in your pocket). It
illustrates the five real world objects we would find in a poker game. A Deck,
Card(s), Dealer, Hand and Player(s).

You explain to her that a good object oriented development environment
should provide an easy way to model real world objects and enforce the time-
proven principles. You give her Bertrand Meyer’s book on Object-oriented
Software Construction and tell her to read Part 1.

Page 9

9ESI

Copyright © ESI Technology Corporation

Describing the Poker Game

You realize that you’ve gone beyond her current level of understanding and
it’s time to get practical. Doing is the best way to learn this kind of technical
babble!

At the end of the first lesson, she asked you if you would like to sit in on her
first shift as an observer. You said: “Great - the sooner the better!”

Being an object oriented guru, you know that the first task is to identify the
objects of the game. You thought you would take notes on the game and then
write up a description later when you return to your room. After you think
you’ve got enough notes, you tell your new student that they should meet for
lunch tomorrow and go over the description. Since she is the expert, she can
verify that it is correct. Once that is done, you can work together to identify the
objects and then their properties and operations.

You go back to your room to write up the description.

Page 10

10ESI

Copyright © ESI Technology Corporation

Finding Objects of the Poker Game

The next day you meet for a working lunch and you read the description to
your new student.

“ The game of poker has one dealer and up to four players. The dealer deals
five cards from the deck to each player including herself. Each player,
including the dealer, is given the opportunity to throw up to three cards away
(discard) and ask the dealer for the number discarded. Each player is also
given the opportunity to bet on his or her hand (value of combination of cards).
The player with the best hand (highest poker value) wins the game.”

You explain to her that you are not a poker player and she said that was
obvious! However, for the first iteration, this description will suffice. The goal
is to identify the objects of the game as well as the properties and operations
those objects can perform.

You ask her to identify all the objects by finding the nouns in the description.
She reads through the description and identifies the following potential
objects: Poker, Game, Dealer, Players Cards, Deck and Hand.

Page 11

11ESI

Copyright © ESI Technology Corporation

Classifying the Poker Game Objects
PlayersCards DealerDeck Hand

You explain that two important underlying concepts of object orientation are
classification and abstraction. Classification is the process of organizing
objects into groups that have like properties (attributes) and operations.
Abstraction is the process of identifying and extracting out a quality of an
object.

You explain that what we are doing is starting the classification process. By
extracting the nouns, we have identified all the potential objects in the game.
You said the next step is to look at each object and determine whether it
actually contributes to the computerized model.

First, the words Poker and Game. She agreed that Poker is an object in the
larger sense, however, for this project there is no need to implement it. If we
were to implement different card games and reuse objects, it would then be a
valid object. We decide that Game falls into the same category and is even
more generic. She agreed with you that both names can be dropped from the
list.

The base (or atomic) objects Cards, Dealer, Players and Hand are obvious. She
feels they are absolutely necessary to the game. If Cards are relevant, then
Deck is also relevant. Although the Deck is made up of a collection of card
objects, it is an object in its own right.

You explain to your student that this is only the first pass and that we will
make several passes before we actually get it “right”. This is the essence of
iterative development.

Page 12

12ESI

Copyright © ESI Technology Corporation

Finding Behavior and State
PlayersCards DealerDeck Hand

I know:
suit and
rank

I can:
make suit
and rank
known

I can:
Deal
Shuffle

I can:
do nothing

I can:
Accept Card

I can:
Deal,
Shuffle,
Accept Card

I know:
52 Cards

I know:
how many
cards

I know:
my name,
value of hand

I know:
my name,
the deck

Now that you’ve got the objects isolated, you tell her it is time to determine
the object’s behavior. An easy way to determine this on a first pass is to look
at each object and say: “I’m an object - what do I know and what can I do?”
You start to apply this sentence to each object.
“I’m a Dealer and I know that I have a name, that I am in control of the deck
and I can deal, shuffle and accept a card”.
“I’m a Deck and I know that I have 52 cards and I can deal and shuffle”!
At this point she interrupts. “What do you mean when you say the Deck and
the Dealer know how to deal and shuffle”? I thought the Dealer shuffled and
the Deck just lets itself be manipulated complacently.
“Ah ha!,” you say “Always remember the first heuristic of object oriented
programming. One object NEVER does something to another, it ALWAYS
requests the object to perform an action! That is, objects should know how to
perform a function rather than having it imposed upon them. The Dealer
merely initiates the shuffle and deal operations but the Deck actually knows
how to perform those actions!”
She said, “I can understand that, let’s go on”.
“Ok, I’m a Hand and I know how many cards I have and I don’t know how to
do anything”.
“I’m a Player and I know my name, the hand I’m holding, the value of the
hand, who the dealer is and I can accept a card and place it in the hand I’m
holding”.
“I’m a Card and I know my rank, my suit and I can make them known to other
objects”.

Page 13

13ESI

Copyright © ESI Technology Corporation

Defining Levels of Abstraction

PlayersCards DealerDeck Hand

I know:
suit and
rank

I can:
make suit
and rank
known

I can:
Deal
Shuffle

I can:
do nothing

I can:
Accept Card

I can:
Deal,
Shuffle,
Accept Card

I know:
52 Cards

I know:
how many
cards

I know:
my name,
card hand,
value of hand,
dealer

I know:
my name,
the deck

Real World Object Level

Abstract Definition Level

After some discussion you both agree that you have identified the fundamental
behavior for each object - enough to start modeling the game.
Next you take the opportunity to explain what you have done using the
diagram you developed. You draw a dotted line below the behavior lists and
explain: “All objects below this line are real world objects that have properties
and behavior.What we did was abstract out those properties and behavior,
creating an abstract level. This level can be used to build what we call a
definitional level. That is, we have enough information to start modeling the
problem domain with an object oriented development tool.”
“However,” you say “it’s time to learn a few concepts.” Unfortunately she tells
you she has to go to work and could we start the concepts tomorrow. Time
flies when you’re having fun! You tell her to meet you for lunch again
tomorrow for the next lesson. She asks you if you want to sit in on the game -
this time as a participant. You say “Why not, what have I got to lose”?

You meet your new student for lunch again and apologize for being late. You
explain that it took all morning to get another cash advance from the main
office. Your boss didn’t understand how you could blow $200 on computer
paper! You wonder why your new student wants to be a programmer - she
should start her own casino!

Page 14

14ESI

Copyright © ESI Technology Corporation

The Concept of a Class

Player Class

Picking up where you left off the previous day, you review the concepts of
classification and abstraction. You explain that we’ve just started using these
concepts. You ask her if she remembers what encapsulation is. She says “Yes,
it is based on the concept of an Abstract Data Type and states that the data and
the operations that work on that data are grouped together such that the user of
that type does not need to know how operations are performed, just that they
do what the say they will do.”

You tell her she’s correct, but now you would like to elaborate upon that
concept. You use the diagram you drew the day before, but replace all
information at the abstract level with a new diagram. You use Players to
illustrate the concepts.

You tell her that most object oriented systems use the process of classification
to organize information needed at the object definition level. Classification has
been around for a long time. Aristotle and Plato wrote about it around 200
B.C. It is used extensively in biology to organize life forms here on earth. In
fact, it becomes really powerful when the Classes are organized into
hierarchies. This lets us extend the levels of abstraction to higher levels! You
tell her not to worry about that, it will become ‘intuitively obvious’ later on.
She looks at you quizzically! Obviously not a phrase you hear at the poker
table.

You ask if she understands the concept so far. She said “Yes, it’s intuitively
obvious! Classes are used to organize the information we abstracted out of the
real world objects. They are the organizing paradigm used in most object
oriented development environments!”

Page 15

15ESI

Copyright © ESI Technology Corporation

The Concept of an Instance

Player Class

Now you explain that if a class contains the definitional information, it must
be there to create something. At this point you replace the real world depiction
of Player objects with a new symbol and call it an instance of the class. That
is, in all object oriented systems you must have the ability to create a real
world object of that class and it is called an instance.

You then draw an arrow between the instance and the class and tell your card
sharp friend that when an instance is created from the class, it must always
know its maker! If it did not, it would not be able to call upon the class for
services it may need. These instances are children and can do only what their
maker knows. They possess no behavior of their own, only what is made
available to them by their maker.

Page 16

16ESI

Copyright © ESI Technology Corporation

The Concept of an Object Identifier

Player Class

OID

Your student scratches her head and says “Ok, I understand that the instance
object must know its maker, the class, but how do other objects know it?”

“Very perceptive!” you say. You then explain that when the real world object
is created by the class, it assigns it an unique Object Identifier commonly
called an OID. The newly born object is known to all other objects by this
OID.

You caution her on one point however. The OID is an internal (to the
computer) device for identifying the object instance and it is almost always
implementation specific.

Page 17

17ESI

Copyright © ESI Technology Corporation

The Definition of an Object

Player Class

StateState

OID

Behavior

Now you decide it is time to introduce your student to a more formal
description of an object.
“At this point,” you say “we know the definitions of a class and an instance of
the class. Let’s talk about the three commonly accepted aspects of an object.”
You then proceed to explain that an object 1) has Identity, 2) contains State,
and 3) displays Behavior.
“Ah,” she says “I know what identity is, we just covered that! That is
represented by the OID. But what does State and Behavior mean?”
 Being the superb teacher you are, you take her back to the exercise where you
answered the question: ‘I am an object, what do I know and what can I do?’.
You ask her if she sees a connection.
“Let me guess” she says “the ‘what do I know’ is represented as the state of an
object and the ‘what can I do’ is represented through the behavior of an object.
Correct?”. “Right on!” you exclaim.
Now you go on to tell her that the state of an object is actually stored in the
instance object, but, the behavior is stored in the class.
“Wow, now I see!” she says “Because ‘what I know’,the state, is data and is
unique to each individual object, it must be stored in that object. Also, because
‘what I can do’ or behavior, is code, is in common to all instances of the class,
and it must be stored in the class. Storing it in each object would be, well, not
smart! Now I see why each instance must know its maker - without that link, it
would not have access to the behavior. Cool!”

Page 18

18ESI

Copyright © ESI Technology Corporation

Encapsulating State

Player Class

Name=John Doe
Dealer=OID
Hand=OID

Name=John Doe
Dealer=OID
Hand=OID

OID

Behavior

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

You ask her if she understands everything so far. She says you’re the best
teacher she’s ever had. Ah, positive feedback, what a motivator. That may
even make up for the 200 bucks she took from you!
She tells you she’s only got an hour more before her shift starts and could you
move on.“Now,” you say “let’s talk about State. An object, if it knows
anything, must have that information stored in it. In the case of the Player
class, that information must be the name of the player, a pointer to the dealer
and a pointer to the hand the player is holding.” You then add this to the
diagram.
You say to her “Remember your MUMPS programming experience? When
you wrote the code to implement a function, it typically accessed local
variables to get that data. However, that data was accessible to all other
functions that would execute within that process. Notice that in our object
oriented model, that data is confined to the object, that is, it is encapsulated!
However, the concept of a symbol table that held name-value pairs is good. So,
think of an object as a symbol table because that is what it is. More
specifically, it is an ‘instance’ symbol table because it only holds name-value
pairs that have a lifetime of the object. If the object dies, they die!”
“Got it!,” she said “So my code can simply set the value to a name just like I
do in MUMPS?”. “Yes,”you replied “as long as the language you’re using
permits dynamic creation of the name-value pair. Some languages require you
to ‘declare’ that name. This is even better since it lets the compiler know more
about the name and value, consequently, it can do more for you if it has that
knowledge. In our object model above, that knowledge would be stored in a
table in the class. From now on we will refer to them as Instance Variables.”
“Let me guess” she said “knowledge is power!”.

Page 19

19ESI

Copyright © ESI Technology Corporation

Encapsulating Object Behavior

Instance Services Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

Name=John Doe
Dealer=OID
Hand=OID

Name=John Doe
Dealer=OID
Hand=OID

OID

“We’re on a roll!” she said “I bet you will explain Behavior next.” “Well” you
said, “the thought entered my mind!”
So you proceed to add some behavior to the diagram. You tell her the behavior
is in common to all instances created from a class, therefore it is stored in the
class. She tells you you’re repeating yourself and that she only has twenty
minutes to her shift.
“Remember your experience with MUMPS again.You had two ways to store
and execute code. In routines or in data. We’re not going to talk about the
Xecute command and code in data. Although it may seem like a neat idea,
within the object paradigm it succeeds admirably in ‘breaking encapsulation’.
So let’s move on to the concept of a routine. Within the object paradigm, the
routine equivalent is often referred to as a method. To stay with mainstream
terminology, we will use the word method.”
“So,” she says “looking at your diagram, I bet that AcceptMethod, Name and
Value are methods.”
“Well, close,” you say “AcceptMethod is a method in the strictest sense of the
word. However, Name and Value are what we call properties. Notice that
their names are the same as the instance variables Name and Value. Properties
are a special kind of method in that they contain code to access the state of an
object. Property methods have the function of exposing the state of a variable.
Property methods are necessary because there is no other way to set or get the
value of an instance variable because it is encapsulated. Properties are
different from methods in that, often, the object oriented implementation will
permit language operations on it like $GET for instance.”

Page 20

20ESI

Copyright © ESI Technology Corporation

Describing the Object Interface

Instance Services Player Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

Name=John Doe
Dealer=OID
Hand=OID

Name=John Doe
Dealer=OID
Hand=OID

OID

“One last thing for today.” you say “Some implementations of object
orientation permit you as the programmer to organize your methods and
properties through the concept of an Interface. An interface is simply a way of
organizing behavior into logical groupings. Generally, you as the programmer
can create these interfaces. However, there is always a primary interface which
is the case if the implementation does not support the concept.”

“Ok, my shift is starting in 5 minutes,” she said “This has been a really great
session. I want to buy a good book that explains these concepts - can you
recommend one?”

“Of course there are a number of them. Check out the bibliography, especially
the Khoshafian and Abnous book.”

“By the way” she interjected as she was walking out of the restaurant “would
you like to sit on the game again tonight?”

“Forget it lady,” you replied, “I’m going to buy a six pack of beer, some potato
chips and watch an old John Wayne movie back in my room. After that I’m
going to start modeling the Player class on my computer. Meet you here
tomorrow at the same time and we will continue talking about classification
and abstraction. I’m sure we will also have time to talk about how objects talk
to each other - messaging. What I want you to do tonight is draw a class
structure for the Dealer using the ‘what I know’ and ‘what I can do’
information. Compare the Dealer to the Player and be ready to answer some
questions. You’re going to earn that $200.”

Page 21

21ESI

Copyright © ESI Technology Corporation

Discovering Inheritance

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

OID

You meet again for lunch. You ask how her shift went and she said it was a
slow shift - not as profitable as the day before. Right you thought - $200 less
profitable!

You start by saying “I see from the diagram that you completed your
homework. Tell me, after you finished the Dealer class did you compare it to
the Player class? What did you notice? ”

“Interesting,” she said “I noticed that although the Dealer class had all of the
state and behavior of the Player, it had additional state and behavior unique to
a Dealer. The Dealer performs the same functions as a Player and a couple
more, namely, the Dealer can Deal and Shuffle. Also the Dealer knows the
same as the Player but knows more, like all the Players in the game and the
Deck. I guess you can say that the Dealer is a much more specialized Player.
Am I right?”

“ Absolutely right on!” you said. Wow, am I a good teacher or what!

“Hold on,” she said “I just had a premonition! What if you created another
pointer that pointed from the Dealer class to the Player class. Then, what if the
compiler could take all of the methods, properties and variables of the Player
class and make them available to the Dealer Class so the Dealer class does not
have to implement them. We could call this, let’s see, I know - Inheritance!”

Page 22

22ESI

Copyright © ESI Technology Corporation

Bringing it Together!
Instance Services Player Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

Name=John Doe
Dealer=OID
Hand=OID

Name=John Doe
Dealer=OID
Hand=OID

OID

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

OID

She lays her diagram out on the table and quickly sketches the Player to the
diagram and draws a pointer from the Dealer to the Player.

You look at her in amazement and say “Wow! How did you figure all that
out?”

“I read Khoshafian and Abnous last night!” she replied smugly. “Also,” she
said “I remembered what you taught me about being able to create levels of
abstraction by linking classes together in a hierarchy. If you do this, it is
‘intuitively obvious’ that you could build your compiler to support
inheritance.”

You thought, “Oh no, I’m creating a monster!” Next thing you know she will
be matriculating at MIT.

“Also,” she said “now that you can inherit the method, properties and variable
definitions, it occurred to me that you may want to override some of the
inherited items at the Dealer level and specialize the operation. This would be
a great feature to have. And, by the way, if you can override a service, why
shouldn’t you be able to promote a service as well. Now I can see how
classification, hierarchies and abstraction come together to form the basis for
object orientation. Is there more? This is as far as I got in Khoshafian and
Abnous!”

“Yes,” you replied “let’s move on to the concept of object messaging. Through
this concept we can illustrate another very powerful feature of objects -
polymorphism.”

Page 23

23ESI

Copyright © ESI Technology Corporation

Describing Object Messaging
Instance Services Player Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

Name=John Doe
Dealer=OID
Hand=OID

Name=John Doe
Dealer=OID
Hand=OID

OID

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

OID

PlayerOID.Acceptcard(CardOID)

You realized that there may have been some things that were implied in your
discussions so you decided to review some facts:

1) An object can only be manipulated via the services or operations defined
within the interface of the class.

2) Instance methods and properties are the only mechanisms for manipulating
an object’s state. Methods (or operations): 1) Control an object’s behavior 2)
Can only be executed by sending a message to the object.

You then draw an arrow between the Dealer object and the Player object and
put PlayerOID.AcceptCard(CardOID) on it. You explain that this is typical
object messaging syntax and that Player is a variable that contains the Player
objects OID, AcceptCard is the method and CardOID is the parameter that
passes the OID of the Card object to the player object. You explain that
messages identify the method or property to be executed and specifies the
parameters to be used by the method. It’s like a MUMPS Do command but
much more flexible because it permits polymorphic behavior.You go on to
state that the set of messages to which an object can respond is called its
protocol, that is, the protocol consists of the methods and properties that will
respond to a message in the interface.

“That’s the second time you used the term ‘polymorphic behavior’. What does
that mean?” she asked.

Page 24

24ESI

Copyright © ESI Technology Corporation

A Messaging Example
Instance Services Deck Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

DealDeal

ShuffleShuffle

Instance Variables

CardArray
Top

Instance Variables

CardArray
Top

CardArray(1)=OID
CardArray(2)=OID

Top=1

CardArray(1)=OID
CardArray(2)=OID

Top=1

OID

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

OID

À PlayerOID.Deal

Á Player(1).Deal

You take out your pad of paper and draw a new diagram. On it you draw the
Dealer class and an instance of the Dealer as well as the Deck class and
instance of that class. You ask her to take notice of the fact that the two classes
are totally different and that there is no inheritance involved.
You also review what we called the first heuristic of object oriented
programming: An object NEVER does anything to another object, it
ALWAYS asks the object to perform that task.
“Assume” you said “that you are sitting at your computer and you have created
an instance of a Deck and an instance of a Player. Notice that the Deck and the
Player have the method Deal in their interfaces. Are they the same method or
are they different? Think of the responsibilities of each object and then
answer.”
“Hmm” she replied “I’ve been a dealer for a couple of years now and I’ve
always thought of myself as the person in control of the Deck, that is, that it
was always me doing the dealing. But one thing I’ve learned about object
oriented design is that it is important to separate responsibilities. I will have to
say that if the Dealer gets a message to Deal, its responsibility is to the Player
(or players if there are more than one). In order to deal a card to a player it has
to ask the Deck instance for a card. It is the responsibility of the Deck instance
to pick the top card off the deck and return it to the Dealer object so it can give
it to the player. Ah ha! I bet it does that through the AcceptCard message.”
She quickly draws the messages on the diagram and labels them 1 and 2.
You think - she’s really getting scary! Time to make a job offer!

Page 25

25ESI

Copyright © ESI Technology Corporation

Discovering Polymorphic Behavior
Instance Services Deck Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

DealDeal

ShuffleShuffle

Instance Variables

CardArray
Top

Instance Variables

CardArray
Top

CardArray(1)=OID
CardArray(2)=OID

Top=1

CardArray(1)=OID
CardArray(2)=OID

Top=1

OID

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

OID

À PlayerOID.Deal

Á Player(1).Deal

“Ok,” you say “think! What just happened?”

“Well,” she said “two messages with the same method name got sent to two
different objects, however, the behavior of each message was different. The
Player object simply received the message and delegated it to the Deck object
which knew how to deal. Ok! Ok! I get it! Polymorphic Behavior - poly
means many and morphic means forms. This must mean that in object oriented
programming, you can send the same message to two different objects and as
long as it’s in each object’s protocol, it will respond to it. The response may be
the same or different. They may do something totally different or - they may
work together to accomplish a common goal! Awesome!”

You congratulate her on the intuitive leap and go on to explain that the same
thing happens with the Shuffle message. The responsibilities are the same as
the Deal method.

“So,” you say “what are the benefits of polymorphic behavior and what
features of object orientation enable it?”

“ The benefits,” she replies “are obvious, polymorphic behavior permits
homogeneous messaging between objects eliminating the need to write
different methods and employing case statements to select the proper method.
It also eliminates the need for multiple entry points into an object. The
concepts of classification, inheritance and abstraction enable polymorphic
behavior.”

Page 26

26ESI

Copyright © ESI Technology Corporation

The First Pass at Modeling the Game

PlayersCards DealerDeck Hand

I know:
suit and
rank

I can:
make suit
and rank
known

I can:
Deal
Shuffle

I can:
do nothing

I can:
Accept Card

I can:
Deal,
Shuffle,
Accept Card

I know:
52 Cards

I know:
how many
cards

I know:
my name,
value of hand

I know:
my name,
the deck

You tell her we are ready to actually create a model of the game. You ask her
if she has a computer at home. She says she does. You give her instructions on
how to download and install one of the two object oriented MUMPS systems.

Next you pull out the drawing you made of the poker game objects and explain
that what you want her to do is use the documentation that comes with the
system to:

1) Create a library to hold the classes she will create if the implementation
supports libraries

2) Create the Card class and add the instance variables Suit and Rank. We
determine that these must be initialized by user when an object is created. So
the card’s state will be set at creation by the caller and not modified after that.
If your implementation permits, a create method can be implementated that
will accept 2 input parameters. What are the valid values to be accepted for
these parameters? It could be very fancy and allow the user to specify “H” or
“Hearts” for the heart suit, etc. The rank could simply be a number 1-13 (ace
to king) or 2-14 (2 to ace) or 2-10 and “Jack”, “Queen”, or “King”. You can
allow any types of inputs like this. Internally however, you can store it any
way you want since the state is encapsulated. Internally you may end up
storing 1-13 for Rank and “H”,”C”,”S”, or “D” for Suit. How much
flexibility you allow for the inputs and how you validate the input is an
exercise that could be skipped if time is short.

Page 27

27ESI

Copyright © ESI Technology Corporation

The First Pass at Modeling the Game

PlayersCards DealerDeck Hand

I know:
suit and
rank

I can:
make suit
and rank
known

I can:
Deal
Shuffle

I can:
do nothing

I can:
Accept Card

I can:
Deal,
Shuffle,
Accept Card

I know:
52 Cards

I know:
how many
cards

I know:
my name,
value of hand

I know:
my name,
the deck

3) What happens if invalid inputs are found? Should the create command not
fail, an object will be created. But we can set the state of the object to some
state that would indicate an invalid object. For example, we could set Rank to
–1 and Suit to “X” or something.

4) Using the implementation approach for interacting with the interpreter,
create a card object with inputs. If you have an Object Browser that lets you
look at the internal state of an object, go ahead and inspect the object.

5) Since the state is encapsulated and we haven’t exposed the state yet, we
then add the Rank and Suit properties (Read only). We could make these
properties return the internal values as is, or transform them into text output.
For example, instead of Suit and Rank being “H” and 1, we could return
“Hearts” and “Ace”. However, since the output of these properties will be
used to compare against other cards to determine a player’s hand, and the
winning hand, the output should be presented in a way that will make those
operations easier. Thus Rank should be exposed as a number 1-13 (or 2-14).
Suit can be exposed as “H” or “Heart” without adding any more complexity to
the comparison operations.

6) If you feel courageous, you may add a property called Color which is not
directly tied to an instance variable, but uses the value of Suit variable to
determine “Red” or “Black”. This highlights how properties of an object can
be from the internal state directly, or computed, etc. Since the game does not
need a Color property (and the user can determine Color for themselves from
the Suit property, it is not needed. But it’s a good little side topic).

Page 28

28ESI

Copyright © ESI Technology Corporation

The First Pass at Modeling the Game

PlayersCards DealerDeck Hand

I know:
suit and
rank

I can:
make suit
and rank
known

I can:
Deal
Shuffle

I can:
do nothing

I can:
Accept Card

I can:
Deal,
Shuffle,
Accept Card

I know:
52 Cards

I know:
how many
cards

I know:
my name,
value of hand

I know:
my name,
the deck

7) No using your implementations method to create several card objects, and
test their properties. Use an Object Browser if you have one.

“Good grief,” she yelled, “my shift starts in 2 minutes! Got to go! I’ll work on
that tonight. ”

You to need to implement the Card object so you can compare it to her
implementation tomorrow.

Page 29

29ESI

Copyright © ESI Technology Corporation

Lesson Summary

Object orientation is well established within the field of Information
Technology. When new applications are written, most organizations simply
assume they will be written using this paradigm.

Object orientation is founded on the concept of Abstract Data Types. The ADT
concept introduced you to the concept of Encapsulation. Object orientation is
based on the concepts of Classifications, Hierarchies and Abstraction. These
concepts come together to form an infrastructure of object orientation. Other
powerful concepts that are a consequence of this coming together are
Inheritance of operations and definitional information as well as Polymorphic
Behavior.

Essentially, object orientation consists of the merging of solid, time-proven
software engineering quality principles with the concepts of classification,
hierarchies and abstraction.

Page 30

30ESI

Copyright © ESI Technology Corporation

End of Lesson - What’s Next?

The next lesson (Lesson 4) will proceed with the next iteration of the Poker
Game. We will cover some more Object Oriented Concepts as needed.

	OO Concepts: Classification, Hierarchies and Abstraction
	Lesson Goals
	Your Assignment: Build a Poker Game
	Evolution of ADTs
	Built-in Types
	ADTs
	User Defined Types
	What is OO?
	Describing the Poker Game
	Finding Objects of the Poker Game
	Classifying the Poker Game Objects
	Finding Behavior and State
	Defining Levels of Abstraction
	The Concept of a Class
	The Concept of an Instance
	The Concept of an Object Identifier
	The Definition of an Object
	Encapsulating State
	Encapsulating Object Behavior
	Describing the Object Interface
	Discovering Inheritance
	Bringing it Together!
	Describing Object Messaging
	A Messaging Example
	Discovering Polymorphic Behavior
	The First Pass at Modeling the Game (pt.1)
	The First Pass at Modeling the Game (pt.2)
	The First Pass at Modeling the Game (pt.3)
	Lesson Summary
	End of Lesson - What's Next?

